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Abstract:  In this paper Nonlinear Model Predictive Control (NMPC) is studied as a more applicable approach for optimal 
control of multivariable processes. A state-space representation of a Takagi-Sugeno type fuzzy-neural model is proposed as 
a predictive model. This type of model ensures easier description and direct computation of the gradient control vector 
during the predictive optimization task. The identification procedure relies on a two-step training algorithm, which is 
known in field of artificial neural networks. The proposed Fuzzy NMPC approach is studied by experimental simulations in 
Matlab/Simulink® environment in order to control the liquid levels in a multi tank system. The simulation results 
demonstrate that the main process variables have a good performance and the process control quality is satisfied.  
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INTRODUCTION  
 

 
 

Model Predictive Control is a model-based control strategy 
that obtains the optimal control action sequence, solving an 
optimization problem at each sampling time. Achieving the 
desired plant behaviour strongly depends on applied modelling 
techniques. The model accuracy is important in order to 
provide an efficient and adequate control action. In this paper 
an approach of Fuzzy-Neural Model Predictive Control with 
significantly simplified optimization procedure is proposed.  
A state-space representation of a Takagi-Sugeno type fuzzy-
neural model [1,4] is applied to provide an accurate predictive 
model of the studied nonlinear system. The fuzzy-neural 
identification procedure relies on an efficient training 
algorithm, which is known in field of artificial neural 
networks. 
A simplified calculation method is proposed to solve the 
optimization problem of MPC. The proposed approach solves 
an unconstrained MPC problem avoiding the necessity to 
inverse predictive dynamic matrices at each sampling time [5]. 
Therefore, the computational burden is decreased, which 
makes the strategy, situated in this paper, attractive for real-
time implementation for control of nonlinear industrial 
processes [7, 8].   
The proposed approach is studied by experimental simulations 
in Matlab/Simulink® environment in order to control the levels 
in a multi tank system [3]. The case study is suitable to show 
how the proposed NMPC algorithm handle with multivariable 
processes control problem.  
 

FUZZY MODEL PREDICTIVE MODEL 
 
 

The Takagi-Sugeno fuzzy-neural models are powerful 
modelling tools for a wide class of nonlinear systems. Fuzzy 
reasoning is capable of handling uncertain and imprecise 
information while neural networks can learn from samples. 
Fuzzy-neural networks combine the advantages of both 
artificial intelligent techniques and incorporate them in 
adaptive features as well. The main contribution of using 
fuzzy-neural models in MPC strategy is their adaptive 
modelling capabilities based on a real-time learning algorithm.  
The importance of the used in MPC strategy models and their 
adaptive characteristics is obvious. The accuracy of the model 
determines the accuracy of the control action. The proposed 

fuzzy-neural model is implemented in a classical NMPC 
scheme (Fig. 1) as a predictor [2]. 
 

 
 

Fig. 1. Basic scheme of model predictive control 
 
In this paper a nonlinear discrete time state-space 
implementation is considered to represent the system dynamic: 
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where x(k)  n , u(k)  m and y(k)  are state, control 
and output variables of the system, respectively. The unknown 
nonlinear functions f

 q

x and fy can be approximated by the 
Takagi-Sugeno type fuzzy rules in the following form:  
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where Rl  is the l-th rule of the rule base. Each rule is 
represented by an if-then conception, where zi(k) is an i-th 
linguistic input variable and Mli is a membership function 
defined by a fuzzy set of the universe of discourse of the input 
zi. Note that the input regression vector z(k)  p in this 
paper contains the system states and inputs. A state-space 
implementation is used in the consequent part of Rl  (2), where 
Al  n n , Bl  n m , Cl  q n and Dl  q m  are the 
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state-space matrices of the model [1]. The state in the next 
sampling time and the system output can be 
obtained by taking the weighted sum of the activated fuzzy 
rules, using 

ˆ( 1)x k  ˆ( )y k
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On the other hand, the state-space matrices A, B, C, and D for 
the global state-space plant model could be calculated as a 
weighted sum of the local matrices Al, Bl, Cl,  and Dl from the 
activated fuzzy rules: 
 

