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Abstract:
The article presents a 0D model development of the heat exchanger intended for a Rankine-Hirn cycle waste 

heat recovery system in internal combustion engines. The heat transfer in the exchanger was estimated as the volume 

was separated by small elements. For each of the elements the heat transfer was calculated depends on the temperature 

variation, surface of the transfer and total heat transfer coefficient. An estimation code based on the model was 

developed in Python. CoolProp simulation code was used for working fluid parameters determination. Numerical 

estimation of the heat transfer was presented with different working fluids at the most commonly used operating point of 

a tractor engine. Finally, a study of the working fluid mass flow rate effect on heat transfer effectiveness was conducted 

as water was used into the Rankine-Hirn cycle.       

Keywords: heat exchanger, Rankin-Hirn, waste heat recovery, simulation

1. Introduction 

In order to meet future restriction of CO2

emission it is necessary to reduce the engine fuel 

consumption which means to increase the engine 

overall efficiency. Despite of the advance 

technologies, the engine efficiency of more than 

35% is achieved only at certain type of engines. In 

fact more than 60% of fuel energy is lost in form of 

heat in exhaust gas and cooling system. 

Waste heat recovery seems to be the most 

prospective way to increase engine efficiency and 

reduce fuel consumption [1-5]. A study [1] revealed

that waste heat recovery by exhaust gas is the most 

effective due to the highest exergy contains into.

Several techniques for exhaust heat recovery are 

known [3, 4, 6-8]:

 Conversion of exhaust gas energy into 

mechanical energy by means of supplementary 

turbine: turbo-compounding;

 Conversion of exhaust gas energy into 

mechanical energy by means of heat machine:

Rankine-Hirn cycle, Ericson engine, Stirling 

engine, etc.;

 Conversion of exhaust gas energy directly 

into electrical energy by means of 

thermogenerators;

 Thermoacoustic heat engines. 

The Rankine-Hirn cycle indicates the highest 

potential in energy recovery due to a small effect on 

the backpressure and the highest efficiency which 

can reach more than 10% [9-15]. 

2. The Rankine cycle operation

The system consists – tank, pump, heat exchanger-

evaporator, turbine and condenser (Figure 1). The 

pump increases the fluid pressure during the phase a-b.

The pressure value at point b depends on the type of 

fluid. In the heat exchanger b-c the fluid is heated by 

exhaust gas on three different stages: preheating, 
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evaporation and overheating. The process c-d is 

expansion of the preheated vapor. Different types of 

expander can be used such as turbine or piston 

machine. The mechanical power on the output shaft of 

the expander can be added to the crankshaft of the 

engine or can be transformed into electrical power by a 

generator. At the end of the circuit the fluid 

condensation is carried out in the condenser: process d-

a.

The variation of working fluid thermodynamic 

parameters is presented at p-h and T-s diagrams in 

Figure 2.

The most critical point of the Rankine-Hirn cycle is 

the heat exchanger. Inside of it the heat transfer between exhaust gas (hot source) and working fluid is 

occurred. The heating process is conducted with phase 

changing of the working fluid. Shell and tubes is most 

commonly used heat exchangers design [16]. Two type 

of exchanger are known depend on direction of the 

fluids flow: counter-current and co-current. The 

temperature variation for both type heat exchangers are 

presented in Figure 3. Counter-current heat exchanger 

provides better effectiveness of the heat transfer. 

A numbers of simulation models were described 

in the literature [17-24]. At stationary operating 

condition  -NDU [17] and the mean temperature 

difference method are most commonly used [18,

19]. Two types of models for transient operating 

condition were reported – boundary-moving model 

and discretized model [21-24]. The mean 

temperature difference method is used for heat 

transfer calculation in case all of the parameters are 

known. Then following relation is used:

 = !.".#$% (1)

! – heat transfer surface, &';

" – overall heat transfer coefficient, 
(

%)*
;

#$% – logarithmic mean temperature difference, 

+.

#$% can be estimated as follows:

Figure 1. Rankine cycle scheme

Figure 2. T-s and p-h diagram of Rankine-Hirn cycle

Figure 3. Temperature development in heat exchanger 

depending on flow direction
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In case of counter-current flow

#$% =
 (!"#$)%&'(!())*+,-' (!"#$)*+,'(!())%&-

./
012"#$3%&4(2())*+,5
012"#$3*+,4(2())%&5

(2)

In case of co-current flow

6.7 =
01!89:3%&'(!())%&5'01!89:3*+,'(!())*+,5

./
01289:3%&4(2())%&5

01289:3*+,4(2())*+,5

(3)

Boundary-moving model is based on a heat 

transfer calculation at each of three zones of the 

heat exchanger (pre-heating, evaporation and 

overheating) by means of mean temperature values 

and transfer surface determined by the boundaries. 

