
Proc. XXXII International Scientific Conference Electronics - ET2023, September 13 - 15, 2023, Sozopol, Bulgaria

979-8-3503-0200-4/23/$31.00 ©2023 IEEE

Pipeline-accurate Instruction Cycle Measurements

for Microprocessor Model Extraction

Lubomir Bogdanov
Department of Electronics, Faculty of Electronic Engineering and Technologies

Technical University of Sofia
8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria

lbogdanov@tu-sofia.bg

Abstract – The following paper presents a measurement

method for extracting the number of cycles used by the

microprocessor instructions of a 16-bit microarchitecture. The

purpose of these measurements is to create a lookup table

containing cycle costs for each instruction and for each

pipeline stage. This information is needed to create a cycle-

accurate microprocessor model.

Keywords – cycle-accurate; measurements;

microprocessors; pipeline-accurate; simulation model.

I. INTRODUCTION

 Cycle-accurate microprocessor models allow for a
precise simulation of the execution of software programs.
Such simulations are slow but provide detailed information
about the inner working of a processing element which in
turn yields accurate output results about the program
timings, consumed power and dissipated temperature. Since
modern personal computers have high processing power,
cycle-accurate simulations are starting to compete with
instruction-set simulations. Furthermore, modeling the
pipeline brings the simulation one level above the analog,
transistor-level simulations.
 Single-cycle microprocessors are easier to model,
because their pipeline has no overlapping instructions [1].
However, to create pipeline- and cycle-accurate models of
multi-cycle microprocessors [2] [3], a detailed information
about the cycle costs in each pipeline stage is required.
Almost always this information is not available – the
microprocessor manufacturer may provide overall cycle
times (the number of cycles an instruction takes to go
through all of the stages), or may provide HDL simulation
results for those parameters.
 The approach shown in this paper uses real prototype
measurements that are performed to extract the needed
numbers, similar to the work presented in [4], but the model
itself and its verification are not yet fully implemented. A
typical setup to do extraction of the parameters is shown in
Fig. 1. This test bench is well-known in other scientific
papers for the same research, for example in [5]. The
microprocessor under test is the well-known and well-
documented MSP430 but any other microarchitecture could
be measured in the same way. The MSP430 currently has
no cycle-accurate simulator. The MSP430 is embedded in a
microcontroller MSP430F5529. An external 3.3-volt power
supply is applied to all of its VDD and VDDA pins. The
internal processor clock is output on one of the chip’s pins.
The clock frequency for the deeply-embedded micro-

Fig. 1. Proposed measurement setup

controllers is not high, typically in the range of 1 – 80
MHz. For programming, a debug has to be connected to the
respective debug port. ARM-based microcontrollers allow a
JTAG (Joint Test Action Group) or SWD (Serial Wire
Debug) connection, PIC microcontrollers use ICSP (In-
Circuit Serial Programming), and MSP430 uses the Spy-Bi-
Wire (SBW) interface. The debugger is connected to a
personal computer (PC) through a widely used interface
(such as USB, RS232, Ethernet, Parallel port, etc). At least
two general-purpose input/output pins (IOs) of the target
microcontroller have to be connected to an oscilloscope.
Those pins are needed for event detection during the
instruction measurements. Two pins can be used to detect
memory-mapped writes of consecutive instructions without
the need to perform a toggle, usually accomplished through
an exclusive OR instruction. Using an XOR instruction
would interfere with the measurements of the rest of the
instructions in the stream. The more GPIOs can be
monitored at once, the more freedom would the developer
have during the investigation. That is why a four-channel
oscilloscope has been proposed in the setup in Fig. 1. It
may be connected to the personal computer through an
interface, such as Ethernet, for easier interpretation of the
results but this link is optional and does not take part in the
measurements directly.
 From a software point of view, the code has to be written
strictly in Assembler. There is no other way, for such types

of measurements, to be written in a higher-level language
such as C or C++. The problem with the latter is that the
compiler may optimize and rearrange instructions. Even the
usage of assembler is risky, as this tool may perform
transformations, too (such as the switch between 8- and 16-
bit memory accesses for MSP430, or 16- and 32-bit
instructions generation for ARM). For this reason, a check
is performed on machine-code level to ensure that the
instruction to be executed is indeed the one that has to be
measured.

