# Доклади на Българската академия на науките Comptes rendus de l'Académie bulgare des Sciences

Tome 57, No 10, 2004

MATHMATIQUES Fonctions spéciales

# ANALYTICAL SOLUTIONS OF MULTIDIMENSIONAL FRACTIONAL-INTEGRO-DIFFERENTIAL EQUATIONS OF FEL (FREE ELECTRON LASER) TYPE

## O. Kamenov

(Submitted by Academician P. Popivanov on June 23, 2004)

#### Abstract

In the present paper analytical solutions of the fractional-integro-differential equations of FEL type are found and analysed when the three-parameter special functions of Mittag—Leffer are used as kernels. The two- and three-dimensional versions of the above equations are considered.

**Key words:** fractional integrals and derivatives, integro-differential equation, Kummer function, Mittag-Leffer functions, Riemann-Liouville fractional integrals and derivatives

2000 Mathematics Subject Classification: 45J05, 26A33, 33E12

Introduction. The fractional order differential equations have nowadays an increasing range of applications in mathematical physics (see [5], as well as [1-3]). One of the main priorities of the fractional-differential generalization is to give an adequate way to mathematical description of the inheritance properties of various materials and processes. Such processes are described in [1] and [3] for the free electron laser equation (FEL). The kernel-functions of these integro-differential equations are the exponential and Kummer's functions respectively, while the authors in [2] use the three-parameter functions of Mittag-Leffler. By means of such kernels in the present paper the integro-differential equations of FEL type are considered and solved analytically in the two-and three-dimensional cases.

**Preliminaries.** The two-dimensional version of integro-differential equation of FEL type with the three-parameter function of Mittag-Leffler as kernel is represented below

$$(1) \qquad D_{\tau}^{\alpha}a(x,\tau) = \lambda \int_{0}^{\tau} (\tau - t)^{\mu - 1}a(x,t)E_{\rho,\mu}^{\beta}(\omega(\tau - t)^{\rho})dt + \delta f(x)\tau^{\varepsilon - 1}E_{\rho,\varepsilon}^{\gamma}(\omega\tau^{\rho}),$$

(2)  $D_{\tau}^{\alpha-k}a(x,\tau)|_{\tau=0} = a_k f(x), \quad k=1,2,\ldots,N, \ N-1 \leq \alpha < N, \ N \in N,$  where  $\lambda = -i\nu g_0$  is a complex coefficient of amplification,  $0 \leq \tau \leq 1$ ,  $\operatorname{Re}(\rho,\mu,\beta,\varepsilon,\gamma) > 0$ ,  $\delta \in \mathbb{R}, \ \omega = i\nu, \ a_k = \operatorname{const} \in R, \ a(x,\tau) - \operatorname{a complex amplitude of the field}, \ f(x)$  is given absolutely integrable function in  $[0,\infty)$ , and  $E_{\rho,\mu}^{\beta}(z)$  is the three-parameter Mittag-Leffler function [2]

$$E_{\rho,\mu}^{\beta}(z) = \sum_{n=0}^{\infty} \frac{(\beta)_n}{\Gamma(\rho n + \mu)} \cdot \frac{z^n}{n!}, \quad z \in C,$$

and  $(\beta)_n = \beta(\beta+1)\cdots(\beta+n-1)$ ,  $(\beta)_0 = 1$  is Pochhammer symbol. Here  $D_{\tau}^{\alpha}a(x,\tau)$  is Riemann–Liouville differential operator of fractional order  $\alpha$ , defined for every  $t \in [0,\tau]$  as follows:

$$D_{\tau}^{\alpha}a(x,t) = \frac{d^{n}}{dt^{n}} \left[ I_{t}^{n-\alpha}a(x,t) \right] \quad n = 1 + [\alpha],$$

$$I_{t}^{\alpha}a(x,t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{a(x,\xi)}{(t-\xi)^{1-\alpha}} d\xi$$

and  $\Gamma(\alpha)$  is Euler integral of second kind.