This adaptive model with moving boundaries 

provides good accuracy and small computational 

time. 

The most complicated model is discretized. In 

this model a discretization of heat transfer surface is 

applied. At each of the finite element (volume) a 

heat transfer estimates as a basic heat transfer 

relation is used. A boundary equation is used to 

transfer the fluids parameters between the elements.

The aim of this study is development of 0D 

discretized heat exchanger model. This model will 

be further used for heat exchanger geometrical 

parameters optimization in real Rankine-Hirn cycle. 

3. Mathematical background 

The computational scheme of the discretized 

heat exchanger model is presented in Figure 4. This 

scheme presents heat transfer estimation in counter-

current heat exchanger. The model was developed 

as it was considered that the mass flow of exhaust 

gas and working fluid is constant. With other words 

it means that steady flow was considered. It was 

supposed that there are not differences in working 

fluid parameters between the tubes and the 

parameters varies as a function of tube length. The 

heat transfer with atmosphere as well as pressure 

drop at heat exchanger was neglected.  

Then the heat transfer rate at the finite volume 

was calculated as follows:

;< = =<.>< . (6?@A(<) B 6C.(<)) (4)

The heat transfer surface has the same value for 

each volume:

=< =
D
/ (5)

The heat transfer coefficient was estimated by 

correlation as follows:

>< =
E

F
GF

HI
JH F

GK
(6)

Heat transfer coefficient in convection usually is 

calculated by the average Nusselt number Nu as

follows:

L = MN.O
P$

(7)

where  is thermal conductivity and QR is hydraulic 

diameter. The hydraulic diameter depends on the 

design of heat exchanger. At most commonly used 

heat exchangers it is inner diameter of pipe for 

working fluid and outer diameter for exhaust gas. 

Nusselt number is usually given by a correlation 

where Reynolds number Re and Prandtl number Pr

are into.

The heat flow at finite volume increases the 

enthalpy of working fluid and decreases the 

enthalpy of exhaust gas. Then working fluid

enthalpy flow and specified enthalpy at the next 

finite volume were defined as follows:

SC.(<HE) = SC.(<) + ;< (8)

TC.(<HE) = TC.(<) +
U%

7V ()
(9)

Exhaust gas enthalpy flow and specified 

enthalpy were estimated as:

S?@A(<HE) = S?@A(<) B ;< (10)

T?@A(<HE) = T?@A(<) B U%
7V 89:

(11)

In order to estimate working fluid parameters 

(temperature, density, WX and etc.) simulation code 

CoolProp was used.

Exhaust gas temperature was estimated as 

enthalpy flow equation was used:

S?@A(<HE) = YV ?@A. WX?@A(<HE). (6?@A(<HE) B 6Z) (12)

Total heat transfer at the exchanger was 

estimated as follows:

; = [ ;<
/
<\E (13)

Then enthalpy rate change in working fluid and 

enthalpy rate destruction in exhaust gas can be 

estimated as follows:

SC.(]N^) = SC.(</) + ; (14)

Figure 4. Computational scheme of discretized heat 

exchanger model
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S?@A(]N^) = S?@A(</) B ; (15)

An estimation code on the basis of 

mathematical background was developed in Python 

software. The calculation algorithm is presented in 

Figure 5.    

The calculation begins at the finite volume 

which corresponds to working fluid input and 

exhaust gas output. In this case exhaust gas 

temperature as well as other gas parameters were 

unknown. In order to start the calculation process 

exhaust gas parameters were input in the algorithm. 

However at the end of the estimation cycle a

comparison between estimated input exhaust gas 

temperature and real input gas temperature which 

was known from engine simulation was conducted. 

If the difference is higher than limited value the 

main cycle of the code repeats again. The cycle has 

been repeated until the difference became lower 

than limited value.

4. Results

4.1. Heat transfer simulation with different 
working fluid

Firstly, a simulation of heat transfer into the heat 

exchanger with four working fluids was conducted. 

For each of the studied case constant heat source 

parameters was input in the model. The exhaust gas 

thermodynamics parameters of an agricultural 

diesel engine were taken as heat source. The engine 

was numerically studied before [4]. The exhaust gas 

parameters which were used in present study were 

estimated at most commonly used operating point 

during plowing - _ = 1650`aY and BMEP = 

10bar. The parameters are listed in Table 1. The 

exhaust gas output temperature was constant at each 

of studied case which means a constant 

effectiveness of heat transfer was obtained.  Due to 

different characteristic of each fluid to provide a

constant effectiveness it was necessary to varied 

heat transfer surface and fluid mass flow rate.   

Table 1

Exhaust mass flowbV cde , (kg/s) 0.158

Specific heat capacityfgcde, (J/kg.K) 1125

Exhaust gas inlet temperature hcde,ij, (K) 691

Exhaust gas outlet temperature hcde,klm, (K) 455

Exhaust gas enthalpy ncde, (kW) 70.7

The most commonly used working fluids were 

studied – water, ethanol, R245fa and R134a. In the 

Table 2 are listed working fluid parameters and heat 

exchanger geometrical parameters for each fluid. 

