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Abstract

In the present paper the increments characterizing the stability of a horizontal
fluid layer are compared to those obtained in the fractional-differential analogue of
the Oberbeck-Boussinesq system. It has been found that if the fractional parameter
a € (0, 1], the heated fluid layer shows a higher degree of instability than in the classic
case, i.e. less stable modes are generated in the fractional-differential analogue of the
convection stability than in the classic stability problem.
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1. Introduction. The thermal convection develops as a rule in an unevenly heated
fluid. The way and conditions of its heating have an essential influence on the fluid
stability. It has been found that a necessary condition for the mechanical equilibrium
is the linear temperature variation in z to be a linear function [!], namely

T=—-Az+ B, A=const, B = const,

as usual it is assumed that A = 1. In the present paper a comparative analysis is made
between the increments obtained in a more generalized model of the horizontal fluid
layer stability problem and the increments in a fractional-differential analogue of the
OBERBECK—-BOUSSINESQ system [23]. A basic method for studying the horizontal fluid
layer stability is the method of normal perturbations where the flow can be represented
as a sum of a basic (stationary) flow and a perturbed one (variation), i.e.

U=W+V, 6=Ty+1T,

where U (U, Uy, U,) is the velocity vector, and ©(z,y, 2,t) is the fluid temperature in
the point (z,y, z) at the moment ¢.
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2. Classical convection stability — generalized model. The Oberbeck-Bous-
sinesq system in its classical version is given below

%U = —Vp+ AU + Ra®k,
(1) Pr %@ =AO-UVO, A =08%/0x2+8%/8y? +8%/622,
divU =0,

where p is the pressure, Pr = v/a7 — the Prandtl number, Ra = Pr g8 x (T, — T )d® /v?
— the Raleigh number, (T}, — T) — the thermal coefficient. After linearization of (1) in
the vicinity of the stationary flow (Vy = 0,7p) application of the operator

rotrot F =V x (V x F) = grad(div F) — AF

to both sides of the system (1) and projection on the axis Oz, we get the following
system for the bounded velocity variations V' = U, and the temperature T'(z, y, z, t):

2 %(AV) = A%V 4+ RaA T, Ay =08%/0x% +8%/0y?,
2
aT

In the horizontal fluid layer we consider (0 < z < 1) the initial and the boundary
conditions as usual

(3) V=0,T=1y(z,vy,z2), fort =0,
(4) V=0,T=0, forz=0and z= 1.
To the boundary condition (4) we add the condition
oV o%v
(5) w 0 - 900($1y7t)a 8_22— s = 901(56,11/, t)

and both of them, as we shall see further, have a structure-determining role for the
stability of the horizontal layer. Let us notice that the homogeneous version used in [4]
is physically inadequate even though it simplifies the solution of the problem.

We shall suppose that the dynamic and the thermal fluid characteristics are peri-
odic in z and v, i.e.

6) V(z,y,2,t) =((r,t)coskizcoskay, T(z,y,z,t)=0O(zt)coskizcoskey,

(7)  VU(z,y,2z) = V(z)coskizcoskay, ¢j(z,y,t) = x;(t)coskizcoskay, j=0,1,

where k; = const, ko = const. Taking into account (6) and (7) the boundary problem
(2)—(5) reduces to the following one:

8 (62 2 82 2 2 2
el ___k)gz(———k)g—Rak@
2 b]
(8) Ot \ Oz 022 where k = 4/ k% =+ k%;

2
pra_@_ = (i_k2> o,
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9) C(r,t)l=o =0, O(z,1)]40 = ¥(2),

(10) (=0, ©=0, forz=0and z=1,
0%¢ 0%¢

(1) S| o T3 =n0

We apply consecutively two integral transformations to the system (8)—(11): the Lap-
lace transformation and the finite sin — Fourier transformation (in this order). For that
purpose, if we put

1 oo
Zs(n,p) :2/Z(z,p)sinmrzdz, Z(z,p) = /e"ptC(z,t)dt, n=12,...
0

o0

1 .
Os(n,p) = 2/@L(z,p) sinnrzdz, ©Or(zp)= /e_pt@(z,t) dt, n=12,...,
0

where Rep > o > oo : |x;(t)] < |M|e’, j = 0,1 then the boundary value problem
(8)-(11) reduces to the nonhomogeneous algebraic system

(w2 + k2) (w2 + k% + p) Zs(n, p) — Rak?O, = wn X (n, p),
—Zs + (w2 + k% + p.Pr)©; = Pr.¥,(n),

where w, =nm,n=1,2,...

