
Computer engineering, Vol. 2, No. 2/2014

INTERACTIVE VISUALIZATION – PROBLEMS AND
APPROACHES

Ani Dimitrova

Abstract: The visualization of large datasets at interactive rates has been a great challenge for
decades. As a result a lot of approaches have been used and a lot of techniques have been
developed. The presented article tries to summarize the main approaches. First, a definition of the
term “large data” is given and the need of out-of-core techniques is explained. Then, the approach
known as Spatialization is discussed. The article focuses on the meaning and the types of the so
called Level Of Details (LODs) as well as on the caching and prefetching using the real interactive
visualization system, called iWalk for illustrations. In the end some additional techniques for
graphics pipeline optimization are mentioned.
Key words: large dataset, out-of-core visualization, spatial data structures, model simplification,
level of detail, cashing and prefetching.

1. INTRODUCTION

To visually explore the data from a dataset there is

a need of something more than just generating
images or sequences of images. A user wants to
interact with graphical information presented on the
display using one or more input devices. This
interaction need creates a branch in the field of
computer science called interactive visualization.

For a visualization to be considered interactive it
must satisfy two criteria:

 To has a possibility for user input that gives a

control of some aspect of the information being

represented;

 To has a response time guaranteed that the

system produces a real-time results;

According to Penny Rheingans [1], discusses the
“power of interaction”, and said that there is a
distinction “between dynamic and interactive control”.
She explains that “with interactive parameter control,
the displayed image only updates periodically” but
“with dynamic manipulation, the displayed image
changes as the viewer moves a continuous input
devices, such as a slider, joystick, mouse, or tracker”.
Because of the latter “the researcher not only sees the
initial and final representations, but also the
representations in between”.

Researchers (or users as a whole) can deal with
different type of input data in the visualization process.
Depend on the data type the following types of
visualization can be distinguished [4]:
Terrain Visualization. Flight simulation can be an
example of this visualization technique. Mention that
“data may be acquired from satellite imaging” and
“with typical sample resolution ranging from one
kilometer down to several meters, and current data
size up to 993 million samples” [4].

Visualization of 3D scanned models. The process as
laser scanning is the main source of this type of data
which “provide wonderfully detailed representations of
physical objects” [4]. The number of elements depend
on the complexity of the object and given examples
are “the Stanford bunny model, comprising 70 000
triangles” and “statues from Stanford’s Digital
Michelangelo project, such as David, at 56 million
triangles, and St. Matthew, at 372 million triangles” [4].
Scientific and Medical Visualization. Data in this
domain originates in different simulations and 3D
medical imaging where we can get 1 million or even 1
billion or more elements.
Computer-Aided Design and Synthetic Environments.
These “CAD models may represent relatively simple
machine systems, like automobiles, or complex
machine systems, such as aircrafts, ships, factories,
etc“. They exist to “prototype equipment and perform
simulations” and is characterized with “high geometry
complexity, comprising thousands to millions of
individual parts that total millions to billions of
primitives” [4].

The advances in modeling tools and simulation
techniques have led to generation of 2D, 3D, 4D and
even 5D complex geometrical models and
respectively very large datasets representing that
models.

Having a data we can apply different computer
graphics algorithms (using surfaces or volume
rendering techniques) for primitive extraction, and
after that passing these primitives to graphics
hardware for further processing to fulfill the
visualization task.

Today’s graphics processing units (GPUs) are
optimized to rendering more and more primitives.
Graphics cards use parallel processors composed of
up to several thousands of cores. A particular

Computer engineering, Vol. 2, No. 2/2014

graphics card characterized itself with a specific
architecture that is a vendor dependent. For example
NVIDIAs Maxwell architecture that “delivers incredible
performance, unmatched power efficiency, and
cutting-edge features” [2] is the base of the
GeForceGTX 980 GPU with the main feature as [3]:

 Sixteen Streaming Multiprocessors (SMs).