The three-dimensional version of the initial value problem (1)-(2) is

$$(3) \quad \sum_{k=0}^{\infty} \left(\begin{array}{c} \alpha \\ k \end{array}\right) \left(\frac{iS\nabla^2}{4}\right)^k D_{\tau}^{\alpha} b(x,y,\tau) = \lambda \int\limits_0^{\tau} e^{-iS\xi\nabla^2/4} b(x,y,\tau-\xi) \xi^{\mu-1} E_{\rho,\mu}^{\beta}(\omega\xi^{\rho}) d\xi,$$

(4) 
$$D_{\tau}^{\alpha-k}b(x,y,\tau)|_{\tau=0} = \sum_{j=0}^{\infty} {\alpha-k \choose j} b_{j+k} \left(\frac{iS}{4}\nabla^2\right) b_0(x,y), \ k=1,2,\ldots,N,$$

where  $S = \text{const} \in R$ ,  $b_{j+k} = \text{const}$ , j = 0, 1, ..., k = 1, 2, ..., N,  $b_0(x, y)$  is given absolutely integrable function in a rectangular range,  $b(x, y, \tau)$  is the field amplitude, and the restrictions for the parameters  $\alpha$ ,  $\beta$ ,  $\rho$ ,  $\mu$  are the same as in the two-dimensional version:

$$\nabla^2 \equiv \partial^2/\partial x^2 + \partial^2/\partial y^2.$$

The following two theorems are important in finding the solution of the initial value problems (1)–(2) and (3)–(4).

**Theorem 1.** If the numbers  $\rho$ ,  $\mu$ ,  $\beta$ ,  $\gamma$ ,  $\varepsilon$ ,  $\omega$  are such that  $\text{Re}(\rho, \mu, \varepsilon) > 0$ , then

(5) 
$$\int_{0}^{\tau} (\tau - \xi)^{\mu - 1} E_{\rho, \mu}^{\beta}(\omega(\tau - \xi)^{\rho}) \xi^{\varepsilon - 1} E_{\rho, \varepsilon}^{\gamma}(\omega \xi^{\rho}) d\xi = \tau^{\mu + \varepsilon - 1} E_{\rho, \mu + \varepsilon}^{\beta + \gamma}(\omega \tau^{\rho}).$$

**Theorem 2.** If, Re  $(\rho, \mu, \varepsilon) > 0$  then the following equalities:

(a) 
$$(E^{\beta}_{\rho,\mu,\omega}.E^{\gamma}_{\rho,\varepsilon,\omega}\varphi)(\tau) = (E^{\beta+\gamma}_{\rho,\mu+\varepsilon,\omega}\varphi)(\tau);$$

(b) 
$$I_{\tau}^{\alpha}(E_{\rho,\mu,\omega}^{\beta}\varphi)(\tau) = (E_{\rho,\mu,\omega}^{\beta}I_{\tau}^{\alpha}\varphi)(\tau) = (E_{\rho,\mu,\omega}^{\beta}\varphi)(\tau);$$

(c) 
$$(E^1_{\rho,\mu,\omega}.E^1_{\rho,\omega}\varphi)(\tau) = (E^2_{\rho,\mu+\varepsilon,\omega}\varphi)(\tau),$$

are valid for any function  $\varphi(\tau)$  which is absolutely integrable on the interval  $(0, \rho]$ , where

(6) 
$$(E_{\rho,\mu,\omega}^{\beta}\varphi)(\tau) = \int_{0}^{\tau} (\tau - \xi)^{\mu - 1} E_{\rho,\mu}^{\beta}(\omega(\tau - \xi)^{\rho})\varphi(\xi)d\xi, \ \tau > 0.$$

Proofs of the statements of Theorem 1 and Theorem 2 follow directly from the definitions of the three-parameter Mittag-Leffler function and B(p,q) – the beta function (see [6]).