II. RELATED WORK

 Cycle-accurate modeling of microprocessors is an
important research topic. Many authors perform testing and
simulation of microprocessor instruction execution. One
such work is presented in [6]. The microarchitecture of
interest is a multicore Power-PC. A latency-insensitive
bounded dataflow networks (LI-BDN) technique has been
used to transform a cycle-accurate specification of the
Power-PC to a real FPGA implementation.
 A simulator, called Arete, has then been used with a set
of benchmarks to evaluate the performance of the system.
The simulator is an FPGA-based design and the simulation
happens on the FPGA chip itself. An SMP Linux
(simultaneous multiprocessing Linux) has been used to
control the simulation process. The design has been ported
to three FPGA chips: XUPv5, ML605 and BEE3. Using an
FPGA provides both simulation speed and accuracy. Key
features include - debugging of the LI-BDN system which
allows to stop and freeze the simulation at a specific cycle,
and standard interfaces that would help in porting of the
simulator.
 The research in [7] proposes a new method to model a
microprocessor – by using a function point model. It
includes a library file with a description of the instruction
set of the target microarchitecture. Furthermore, a separate
description with the function points in the program is
provided and a complete data-path functional verification is
performed. The instruction model contains information
about the operands of the instruction that helps in modeling
inter-instruction effects. Microprocessor models are used to
guide a functional verification of a new design.
 The work presented in [8] proposes a new method that is
faster than the FPGA-based simulators. The authors have
extended a JIT DBT engine (just-in-time dynamic binary
translation) of an instruction set simulator (ISS) that runs on
a standard PC. The target instruction set architecture (ISA)
that is modeled is the ARCompact, and the target
microarchitecture is EnCore with a 5- and 7-stage pipeline
implementations. It is noted that the multi-core simulations
always start by refining and proofing single-core models.
The modeled parts of the processor are the pipeline,
instruction and data caches, and the main memory. Inter-
instruction effects are included with a built-in instruction
operand dependency. It has been noted that the instruction
simulation time is greatly reduced, if the instruction is
executed first, then the micro-architectural state of the
pipeline is reconstructed. Each pipeline stage is constructed
as an array containing cycle costs.
 The work in [9] proposes a processor modeling technique
that contains models with two parts – an untimed inner

functional kernel and a timed shell. The advantage of such
an approach is to use the kernel for software development,
and later on, use the timing shell for the hardware
development. Speed-up of 30 times compared to a
commercial RTL simulator is reported. The modeling
language is SystemC and custom models have been
developed for ARM7TDMI and ARM9TDMI. Their
verification is done against existing Verilog models. The
target firmware benchmarks being used are six examples
from the MiBench suite.
 The authors in [10] have presented a reduced colored
Petri net (RCPN) model that can generate high performance
and cycle-accurate simulations. The target architectures are
XScale and StrongArm. The simulation results are
compared to the popular simulator from ARM – the
SimpleScalar ARM. Three types of instructions have been
modeled – load and store, branch and ALU-related. The
advantage of the Petri model is to try and locate only
transitions of the hardware state. The results are compared
to a reference simulator.
 In [11], a framework called CATS is presented and it
aims at increasing the simulation speed compared to a
transaction level modeling (TLM) with cycle accuracy. The
base simulator of interest is the SimpleScalar from ARM.
The processors and memories have to be connected to the
same shared bus. An existing behavioral model is
augmented to support timings of occurred events. For each
memory access, an access delay is added to simulate the
hardware.
 Even though [6] is close to the one presented in this
paper, there are some important differences. The authors
have the cycle-accurate model of the processor in advance.
This limits the application of the model to architectures that
are only available to the public. Another difference is the
simulator platform – it is not a standard PC but an FPGA.
This limits the usage of the simulator to users that own
some of the supported FPGAs.
 The work in [7] and [8] is closely related to the work
presented in the current paper, however, it suffers from the
same drawback as in [6] – the target pipeline timings have
to be known in advance.
 The final microprocessor models shown in [9] highly
depend on currently existing models during their creation. It
is, therefore, important to note that their application is
limited to open architectures only.
 The work in [10] depends on a detailed block diagram of
the microprocessor to be modeled. This is a resource that is
hard to be found, just as the instruction’s detailed timings.
Closed-source vendors do not show complex block
diagrams.
 The work presented in [11] requires that a behavioral
model is existing in advance, and this also limits the
application of the model to the owner of the processor.