 Each SNs uses a quadrant-based design with

four 32-core CUDA processing blocks, which

estimates the numbers of CUDA cores to 2048.

 Standard memory configuration of 4096MB.

 Memory bandwidth of 224.3 GB/sec.

 Support of recent technologies such as

OpenGL 4.4, Microsoft DirectX, CUDA,

Dynamic super resolution, NVIDIA SLI Ready,

NVIDIA G-Sync Ready, and others.

According to this example we can say that GPUs
have a vast amount of computational power. For
rendering at interactive rates (more than 10 fps., and
more than 30 fps. for real-time systems) we need all
these computational power but be aware to so called
bandwidth requirements. Memory bandwidth
parameter is important because it effects how quickly
and smoothly the data can be visualized or with other
words how qualitative the interactive process can be.

One approach for rendering very large dataset (so
large that even can fill the core memory) at interactive
rates is by using a faster hardware (parallel
configurations such as computer clusters). This is
“expensive and often has limited scalability” [4]. The
other possibility is to use a more “cost-effective way”
[4], that consists of “sophisticated approach at the
software level” [4]. The latter approach is a must if we
want to use a commodity PC for a visualization
processing a so called “big data”, gathering for
example with the help of magnetic resonance imaging
(MRI) scan technique, which could produce detailed
picture of the inside of the human body.

2. LARGE DATASETS IN THE VISUALIZATION
FIELD

The term “big data” is dated back in the far 1997,
where scientist from NASA in their paper defined it [7]
and explained the problem this term involves: “data
sets are generally quite large, taxing the capacity of
main memory, local disk, and even remote disk”. The
authors conclude that “when datasets do not fit in
main memory (in core)”, or “do not fit even on local
disk”, the common solutions/algorithms have
drawbacks and that we must find some other
decisions. So they proposed that the problem must be
solved with “out-of-core visualization” “when a single
data set is larger than the capacity of main memory”,
and with “remote out-of-core visualization” “when a
single dataset is larger than the capacity of local
memory and disk”.

Almost ten years later in 2005, Charles Hansen
and Chris Johnson editing The Visualization
Handbook [6] “have tried to compile a thorough
overview” of the visualization field “by presenting the
basic concepts of visualization providing a snapshot of
current visualization software systems, and examining
research topics that are advancing the field”. The
book consists of many authors’ materials, and in one
of them, Desktop Delivery: Access to Large Datasets,
Philip Heermann and Constantine Pavlakos from
Sandia National Laboratories give almost the same
definition of the term “big data” as this from 1997
saying that “large data will be defined as datasets that
are much greater than the memory capacity of the
desktop machine”. They propose more formally
description of this definition (1)
 D>>10MD (1)
Where D is the dataset of interest and MD is the
random access memory (RAM) of the desktop
machine. They mention that for machines “with two to
four gigabytes (GB) of system memory, a large
dataset would be hundreds of gigabytes to terabytes
and perhaps even petabytes”.

3. INTERACTIVE VISUALIZATION APPROACHES

3.1. Out-of-core processing

Out of core algorithms are also known as external
or secondary-memory algorithms. They must be
efficient in the process of management of large
dataset.

General approach to handle dataset larger than
main memory is “to break dataset into manageable
pieces, and bring the appropriate level of detail (LOD)
of each piece of the dataset into memory on demand”
[8]. All these steps construct so called “out-of-core
hierarchical representation for the model at
preprocessing time” [9], and at runtime we can “load
on demand” these hierarch nodes [9].