3. Analytical solution in the two-dimensional case. We look for a solution of the initial value problem (1)–(2) of the form

$$a(x,\tau) = A(\tau)f(x)$$

supposing that 
$$A(\tau) \in L(0,1] = \left\{ \varphi(\tau) : \|\varphi\| = \int_{0}^{1} |\varphi(\xi)| d\xi < \infty \right\}.$$

After applying Riemann-Liouville fractional differential operator of order  $\alpha$  and Theorem 1 to both sides of equation (1) and the initial condition (2), and using the operator, defined in (6), we get a nonhomogeneous integral equation of Volterra type [4]

(7) 
$$A(\tau) = A_0(\tau) + \lambda (E^{\beta}_{\rho,\mu,\omega} A)(\tau) + \delta \tau^{\alpha+\varepsilon-1} E^{\gamma}_{\rho,\alpha+\varepsilon}(\omega \tau^{\rho}), \text{ where}$$

(8) 
$$A_0(\tau) = \sum_{k=1}^{N} \frac{a_k}{\Gamma(\alpha - k + 1)} \tau^{\alpha - k}.$$

The general solution of equation (7) is the asymptotic series [4]

(9) 
$$A(\tau) = A_0(\tau) + \delta \tau^{\alpha + \varepsilon - 1} E_{\rho, \alpha + \varepsilon}^{\gamma}(\omega \tau^{\rho}) + \sum_{k=1}^{\infty} \lambda^k A_k(\tau),$$

where after applying Theorem 2, we get the following iterations:

$$A_{1}(\tau) = A_{0}(\tau) + \delta \tau^{\alpha+\varepsilon-1} E_{\rho,\alpha+\varepsilon}^{\gamma}(\omega \tau^{\rho}) + \lambda (E_{\rho,\mu+\alpha,\omega}^{\beta} A_{0}(\tau);$$

$$A_{2}(\tau) = A_{0}(\tau) + \left[ \lambda (E_{\rho,\mu+\alpha,\omega}^{\beta} A_{0})(\tau) + \lambda^{2} (E_{\rho,2(\mu+\alpha),\omega}^{2\beta} A_{0}(\tau) \right] + \delta \left[ \tau^{\alpha+\varepsilon-1} E_{\rho,\alpha+\varepsilon}^{\gamma}(\omega \tau^{\rho}) + \tau^{\mu+\varepsilon+2\alpha-1} E_{\rho,\mu+\varepsilon+2\alpha}^{\beta+\gamma}(\omega \tau^{\rho}) \right];$$

$$A_{n}(\tau) = A_{0}(\tau) + \sum_{k=1}^{n} \lambda^{k} (E_{\rho,k(\mu+\alpha),\omega}^{k\beta} A_{0})(\tau)$$

$$+ \delta \sum_{j=0}^{n-1} \lambda^{j} \tau^{j\mu+\varepsilon+(j+1)\alpha-1} E_{\rho,j\mu+\varepsilon+(j+1)\alpha}^{j\beta+\gamma} (\omega \tau^{\rho})$$

Finally we get for the amplitude  $a(x, \tau)$ 

(10) 
$$a(x,\tau) = \left\{ \sum_{k=1}^{N} a_k \tau^{\alpha-k} \left( \sum_{j=0}^{\infty} \lambda^j \tau^{j(\mu+\alpha)} E_{\rho,j(\mu+\alpha)+\alpha-k+1}^{j\beta} (\omega \tau^{\rho}) \right) + \delta \sum_{j=0}^{\infty} \lambda^j \tau^{j\mu+\varepsilon+(j+1)\alpha-1} E_{\rho,j\mu+\varepsilon+(j+1)\varepsilon}^{j\beta+\gamma} (\omega \tau^{\rho}) \right\} f(x)$$

4. Analytical solution in the three-dimensional case. Let in the three-dimensional initial value problem (3)-(4) we substitute

(11) 
$$B(x, y, \tau) = e^{iS\tau \nabla^2/4} b(x, y, \tau).$$

Taking into account the fractional differentiation of the product of two functions ([5], p.96)

$$D_{\tau}^{\alpha}\left(\varphi(\tau)\psi(\tau)\right) = \sum_{k=0}^{\infty} \left(\begin{array}{c} \alpha \\ k \end{array}\right) \varphi^{(k)}(\tau) D_{\tau}^{\alpha-k} \psi(\tau),$$

the initial value problem (3)–(4) reduces to the following problem of the function  $B(x, y, \tau)$ 

(12) 
$$D_{\tau}^{\alpha}B(x,y,\tau) = \lambda \int_{0}^{\tau} (\tau - t)^{\mu - 1} E_{\rho,\mu}^{\beta}(\omega(\tau - t)^{\rho})B(x,y,t)dt,$$