III. ASSEMBLER TEST LOOP

 Cycle-accurate models require very specific cycle count
data [12] about every instruction that is usually unavailable.
To extract the cycle counts, the tested microcontroller is
treated as a black box. The only available signals that an
engineer can get are the processor clock, as well as signals
from I/O devices. In this research, a GPIO module is used

for event signaling. The selected port pins are P1.0, P2.0,
and P4.0 of the MSP430F5529 target. A template project is
loaded into the manufacturer’s IDE – Code Composer
Studio. Here, only the main loop will be shown. Stack
initialization and watchdog disabling have to be done prior
to the test, but are not a part of the test itself. The
microprocessor’s clock signal is output on P7.7 and is
called MCLK by the manufacturer. The final code excerpt
is:

main:
 bis #BIT0, &P1DIR
 bis #BIT7, &P7DIR
 bis #BIT7, &P7SEL
 bis.b #BIT0, &P2DIR
 mov.b #0x00, &P2OUT
 bis.b #BIT0, &P4DIR
 mov.b #0x00, &P4OUT

l1: mov #0x01, &P1OUT
 mov #0x00, &P1OUT
 jmp l1

 nop

 The final NOP instruction is a workaround for the
MSP430’s hardware bug called CPU40. In some cases, the
program counter (PC) might get corrupted, if the
instruction/data following a jump is not a NOP. This could
lead to wrong program execution. To ensure that the
CPU40 error is avoided, a NOP instruction is inserted at the
end of every test.
 Using the setup in Fig. 1, the first measurement is to
acquire the cycles without any instructions between the
setting (mov #0x01,&P1OUT) and the clearing (mov
#0x00,&P1OUT) of the P1.0 pin. This pin helps track the
“movement” of the loop instructions through the pipeline
(also known as “instruction flight”). The resulting machine
code (as read by the debugger) is:

004422: 4392 0202 MOV.W #1,&Port_A_PAOUT
004426: 4382 0202 CLR.W &Port_A_PAOUT
00442a: 3FFB JMP (l1)
00442c: 4303 NOP

Fig. 2. Cycle counts for the l1-loop. Blue trace – P7.7 (MCLK),
red trace – P1.0 (GPIO).

where CLR is an emulated instruction that uses a standard:

MOV #0, dst

This means that even though the assembler from the debug
view looks different, the machine code is for the desired
instruction. It is just a way for the software debugger
algorithm to present the code to the developer.
 The measurement results are shown in Fig. 2. By data
sheet [17], the MOV instruction takes 4 cycles with the
currently selected addressing modes and the JMP
instruction is always 2 cycles. The MSP430 contains a
constant generator that allows for 6 immediate values
(0x00, 0x01, 0x02, 0x04, 0x08, and 0xff.ffff) to be
internally available to the instruction without the need of
fetching data from memory. If this is the case, the MOV
instruction executes for 1 cycle less. In the test loop, the
constants 0x00 and 0x01 are being used and this is the
reason why the MOV takes 3 cycles. So, the sum of all
three is 8. This is exactly the length of the period shown in
Fig. 2. A depicted representation of anticipated instructions
in flight is shown in Fig. 3. At this point, the reader might
think that this is a non-pipelined architecture (single-cycle)
but as the number of instructions and addressing modes
grow, it can be seen that some of the stages work
simultaneously. The overlapping of instructions is mainly
prevented by a structural hazard – the MSP430 being a von
Neumann microprocessor. This could be noted in Fig. 3 –
the bus is either transferring instructions or data but never
both.

