
Proc. XXXII International Scientific Conference Electronics - ET2023, September 13 - 15, 2023, Sozopol, Bulgaria

979-8-3503-0200-4/23/$31.00 ©2023 IEEE

A Server Application for Bridging the TCP/IP and

Bluetooth Protocols

Lubomir V. Bogdanov1, Ratcho M. Ivanov1 and Nikolay B. Iliev2

1) Department of Electronics, Faculty of Electronic Engineering and Technologies
Technical University of Sofia

8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria
{lbogdanov, r.ivanov}@tu-sofia.bg

2) Nextlab Ltd, 8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria
nik@nlab.bg

Abstract – The following paper discusses the implementation

of a software application meant to fill the gap between the

Bluetooth and the TCP/IP protocol. This would allow to expand

the wide area network Internet further by introducing new

types of devices that currently exist in small local networks –

battery-powered embedded devices. The application aims to

make a protocol translation.

Keywords – Bluetooth; embedded systems; Internet-of-

Things; server application; TCP/IP.

I. INTRODUCTION

 The trend of connecting mobile and household devices
has been growing ever since the microcontroller industry
started integrating Ethernet and Wi-Fi modules. As widely
known, the Internet-of-Things term can be used to describe
this connection boom. However, a certain class of low-
power embedded devices remains in the periphery – the
Bluetooth devices.
 The structure of the Bluetooth is to use point-to-point or
point-to-multiple-points connection [1]. Currently, a mesh
of Bluetooth Low Energy (BLE) devices is starting to
emerge [2] as a new technology to interconnect multiple
low-power devices in the field. The Bluetooth specification
is constantly evolving and always targets battery-operated
devices that cannot afford the energy budget of an
IEEE802.11 (Wi-Fi) link. Other communication protocols
also exist, such as 6LoWPAN, Thread, Zigbee and Matter,
however they are not as popular and not as widely used as
the Bluetooth.
 Thus, a disconnection between the two types of networks,
low-power and high-power, is created. The proposed
software in this paper aims to diminish this gap and bring the
Bluetooth devices to the global network Internet. The
method is depicted in Fig. 1.
 As a high-power host a personal computer, a server
computer, or a single-board computer could be used. The
requirements for it is to have an active internet connection,
a Bluetooth adapter and one of the following operating
systems – Windows or Linux. The host must be supplied
from the power grid – currently it has the greatest energy
requirements of all the nodes in the network.
 The nodes depicted as HP are the “high-power nodes” that
could or could not be powered from the grid. Usually these
nodes represent household items such as smart TVs, tablets,
laptops, refrigerators, washing machines, etc. The link
between them and the host device is a fast link – usually in

Fig. 1. Connecting Bluetooth devices to the internet through a
high-power host. Abbreviations are LP – low power node, HP –

high power node.

the range 100 – 1000 Mbit/s. This is the reason for their high-
power demand.

The nodes depicted as LP are the “low-power nodes” and
are battery operated. Such nodes could be smart garden
automation devices, home automation devices, etc. The link
between them and the host is typically up to 2 Mbit/s. The
microcontrollers that support Bluetooth are designed to be
low power with idle consumption of approximately 10 µW
and 10 mW during transmission [3]. Devices using such
integrated circuits (IC) are powered by a single or dual
alkaline 1.5V batteries, or a 2032 Li-Ion battery. The former
have a capacity of typically 1 Ah, the latter – 0.225 Ah. The
time period between changing batteries is long – 1 or 2 years
at least.

Once the connection is established, the LP nodes and the
HP nodes can communicate freely between each other, and
between them and other nodes that are available on the
internet. This transforms the local Bluetooth network to a
wide area network. The final goal is to get the advantage of
the low-power Bluetooth communication and the world-

wide accessibility of the TCP/IP communication. This
should expose the Bluetooth device control to any point in
the world, making it enter the IoT domain.

II. RELATED WORK

The idea of connecting Bluetooth devices to the internet

is not new. In [4] such an implementation is thoroughly
discussed. Authors noted that the error rates in the wireless
transmission could be overcome by using the TCP Vegas
congestion control scheme. A simulation model is created
between two nodes – a laptop and a server. The IP layer is
connected to the Bluetooth’s L2CAP layer and a buffer
holds the data to be transmitted. Once the IP layer writes
some data, the L2CAP sends it and removes the entry from
the buffer. Up to 700 kbit/s throughput has been measured.