Terms as spatialization, LODs, and cashing and
prefetching are used in out-of core techniques to
explain respectively the process of breaking the
dataset into pieces (constructing spatial data
structure), to create an appropriate level of details
(LODs) from the model, and to manage what pieces
come in and out of the memory.
3.2. Spatialization of large datasets

Bulk loading is known as the process constructing
the out-of-core spatial data structures. The overview
of the use of spatial data structure is given at [10]. The
main focus of the article is on hierarchical data
structures, including “a number of variants of
quadtrees, which sort the data with respects to the
space occupied by it” [10]. Techniques that are used
are known as spatial indexing methods. Because of
these methods we have a data structure designed to
unable fast access to the working data. Working
(spatial) data “consists of spatial objects made up of
points, lines, regions, rectangles, surfaces, volumes,

Computer engineering, Vol. 2, No. 2/2014

and even data of higher dimension which includes
time” [10].

Many different kinds of spatial data structures:
octree, kd-tree, BSP tree, R-trees, hierarchy of boxes,
hierarchy of spheres can be used [10, 12, 13]. Some
of them may work in a system that produces “accurate
images of large datasets at high frame rate” or so
called real-time system [11].

In [8] are given an examples for spatial data
structure usage “in many commercial and academic
graphics systems“. The author says that octrees are
used “in innumerable contexts, including view-frustum
culling, occlusion culling, ray tracing, and volume
rendering. SGI’s optimizer uses a hierarchy of boxes
to spatialize the scene graph. Id Software’s Quake 3
game uses a BSP tree. The QSplat system uses a
hierarchy of spheres”.
3.3. Model Simplification

The idea of model simplification results in
hierarchical-model representations. The process
produces a hierarchy from a complex model. Using
this hierarchical representation during the interactive
rendering process the user or the application can
dynamically balance the need for interactivity against
the need for an image quality.

The first hierarchical approach dated back in 1976,
when James Clark published his article [5]. Doing his
research concerning visible surface algorithms he
concludes that we can only benefit if we structure the
environment being rendered with “single, unified,
structural approach”. To explain this approach he
uses an example of a human body model and analogy
of a, as he said, “traditional motion structure used to
position objects relative to the “world” and subobjects
relative to objects” (fig.1). When we view the body
from a very large distance, it covers only 3 to 4 display
raster units, and it is sufficient to model the body with
a rectangular polyhedron with appropriate color. That
is why we can use the “uppermost node, or “object”,
for this body to represents this simple description”.
Otherwise, if the body is viewed from a closer
distance (covers 16 raster units) the topmost
description is no longer sufficient, and “the next level
of more refined description is needed”. At this next
level the body description might be a collection of
appropriately attached to each other rectangular
polyhedral (for each for the arms and legs, the head
and the torso). We can continue with the process to
“whatever maximum level of detail will be needed”.

According to Clark the body described could be an
object from a large environment and that the
“significant point” worth mention “is that in a complex
environment, the amount of information presented
about the various objects in the environment varies
according to the fraction of the field of view occupied
by these objects”. Having structural representation
Clark asks the following question: “how does one
select only that portion of a potentially very large
hierarchy that is meaningful in the context of the
viewpoint and the resolution of the device”, or as he

explain “this implies finding the visible nodes of the
tree” (fig. 2). This is said to be “clipping operation” and
we could perform it with so called “clipping algorithm
which recursively descends the tree”, with the help of
“some minimal description of object sizes”. The
example given uses “a boundary rectangular box or a
boundary sphere” to “test whether an object is totally
within or totally outside of the field of view”.

Fig.1: The traditional motion structure used to position
objects relative to the “world” and subobjects relative
to objects. Each arc in the graph represents a
transformation [5].

The author uses the term “working set” for the data
that is stored in the fast core memory of the computer
system. So the working set in the context of fig. 2 “is
that set of objects in the hierarchy that are “near” to
the field of view, inside it, or “near” to the resolution of
the image space”. According to the interactivity if the
speed is not high, difference between one scene and
the next are usually small and the working set will
change slowly. On the other hand, the high speed
differences are large, working set will change fast and
the scene could be rendered with less detail.