IV. INSTRUCTION MEASUREMENTS

 The MSP430’s pipeline does not have any complex
branch prediction, superscalar or out-of-order execution,
like other microarchitectures, for example, the Alpha [13].
This makes the processor perfect to model. However, being
a register-plus-memory architecture, the seven addressing
modes generate 36 basic combinations and at least 10 more
for the exceptions.
 This is the reason not all but only the most interesting
cases are presented in this section. Also, no operands
containing the PC are measured. They would change the
execution flow of the program and would make the
measurement more complex.

Fig. 3. Predicted instruction distributions in the MSP430 pipeline.
Upward arrows mean I/O register write, IF – instruction fetch, ID
– instruction decode, EX – instruction execute, MEM – memory

access, yellow circle – instructions operand #2.

During the tests a single, representative, data-processing
instruction is tested, namely the ADDC (add with carry).

The user manual of the MSP430 clearly states that
instruction cycles depend on the addressing modes and not
on the instructions themselves, as it is true in many other
architectures [14] [15] [16].
 The MSP430 has three classes of instructions, according
to the number of operands being used:

 single-operand instructions
 double-operand instructions
 jump instructions (jumps and branches).

The addressing modes are seven. They can be different for
each operand. Their abbreviations in the paper are the
following:

 register Rn
 indirect @Rn
 indirect autoincrement @Rn+
 immediate #N
 indexed x(Rn)
 symbolic Label (also known as PC-relative)
 absolute &M

 The first test is the most simple of all – an ADDC
instruction with both operands having register modes for
both operands. The test loop is given below:

l1: mov #0x01, &P1OUT
 addc.b r6, r7
 mov #0x00, &P1OUT
 jmp l1

 nop

A combination of the measured oscilloscope trace and
assumed instruction distribution is shown in Fig. 4. As it
can be seen, the toggle time of P1.0 has increased with 1
cycle. This matches the device’s data sheet parameters.
Here, an architectural detail could be found – it appears that
for register-register operations the instruction is decoded
early, possibly in the fetch stage, which could be treated as
some type of instruction forwarding. The exact reason for
this behavior is known only to the MSP430 development
team, but for the cycle-accurate model is of no importance,
as long as the memory accesses in and out of the
microprocessor are modeled correctly.
 This is the fastest execution of an instruction for this
processor. The slowest execution was measured for
instructions that have to access memory for values and
offsets. One such instruction includes the indexed-indexed
operands, and here is the relevant code:
 mov #0x01, &0x2406
 mov #0x2400, r6
 mov #0x200, r7

l1: mov #0x01, &P1OUT
 addc.b 0x6(r6), 0x03(r7)
 mov #0x00, &P1OUT
 jmp l1

 nop

Fig. 4. Measured and anticipated distribution of the ADDC Rn, Rn
instruction.

The test loop needs additional initialization – the three
instructions before the l1 label write the constant 0x01 to an
SRAM memory cell. Then, the start addresses of the
SRAM, 0x2400, and of the P2 module, 0x200, are written
to the core registers r6 and r7. In the test loop, the ADDC
instruction sets the P2.0 pin (0x203 is the address of
P2OUT), and the MOV #0x00, P1OUT instruction will
clear both P1OUT and P2OUT. This stems from the
MSP430F5529’s GPIO register mapping – GPIO modules
#1 and #2 have their registers situated as tiles in the
memory map, on adjacent addresses and in pairs. This is
illustrated in Fig. 5. And writing a MOV instruction is
translated by the assembler as MOV.W, or an instruction
that makes a word (16-bit) write. This clears all least
significant bits in register 0x202 (P1OUT) and all most
significant bits in 0x203 (P2OUT). For the same reason the
ADDC has to be specifically written as a byte access
instruction (the .b suffix).
 The resulting trace is shown in Fig. 6. After the fetching
of the 16-bit instruction at clock 1, 4 operands have to be
fetched in the next 4 cycles.

Fig. 5. Part of MSP430F5529’s memory mapped registers.

Fig. 6. Measured and anticipated distribution of the ADDC x(Rn),

x(Rn) instruction.