 1 1

( )

( )

l

L

l
1 1

( ) ( )      B( )

( ) ( )      D( )

L L

l yl l yl
l

L

l yl l y
l l

A k A k k B

C k C k k D

 

 



 

 

 

 

 

k

k

  (4) 

 

where 
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L
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l
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  is the normalized value of the 

membership function degree μyl upon the l-th activated fuzzy 
rule and L is the number of the activated rules at the moment k. 
Fuzzy implication in the l-th rule (2) can be realized by means 
of a product composition 
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where μ ij specifies the membership degree upon the activated 
j-th fuzzy set of the corresponded i-th input signal. The quantity 
of μ ij is calculated according to the type of chosen 
membership functions. In this paper a Gaussian type 
membership function with following statement is used: 
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where zi is the current input value of the i-th model input, cGij 
is the centre and σ ij is the standard deviation of the j-th 
membership function (j=1, 2, .., s). 
The identification procedure of the fuzzy-neural predictive 
model is made according to the algorithm described in [1]. 
 

MODEL PREDICTIVE OPTIMIZATION ALGORITHM 
 
Model predictive control is based on real-time optimization of 
a cost function. The typical for Generalized Predictive Control 
(GPC) cost function J(k) [2] is 
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where ŷ(k), r(k) and ∆û(k) are the predicted outputs, the 
reference trajectories, and the predicted control increments at 
time k, respectively. The length of the prediction horizon is Hp, 
and the first sample to be included in the horizon is Hw. The 

control horizon is given by Hu. ≥ 0 and R >0 are weighting 
matrices assumed to be constant over the prediction horizon.  

Q 

In the general formulation of the model predictive control, the 
discrete-time state-space equations of the system are used to 
estimate the future states of the system [4,5] 
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The recurrent equation for the output predictions ˆ( |y k j k) , 
where jp= 1, 2,..., Hp –1 ,  is in the next form: 
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Taking in account equation (9), the cost function (7) could be 
rewritten in a matrix form 
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By deriving the prediction expression (9), it can be written 
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Also, let 
 ( )  ( ) ( ) ( 1)E k T k x k u k      (12) 
 

This vector can be thought as a tracking error, in the sense 
that it is the difference between the future target trajectory and 
the free response of the system, namely the response that 
would occur over the prediction horizon if no input changes 
were made, i.e. ∆U(k)=0. Hence, the quantity of the so called 
free response F(k) is defined as follows 
 
 ( )  ( ) ( 1)F k x k u k      (13) 
 
In this paper, the study is focused on the optimization problem 
of the unconstrained nonlinear predictive control with the 
quadratic cost function (10). The section presents an analytical 
solution of the problem where the information given by the 
obtained fuzzy-neural model is used to solve the problem. The 
unconstrained optimization problem can be formulated in a 
matrix form. First, the predictor can be constructed as follows 
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The second element of the matrix equation (14) does not 
include the predicted values of the control action and 
represents the so called free response. Second, the cost 
function  can be rewritten as (7)
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Hence, substituting the predictive model (14) into the 
expression (15) the cost function of the model predictive 
optimization problem can be specified as follows: 
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Minimization of the function J(∆U) can be obtained by 
calculating the input sequence ΔU so that the derivatives 
∂J/∂ΔU = 0. Then the optimal sequence ΔU* is 
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The input applied to the controlled plant at time k is taken 
from the first element Δû*(k) of the vector ΔU* 
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On the other hand, the predictive task can be solved 
consequently, using a system of equations, avoiding the 
necessity to inverse the gain matrix in (17) at each sampling 
time k. Applying this method, minimization of the GPC-
criterion (7) is based on a calculation of the gradient vector of 
the criterion cost function J at the moment k subject to the 
predicted control actions: 
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Each element of this gradient vector (19) can be calculated 
using the following derivative matrix equation: 
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From the above expression (20) it can be seen that it is 
necessary to obtain two groups of partial derivatives. The first 
group of derivatives in (20) have the following matrix form: 
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For simplicity of calculation let assume that Hw=0 (7). Then 
each element of the matrix (21) is calculated by the expressed 
equations according to the Takagi-Sugeno rules consequents 
in (2). 
The second group partial derivatives in  has the following 
matrix form