Jonathan Cohen and Dinesh Manocha in their
work Model Simplification, conclude that hierarchies
could be classified as discrete, continuous, or view-
dependent [6]. The three hierarchy types are
graphically represented at fig.3. There is one more
hierarchy type, shown on the far right part of the fig. 3,
named Hierarchical Level Of Detail (HLOD). It is
similar to the View-Dependent hierarchy type, but with
much more levels and according the authors “allowing
faster management and more efficient rendering”.

According to the authors, the Discrete type is the
simplest hierarchy type and most common form of the
hierarchy. The original model can be encoded by
multiple levels of detail (LODs). We can choose this
LODs in a way that “each successive LOD has half
the complexity of its predecessor”. This is going to
double the storage requirements of the original model.
There are two benefits of this hierarchy type. First,
“each level of detail may be easily compiled into an
optimized form for efficient rendering”. Second, “the

Computer engineering, Vol. 2, No. 2/2014

management of one or more discrete hierarchies
within the interactive application is not too
computationally expensive”. Discrete hierarchy could
have a practical use in virtual environments, 3D
scanned objects, and some CAD environments.

Fig.2: A very deep hierarchy that structure the
environment much more than the traditional motion
structure. [5]

Fig. 3: Simplification hierarchies with different degrees
of control [4]

Continuous type has many levels of detail. This
hierarchy is “well suited to store the individual small
changes to the data rather than storing each level of
detail as a complete, stand-alone model”. The
hierarchy could be useful “for the same class of
models as the discrete hierarchy” in particular virtual
environments, 3D scanned objects, and some CAD
environments.

View-Dependent hierarchy according to the
authors is “the richest and most complex type”. We
could represent this kind of hierarchy by a tree data
structure or a directed acyclic graph. This form of
model simplification is typically used in terrain
visualization, large isosurface visualization, and
visualization of some large-scale CAD structures.
Hierarchical Level Of Detail (HLOD) could be used for
complex scenes with multiple objects. The important
thing here is that “each of these objects may be
represented as a discrete, continuous, or view-
dependent hierarchy”. A scene-graph is an
appropriate structure for a representation of this type
of hierarchy, and “each leaf nodes is the finest
resolution representation of each of the individual
objects”. Some discrete LODs are stored for each

object, and “these objects are eventually merged
together”. The authors explain that “this type of
hierarchy works well with occlusion culling algorithms
and has been used for interactive walkthrough of large
and complex CAD environments”.
3.4. Caching and prefetching

To render a model larger than main memory, the
visualization system keeps on disk a spatial data
structure (octree for example) that is a representation
for a model. The contents of the octree nodes are
then loaded in the cache memory on demand. As is
said in [8] cashing alone is not enough to deliver
smooth frame rates. The explanation said that “even
small changes in visibility may cause the system to
stall because of bursts of disk activity” [8]. One
technique to minimize this problem is called
speculative prefetching, “which tries to bring into
memory the pieces of geometry that will become
visible soon” [8].

The place of geometry caching and prefetching in
the rendering process is illustrated on fig. 4. The sane
figure shows the multi-traded out-of-core rendering
approach used in the iWalk system [9].

Fig.4 The multi-threaded out-of-core rendering
approach of the iWalk system [9]

The procedure represented on fig. 4 can be
described briefly as follows [9]. “For each new camera
(a), the system finds the set of visible nodes using
either approximate visibility (b), or conservative
visibility (c). For each visible node, the rendering
thread (d) sends a fetch requests to the geometry
cache (i), and then sends the node to the graphics
card (e). The look-ahead thread (g) predicts future
cameras, estimates the nodes that the user would see
then (h), and sends prefetch requests to the geometry
cache (i)”.

4. OPTIMIZING RENDERING PROCESS

In addition to the approaches explained above
(spatialization, model simplification and geometry
cash and prefetching) there is a large number of
rendering techniques aiming to optimize rendering
process. Some of these techniques include:

 Back-face culling – not rendering geometry that

faces away from the user;

Computer engineering, Vol. 2, No. 2/2014

 View-frustum culling – not rendering geometry

that is outside the field of view of the user’s

camera;

 Occlusion culling – not rendering geometry

hidden by other geometry, or in other words,

only rendering the geometry that is visible;

 Hardware assisted rendering – the possibility to

implement some graphics algorithms in the

GPU, using so called API (Application

programming interface) such as OpenGL or

DirectX.