These are: the offset of the source operand, its value at the
resulting address, the offset of the destination operand, and
the value of its resulting address. The exact sequence of
fetching is not documented, but this wouldn’t affect the
model’s accuracy. Interestingly, the only way to fit all of
the operands, so that the instruction would take 6 cycles
(this number is also specified in the datasheet), is that the
last operand is actually not transferred into the core but,
probably, it is being output on the data bus and is directly
read by the ALU. Of course, all operations take place on
both edges – rising and falling. So, an operand fetch and
copy to the core would take:

 1st edge: the CPU addresses the register from
memory;

 2nd edge: the memory reads the requested address;
 3rd edge: the memory puts data on the data bus,

the CPU copies this data in an internal buffer and at the
same time addresses the next instruction/data.

On the other hand, an operand fetch without copy would
take:

 1st edge: the CPU addresses the register from
memory;

 2nd edge: the memory reads the requested address;
 3rd edge: the memory puts data on the data bus,

the CPU uses this data without buffering it and performs
the operation, while at the same time addresses the next
instruction/data.

V. SUMMARIZED EXPERIMENTAL RESULTS

 All of the combinations of the addressing modes were
measured, except the PC-related ones. Some of the variants
were tested with various instruction types, such as AND,
BIS and XOR to confirm that the cycle costs depend on the

addressing mode only (with some exceptions, like MOV,
BIT, CMP). The results are given in Table 1. The cycle
distribution between the stages is anticipated. Only after the
microprocessor model is created, can the results be verified
with multiple instructions from benchmark programs. Note
that instruction type number 2 (instruction with a single
operand) cannot be measured for the indirect autoincrement
operand because the address of the writes changes on each
iteration of the test loop and this leads to erroneous
program execution.

TABLE 1. PREDICTED INSTRUCTION CYCLE DISTRIBUTION

Type SRC

op.

DST

op.

IF ID EX MEM

2 Rn - 1

2 @Rn - 1 1 1 1

2 @Rn+ - Cannot be measured

2 #N - 1 1 1 1

2 x(Rn)

- 1 1 1 1

2 Label

- 1 1 1 1

2 &M - 1 1 1 1

jump - - 1 1

1 Rn Rn 1

1 Rn x(Rn)

1 1 2 1

1 Rn Label 1 1 1 1

1 Rn &M 1 1 2 1

1 @Rn Rn 1 1

1 @Rn x(Rn)

1 3 1 1

1 @Rn Label 1 2 1 1

1 @Rn &M 1 3 1 1

1 @Rn+ Rn 1 1

1 @Rn+ x(Rn)

1 3 1 1

1 @Rn+ Label 1 2 1 1

1 @Rn+ &M 1 3 1 1

1 #N Rn 1 1

1 #N x(Rn)

1 3 1 1

1 #N Label 1 2 1 1

1 #N &M 1 3 1 1

1 x(Rn)

Rn 1 1 1

1 x(Rn) x(Rn)

1 3 1 1

1 x(Rn) Label 1 3 1 1

1 x(Rn) &M 1 3 1 1

1 Label

Rn 1 1 1

1 Label x(Rn)

1 3 1 1

1 Label Label 1 3 1 1

1 Label &M 1 3 1 1

1 &M Rn 1 1 1

1 &M x(Rn)

1 3 1 1

1 &M Label 1 3 1 1

1 &M &M 1 3 1 1

VI. CONCLUSION

 The paper presents measurements of instruction cycles for
the purpose of developing cycle-accurate microprocessor
models. The experiment setup is described, as well as the
Assembler test programs are given. Oscilloscope traces of
the CPU clock and some synchronization signals are used to
count the cycles.
 Future development of this parameter extraction method
could include an automated system for cycle-accurate
measurements, possibly with an interface to a PC. This
would reduce the measurement time greatly. Results from
real-life measurements could be compared against HDL
simulation results (where possible).

ACKNOWLEDGMENT

The authors would like to thank the Research and
Development Sector at the Technical University of Sofia for
the financial support.

REFERENCES

[1] Y. Li, "Single-cycle CPU design in Verilog HDL", in

Computer Principles and Design in Verilog HDL,
ISBN:9781118841099, DOI:10.1002/9781118841105,
Chapter 5, 2015.