(13) 
$$D_{\tau}^{\alpha-k}B(x,y,\tau)|_{\tau=0} = b_k b_0(x,y), \ k=1,2,\ldots,N.$$

Let us separate the variables in problem (12)-(13), i.e.

$$B(x, y, \tau) = V(\tau)b_0(x, y),$$

where we suppose that  $V(\tau) \in L(0,\tau]$ , then using operator  $(E_{\rho,\mu,\omega}^{\beta}\varphi)(\tau)$  defined by (6), we get the homogeneous equation of Volterra type

(14) 
$$D_{\tau}^{\alpha}V(\tau) = V_0(\tau) + \lambda(E_{\rho,\mu,\omega}^{\beta}V)(\tau),$$

where

(15) 
$$V_0(\tau) = \sum_{k=1}^N \frac{b_k}{\Gamma(\alpha - k + 1)} \tau^{\alpha - k}.$$

It is obvious that problem (14)–(15) coincides with the homogeneous version ( $\delta$  = 0) of equation (7). Thus, by the same reasons we get the solution of (3)–(4) in the form (16)

$$b(x,y,\tau) = e^{-iS\tau\nabla^2/4} \left\{ \sum_{k=0}^{N} b_k \tau^{\alpha-k} \left( \sum_{j=0}^{\infty} \lambda^j \tau^{j(\mu+\alpha)} E_{\rho,j(\mu+\alpha)+\alpha-k+1}^{j\beta}(\omega \tau^{\rho}) \right) b_0(x,y) \right\}.$$

5. Conclusions. Let us consider some important particular cases. In the one-dimensional version (f(x) = 1) of solution (10) when  $\rho = 1$ , keeping in mind that

$$E_{1,\mu}^{\beta}(z) = \frac{1}{\Gamma(\mu)}\Phi(\beta,\mu,z) = \frac{1}{\Gamma(\mu)}\sum_{n=0}^{\infty} \frac{(\beta)_n}{(\mu)_n} \cdot \frac{z^n}{n!} = \Phi * (\beta,\mu,z),$$

and after some uncomplicated transformations we get

$$a(x,\tau)\Big|_{\substack{x=0\\ \rho=1}} = \sum_{k=1}^{N} b_k \tau^{\alpha-k} \left( \sum_{n=1}^{\infty} \lambda^n \tau^{n(\mu+\alpha)} \Phi * (n\beta, n(\mu+\alpha+1) + \alpha - k + 1, i\nu\tau) + \delta \sum_{n=1}^{\infty} \lambda^n \tau^{n(\mu+1) + (n+1)\alpha + \gamma} \Phi * (n\beta + \gamma, n(\mu+1) + (\gamma+1)(n+2), i\nu\tau) \right)$$

which is the solution obtained by the authors in [3] (see (2.11), p.92). It can be shown directly that the one-dimensional version of (10) coincides with the solution of (3.3), p.386 of [2], derived by solving the fractional-differential model of FEL type equation with the three-parameter Mittag-Leffler function as a kernel.

### REFERENCES

[¹] BOYADJIEV L., H. J. DOBNER. Integral Transf. and Spec. Funct, 11, 2001, No 2, 113–136. [²] KILLBAS A., M. SAIGO, R. K. SAXENA. Journal of Int. Equat. and Appl., 14, 2002, No 4, 377–396. [³] SAXENA R. K., S. L. KALLA. Appl. Math. and Comp., 143, 2003, 89–97. [⁴] КРАСНОВ М. Л., А. И. КИСЕЛЕВ, Г. И. МАКАРЕНКО. Интегральные уравнения, Москва, "Наука", 1976. [⁵] PODLUBNY I. Fract. Diff. Equations, Academic Press, 2000. [⁶] KILLBAS A., M. SAIGO, R. K. SAXENA. Generalized Mittag—Leffler function and generalized fractional calculus operators, Integral Transf. Spec. Funct. (to appear).

Department of Applied Mathematics and Informatics Technical University – Sofia, 1000 Sofia, Bulgaria P.O. Box 384 e-mail: okam@abv.bg