1
12)  X(mp) =2[(~1)"L(x1) - L(xo)], s(n)=2 / (€) sin(nm€) de.
0

The solution of this algebraic system is as follows:

Zo(n,p) = wn (w2 + k% 4+ p.Pr) X (n,p) + k*Ral¥(n)
’ Pr(w3 + k%)(p — p1)(p — p2)

0, (n,p) = Pr(w2 + k%) (w? + k2 + p)¥s(n) + wnX(n,p).
’ Pr(w2 + k2)(p — p1)(p — p2)

After applying consecutively the inverse finite sin — Fourier transformation and
then the inverse Laplace transformation to (13), we obtain the following solutions of

3

(13)

(2)-(5):
- 2k*Ral(n)
V(z,y,z,t) = coskizcoskyy GP1t _ P2t
; (w2 + k2)(p1 — p2) )
t
wn(w? + k% + p1 Pr) / o
- Tx(n,t —7)d
(14) B2 T ) ) © XTI

_ wa(wp + K +pa Pr)
Pr(w? + k%)(p1 — p2)

o .°
o

eP?"x(n,t — 1) dT} sin(nnz),
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T(z,y,2,t) = coskizcoskay Z{;Ijs—(np) [(w,,%—i-k?-l—m)eplt_(w,21+k2+p2)epgt]
) 1—P2

n=1

(15) t
* Pr(w2 +k2 )(p1 — /

0

(eP™ — eP2)x(n,t — T) dT} sin(nmz),

where x(n,t) is the Laplace archetype of X(n,t), and also

pr | Pr41, 9 1 9/ o 0 4k? Pr .Ra
(16) {p2 }—— By (wn—}-k):l:zPr\/(Pr 1)?2(w2 + k2?) + TR

3. Fractional-differential model. Let « is a real number so that n—1 < a < n.
The fractional-differential analogue of the boundary problem (2)—(5) is of the following

type:

an { D(AV,) = A2V, + RalAgTh,
Pr.DeT, -V, = AT,
(18) Dg_lva|t=0 = 0) D?_lTa|t=0 = lIIa(x,y, Z),
(19) Vo=0, Tya=0,forz=0,2z=1,
0%V, 9%V,
(20) 922 0 = (,Do((l,‘,y,t), 922 - =¥ (-'L',’y, t):

where D f(t) is the fractional-differential operator of CAPUTO [?]

¢
(n)
o /t_'__ng:_lnT, n—1l<a<mn,
Dt f(t) = 0
d” arf
dgn’
In the particular case of classical differentiation, n = 1. As in the classical problem
(8)—(11) we suppose periodicity in = and y, i.e. that equalities (6) and (7) hold for

Val(z,y, 2,t), To(z,y, 2,t) and ¥, (z,y, z) and after the consecutive Laplace and finite
sin — Fourier integral transformations

1 oo
Zos(n,p) = Z/Za(z,p) sin(nwz)dz, Z,(z,p)= /e‘ptca(z,t) dt, n=1,2,...
0 0

1 o0
Oq,s(n,p) 2/@(1,,; z,p)sin(nmz)dz, Oqr(z,p) = /e_pt@a(z,t) dt, n=1,2,...
0 0
10
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the system (17)—(20) reduces to the following algebraic system:

(W2 4+ k) (W2 + k% 4 p*) Zo s — k*RaO4 s = X (0, p)wn,
~Zos + (w?1 + k2 +p*Pr)©qs = Pr U, s(n),

the solutions of which for p; # p®, py # p® are

o o) = wr (W2 + k? 4+ p*Pr) X (n,p) + RakQ\Ila,S
Lo Pr(w2 +k2)(p* — p1)(p* —p2) '

Ou o (1) = Pr(wp + k?)(wh + K + p*)¥a,s + wn X (n, p)
e Pr(w2 + k2)(p* — p1)(p* — p2) '

Applying the inverse finite sin — Fourier transformation and the inverse Laplace
transformation, we obtain the solutions

(21)

00 2
{ 2k Rar\Ija,S(n) ta—l[Ea,a(plta)_Ea,a(tha)]

Val(z,y, 2z,t) = coskix cos kgyz 53
= | (wi+k?)(p1—p2)

¢
wn(w% +k? + p1)

Pr(w2 + k2)(p1 — p2)

/Ta"lEa,a(pl'ro‘)X(n, t—7)dr

0
t

wn (W2 + k% + po) / i .
_ n o Ea N o 7 t . d
Pr(w?2 + k2)(p1 — p2) / T a(P17%)x(n,t — 7)dT ) sin(nwz)

(22)

= \Ija s
Ta(m: Y, =z, t) = COs klx COs k2y Z{r(;;)'ta_l [(w% -+ k‘2 + pl)Ea,a(plta)
n=1

— (W2 4 K2 4 p2) By o (pat®)]

t

/ 7% Ea,a(p17%)— Baa(p2®)lx(n, t—T) dT} sin(nmz),
0

Wn,

_|_
Pr(w2+k2)(p1—p2)

1
where U, s(n) = 2 [ Uy (&) sinnné d, Vo(2) = Vo(z,y,2)/ cos kiz cos kay, and Eq (t)
0
is the two-parameter function of Mittag—LefHler [7]
tk

Ea”@(t):kz%m, O!>O, IB>0

and I'(z) is the Euler integral of second kind.
4. Conclusions. First, let us note that for @ = 1 the solutions (14) and (15)
of the boundary problem (2)—(5) are identical with the solutions (21) and (22) of the

11
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fractional-differential system (17)—(20). This is based on the equalities

— ()"
Eoa(Pjt*)|a=1 = ZI‘n+1 Z ;! =ePit j=0,1
n=0

as well as on the fact that U; ¢(n) = Ws(n). The state of mechanical equilibrium
is stable or unstable depending on how the variations V(z,y,z,t) and T(z,y,z,1t)
behave for ¢t — oo (in the classic version) or V,(z,vy,2,t) and Ty(z,y,2,t) in the
fractional-differential variant. In the classic version, if the increments are negative and
the boundary condition (5) is homogeneous (i e. x(n,t) = 0), then the state of the fluid
layer is stable obviously since ¥s(n) ~ 0(1 /n?) (see [6]). According to (16) the negative
increments Rep; < 0 and Rep2 < 0 arise for Ra < 0 and sufficiently high values of
|Ral, but even in this case a structural change could occur in stability, if X(n t) ~ e,

b > 0. The reason is that the terms in (14) and (15) containing integrals, in this case
are of order (% — ePi*) /(b —p;), 5 = 1,2 which shows that the boundary condition (5)
is structure-defining for the fluid layer stability ginstability).

In the fractional-differential version the role of the increments is taken by the
Mittag-Leffler functions. The behaviour of these functions [*:8] is the reason for making
the conclusion that for n — 1 < a < n and x(n,t) ~ €%, b < Rep; and Rep; > 1
(instability) in the fractional-differential case the fluid layer shows a higher degree of

instability than in the classical one, because Re(p;/ “) > Re(p;) > 0. While in the

stability case: Rep; < 0 and x(n,t) ~ et b < Rep; we have Re(p;j/a) < Rep;, j = 1,2
which means that the fractional-differential version of convection stability generates

less stable modes than in the classic case (14) and (15).
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