[2] Y. Li, "Multiple-cycle CPU design in Verilog HDL", in
Computer Principles and Design in Verilog HDL,
ISBN:9781118841099, DOI:10.1002/9781118841105,
Chapter 7, 2015.

[3] S. Abdullah, N. Sharmin, N. Alam, "Multi cycle
implementation scheme for 8 bit microprocessor by VHDL",
in International Journal of Engineering and Technical
Research(IJERT), ISSN: 2278-0181, Vol. 3 Issue 7, July -
2014.

[4] B. Black, J. P. Shen, "Calibration of microprocessor
performance models", Computer, Volume: 31, Issue: 5,
pp.59-65, ISSN: 1558-0814, DOI: 10.1109/2.675637, May
1998.

[5] A. Kwiecien, M. Mackowski, K. Skoroniak, "The analysis of
microprocessor instruction cycle”, in Computer Networks,
Communications in Computer and Information Science, vol
160, pp.417–426, Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-21771-5_45, 2011.

[6] A. Khan, M. Vijayaraghavan, S. Boyd-Wickizer, Arvind, "Fast
and cycle-accurate modeling of a multicore processor", IEEE
International Symposium on Performance Analysis of
Systems & Software, DOI: 10.1109/ISPASS.2012.6189224,
USA, 2012.

[7] Y. Li, Z. Lv, T. Zhang, L. Wang, "A Test Generation Method
for Microprocessor Based on A Function Point Model", IEEE
2nd International Conference on Electronics Technology
(ICET), DOI: 10.1109/ELTECH.2019.8839475, ISBN:978-1-
7281-1616-7, 2019.

[8] Igor Bohm, Bjorn Franke, Nigel Topham, "Cycle-accurate
performance modelling in an ultra-fast just-in-time dynamic
binary translation instruction set simulator", International
Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation, DOI:
10.1109/ICSAMOS.2010.5642102, Greece, 2010.

[9] C. Chiang, J. Huang, "Efficient two-layered cycle-accurate
modeling technique for processor family with same
instruction set architecture", International Symposium on
VLSI Design, Automation and Test, DOI:
10.1109/VDAT.2009.5158138, Taiwan, 2009.

[10] M. Reshadi, N. Dutt, "Generic Pipelined Processor Modeling
and High Performance Cycle-Accurate Simulator
Generation", Proc. Design, Automation & Test in Europe
Conference & Exhibition, DATE 2005, DOI:
10.1109/DATE.2005.166, pp.786-791, USA, 2005.

[11] D. Kim, S. Ha, R. Gupta, "CATS: Cycle Accurate
Transaction-driven Simulation with Multiple Processor
Simulators", Design, Automation & Test in Europe
Conference & Exhibition, DATE 2007, DOI:
10.1109/DATE.2007.364685, France, 2007.

[12] P. McClanahan, "Instruction cycles", in Operating system:
the basics, LibreTexts, online, unpublished, San Joaquin
Delta College, 2022.

[13] R.E. Kessler, "The Alpha 21264 microprocessor", IEEE
Micro, Volume: 19, Issue: 2, pp.24-36, 1999.

[14] K. Samarasinghe, "Microprocessors and microcontrollers",
In: "Modern Component Families and Circuit Block Design",
Chapter 4, Pages 151-196, ISBN: 978-0-7506-9992-1, DOI:
https://doi.org/10.1016/B978-0-7506-9992-1.X5000-1,
Elsevier, 2000.

[15] L. Tan, J. Jiang, "Hardware and software for digital signal
processors", In: Digital Signal Processing (Third Edition):
Fundamentals and Applications, Chapter 14, pp.727-784,
2019.

[16] S. Takano, "Performance improvement methods", in
Thinking Machines Machine Learning and its Hardware
Implementation, Chapter 6, Pages 105-149, ISBN-13: 978-
0128182796, 2021.

[17] MSP430x5xx and MSP430x6xx Family User’s Guide, Texas
Instruments, SLAU208Q, 2018.