Table 2

Fluid
bV op
(kg/s)

hop,ij
(K)

hop,klm
(K)

gop
(bar)

q
(m2)

Water 0.0165 373 573 25 23.6

Ethanol 0.033 350 573 20 9

R245fa 0.11 306 473 20 6.4

R134a 0.12 297 473 20 5.3

It is evident that different working fluids 

required different heat transfer surface as well as 

different mass flow rate to provide the same 

effectiveness of heat transfer. The water due to high 

variation of specific enthalpy during evaporation 

required of low flow rate. The flow rate is two times 

lower than ethanol and approximately seven times 

lower then organic fluids – R245fa and R134a. It 

means that mechanical energy consumes from the 

pump in the system is much lower in case water is 

chosen as a working fluid. However, the water 

required bigger heat transfer surface than other 

fluids. The heat transfer surface has to be 2.5 times 

bigger than ethanol and approximately four times 

bigger than organic fluids. Organic working fluids 

own another disadvantage – low condensing 

temperature which requires big condenser surface.

The variation of both temperatures that is of 

exhaust gas and working fluid is shown in Figure 6 

to 9. By means of this results for each fluid can be 

determined the boundaries when phases changes 

occurs in working fluid. The largest evaporating 

zone was observed in case water was chosen as 

working fluid. Once the evaporation process of the 

water is finished the vapor temperature increases 

rapidly. In this case the variation of exhaust gas 

Figure 5. Calculation algorithm of the simulation code
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temperature is strongly nonlinear. At all other 

simulations the exhaust gas temperature decreases 

approximately linear from heat exchanger inlet to 

the outlet. The narrowest evaporating zone was 

observed in case R245fa was used as working fluid

Figure 8.

4.2. Heat transfer simulation as function of the
fluid parameters

Secondly, a simulation of heat transfer 

effectiveness was conducted as a function of 

working fluid mass flow rate. The simulation was 

carried out choosing water as a working fluid. The 

results are presented in Fig. 10.  

The results revealed that low fluid flow rate 

significantly decreased effectiveness. At flow rate 

lower than 0.014kg/s the working fluid temperature 

at the heat exchanger outlet reached inlet exhaust 

gas temperature. High fluid flow rate increased heat 

transfer effectiveness. At flow rate of 0.02kg/s the 

maximum effectiveness was estimated to 0.62. The 

diagram revealed that the effectiveness should 

slightly increases as a function of mass flow at 

values more than 0.02kg/s. However at flow rate 

higher than 0.018kg/s outlet fluid temperature is 

equal to fluid evaporating temperature. It means that 

not whole quantity of the working fluid is 

evaporated at heat exchanger outlet. The working 

fluid droplets have to be avoided into expander 

machines due to protect expansion machine from 

mechanical failure especially in case of a turbine is 

used. 

Figure 6. Heat exchanger temperature variation with Water

as working fluid

Figure 7. Heat exchanger temperature variation with 

Ethanol as working fluid

Figure 8. Heat exchanger temperature variation with 

R245fa as working fluid

Figure 9. Heat exchanger temperature variation with R134a

as working fluid

Figure 10. Heat transfer effectiveness as a function of 

working fluid mass flow rate 
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5. Conclusions

A 0D discretized model was developed in order 

to estimate heat transfer into heat exchanger of the 

Rankine-Hirn cycle based recovery system. The 

model provides opportunities to study the working 

fluid parameters as well as the heat exchanger 

geometrical parameters at stationary operating 

condition. An estimation code was developed in 

Python.

A study conducted with four working fluids

revealed that a constant heat transfer effectiveness 

can be obtained as different heat transfer surface

and working fluid mass flow rate was applied to 

each fluid. Water requested low mass flow rate but 

high heat transfer surface. Whereas organic working 

fluids R245fa and R134a requested high mass flow 

rate and low heat transfer surface.

By means of the model the variation of hot 

source temperature and working fluid temperature 

along the flow path was presented. For each fluid it

revealed the boundaries between the phases at

working fluid side. The temperature difference at 

pinch point can be also determined.

The study of working fluid mass flow rate effect 

on heat exchanger effectiveness revealed that the 

effectiveness rapidly decreased at that flow rate 

where working fluid output temperate reaches the 

hot source temperature. The effectiveness can be 

increased by increasing of mass flow rate. However 

at high flow rate not whole quantity of the working 

fluid was evaporated at the outlet section. Within 

mass flow range that provided fluid output 

temperature within the range between evaporating

temperature and inlet hot source temperature the 

heat transfer effectiveness is within the range of 

0.56 to 0.6.
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