Detailed analysis of the listed above techniques is
outside of the scope of the article, but all of them are
closely related to the achievement of the interactive
rates of visualization.

5. CALCULATION

Technical advances in both fields - hardware and

software – have led to more and more sophisticated
results in computer graphics and visualization. We
have data that are collected from new advanced
technologies in medicine, engineering, entertainment
and etc., so that is way the term “big data” or “large
dataset” is common in nowadays.

Visualization is a process that can give an answer
to the following questions: 1) How to explain data in a
purpose to solve some specific problems, and 2) How
to explore large dataset for a purpose of better
understanding. Explanation and exploration are
among the most important activities for engineers,
researchers, medics and other professional groups so
we can say that the need of visualization is growing.
Interactive visualization helps different aspects of the
data to be found. The interactivity gives a two way
communication between the system and the user.
With the help of an input devices user can control the
visualization process or with other words he/she can
modify the displayed image in an appropriate way.
Important parameter for the quality produced by the
visualization system is so called interactive rendering
rates. Higher rendering rates guarantee quick system
response essential for some data to be analyzed and
understand in an appropriate way.

Dealing with large dataset and achieving
interactivity need special approaches. Using the right
spatial data structure helps the “right” data to be
extracted and the search for specific data to be
optimized. Appropriate level of details guarantee us
that we can deal with smaller dataset. Cashing and
prefetching allow us to work with data that are only

visible from a given view-point or are likely to be
visible very soon.

Working with a part of the dataset not with a whole
one increase the rendering frame rate and achieve
better interactivity so the explanation and exploration
of the data can be much more useful and effective.

ACKNOWLEDGEMENT
The present article is a part of a contract
№142ПД0037-09 - Environment and tools
investigation helping for data visualization.

REFERENCES:

[1] Penny Rheingans, Visualization Viewpoints, IEEE,

2002

[2] http://www.geforce.com/hardware/desktop-
gpus/geforce-gtx-980
[3] http://devblogs.nvidia.com/parallelforall/maxwell-
most-advanced-cuda-gpu-ever-made
[4] Jonathan D. Cohen, Dinesh Manocha, Model
Simplification, The Visualization Handbook, 2002.
[5] James Clark, Hierarchical Geometric Models for
Visible Surface Algorithms, Communication of the
ACM, 1976.
[6] Christopher Jonson, Charles Hansen (editors), The
Visualization Handbook, Elsevier Inc., 2005.
[7] Michael Cox, David Ellsworth, Application-
Controlled Demand Paging for Out-Of-Core
Visualization, Report NAS-97-010, July 1997.
[8] Wagner Toledo Correa, New Techniques for Out-
Of-Core Visualization of Large Datasets, a Phd.
Dissertation of Princeton University, 2004.
[9] Wagner Correa, James Klosowski, Claudio Silva,
iWalk: Interactive Out-Of-Core Rendering of Large
Models, CiteSeerx, 2002.
[10] Hanan Samet, Spatial Data Structures, CiteSeerx,
1995.
[11] Mark Duchaineau and al, ROAMing Terrain: Real-
time Optimally Adapting Meshes, IEEE, 1997.
[12] Pankaj Agarwal and al., A Framework for Index,
Bulk Loading and Dynamization, Springer, 2001.
[13] Lars Arge and al., Efficient Bulk Operations on
Dynamic R-trees, ASM, 1999.

About the authors:
Ani Dimitrova, Assist. Prof. FKSU, Technival

University, E-mail: adimitrova@tu-sofia.bg, Sofia,
Bulgaria.

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980
http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made
http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made
mailto:adimitrova@tu-sofia.bg