(20)
: 
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Since ˆ( ) ( ) ( 1)u k u k u k    , the matrix (22) is 
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Each element of the gradient-vector (19) could be obtained by 
the following recurrent form [6]: 
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where j=1,2,…,Hu and  is the 
predicted system error. 
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According to (24) the last control action u(k+Hu-1) has to be 
calculated first. Then the procedure continues with calculation 
of the previous control action u(k+Hu-2) and this way 
consequently to calculate the whole number of the control 
actions over the horizon Hu. The order of the calculations is 
important since the calculations should consist of known 
quantities. After that, only the first control action u(k) will be 
used at the moment k to the input of the controlled process. 
The software implementation of these computations is very 
easy and it is in accordance to the next recurrent expression 
(j=1,2,…,Hu): 
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The proposed unconstrained predictive control algorithm 
could be summarized in the following steps. 
 
Step 0: Initial identification of the Takagi-Sugeno fuzzy-

neural predictive model; 
Step 1: Start the algorithm at the sample k with the initial 

parameters; 
Step 2: Calculate the predicted model output ŷ(k+j) using the 

tuned fuzzy-neural model (2); 
Step 3: Calculate the derivatives for the matrix (21); 
Step 4: Calculate predicted control actions according to (25) 

and update the sequence; 
Step 5: Apply the first optimal control action u(k); 
Step 6: Modify the model parameters into the rule (3) and 

update them for the next step 2. 
 

 
DESCRIPTION OF THE MULTI TANK SYSTEM 

 
The case study is implemented in MATLAB&Simulink® 
environment with Inteco® Multi tank system. The Inteco® 
Multi tank System (Fig. 2) comprises from three separate 
tanks fitted with drain valves [3]. The top (first) tank has a 
constant cross section, while others are conical or spherical, so 
they are with variable cross sections. This causes the main 
nonlinearities in the system.  
A variable speed pump is used to fill the upper tank. The 
liquid outflows the tanks due to gravity. The tank valves act as 
flow resistors C1, C2, C3. The area ratio of the valves is 
controlled and can be used to vary the outflow characteristic. 
Each tank is equipped with a level sensor PS1, PS2, PS3 based 
on hydraulic pressure measurement. 
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Fig. 4. Transient responses of multi tank system inputs 
 with different level references 

  
CONCLUSIONS Fig. 2. Controlled laboratory multi tank system  

  
In this paper, the model predictive control scheme was 
employed to reduce structural response of the benchmark 
problem under a multi tank system. Model predictive control 
was applied successfully to the studied multi tank system, 
which is a very complex nonlinear and multivariable system. 
The inherent instability of the system makes it difficult to 
control. Adaptation of linear internal model is the most 
common way of dealing with plant nonlinearities in practice. 
The results show that the controlled levels have a good 
performance. The next efforts will be directed to the real-time 
implementation of model predictive control to the multi tank 
system. 

Liquid levels Н1, Н2, Н3 in the tanks are the state variables of 
the system. The Inteco Multi Tank system has four controlled 
inputs: liquid inflow q and valves settings C1, C2, C3.  

 
SIMULATION RESULTS 

 
The proposed unconstrained MPC algorithm with the Takagi-
Sugeno fuzzy-neural model as a predictor has been applied to 
the level control problem. The experiments have been 
implemented with the following parameters: prediction 
horizon Hp=10, First included sample of the prediction 
horizon Hw=1, control horizon Hu=3, time of simulation 600 
s, sample time Ts=1.  The weighting matrices are specified as 

follow: Q 0 01 diag(1, 1, 1). * and R 10e4*diag(1, 1, 1, 1)



1R

. 

Note that the weighting matrix R  is constant over all 
prediction horizon, which allows to avoid matrix inversion at 

each sampling time with one calculation of  at time k=0. 
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