The author in [5] has described the incompatibility of the
BLE and TCP/IP. He discusses an implementation with a
Bluetooth Internet gateway to cope with the problem. The
author uses existing software technologies like the Apache
Web Server for the TCP/IP communication, and the BlueZ
libraries/configuration tools for the Bluetooth
communication. The gateway is actually not a hardware, but
a software script written in Python. The author uses a
Raspberry Pi demo board that has the needed hardware to
make the bridging.

The presented work in [6] shows how to integrate
Bluetooth connectivity into an existing TCP/IP
implementation of a classical Ethernet switch. Authors
showed how the problem with oversized implementations,
such as PCs with Bluetooth dongles, could be solved by
substituting them with a single network switch.

Though the mentioned research is relevant and very well
carried out, it has some drawbacks. The work shown in [4]
relies on modification of the data link layer (L2CAP) which
means that whenever one of the two protocols changes, this
modification has to be corrected also. The work shown in [5]
and [6] relies on many third-party libraries and utilities that
change between the releases of the Linux distributions. This
means that the “software adapters” have to be updated
accordingly.

 The presented work in the current paper lacks these
drawbacks and differs in two ways – it is independent of the
changes in both protocols (as long as the operating system
has them integrated), and it is compiled as a single
executable program – no additional libraries and tools are
needed. An additional advantage could be noted – the
program is cross-platform and can be run on Linux and
Windows. An option to support Mac OS also exists.

III. IMPLEMENTATION DETAILS OF THE SERVER APPLICATION

The block diagram of the server is shown in Fig. 2. The

Qt Creator development environment and framework has
been used for the creation of this tool. It is written in C++.
Though the binaries are 64-bit, they could be rebuilt for 32-
bit machines easily.

The core of the program is the command line parser. It
receives user commands over the TCP connection and
executes them. To start the server application one may type
in a terminal the following string:
./blue_tcpip –port 5555 –ip_addr 192.168.0.100

Fig. 2. Block diagram of the server application.

Here the “-port” argument defines the port at which the
server should be bound, and “-ip_addr” argument is the IP
address of the host machine. If the “ip_addr” argument is not
specified, the server tries to guess the IP. If it cannot find a
valid address, the server exits with an error. If the given port
is already occupied by another server, an error is displayed.
 After the successful initialization of the server, the
Bluetooth driver is instantiated on the heap, and the
hardware BLE adapter is initialized. The Qt Framework is
responsible for the low-level initialization and
communication, which gives the cross-platform status of the
project. No hardware-dependent code could be found in the
main application.
 Once initialized, the TCP/IP server is the link between the
user and the Bluetooth devices. All commands are executed
by the user, and all replies are with respect to the user
commands. The only exception from this rule is the
“disconnected” event that is asynchronous to the command
flow. It depends on the hardware of the connected BLE
device – if, for example, the power is removed, the
disconnection event will be sent to the user notifying
him/her that no further commands could be executed.
 To make the tool universal, the commands and data are
sent in text mode, i.e. no raw bytes could be seen. However,
raw bytes could be sent to and could be read from the BLE
peripheral by specifying the bytes as text where two ASCII
chars form the digits in hexadecimal representation (digits
and the letters A, B, C, D, E, F), and they are followed by
the space character to separate the bytes. Supporting text and
this pseudo-raw representation would make any high-level
application that uses this server easy to implement.

An example where those two modes could be used, would
be a device that plays sound. One of the communication
channels could be used for commands like turn volume up,

play stereo or mono, mute, etc. The other channel could be
used for the sound samples. The commands could be sent as
text, while the sound samples could be sent as raw data.

IV. THE BLUETOOTH DRIVER

The Qt development environment supports a cross-

platform C++ classes that can be used to communicate with
a BLE device on any of the Qt’s supported platforms. The
classes are the following:

 QLowEnergyController
 QLowEnergyService
 QLowEnergyCharacteristic
 QBluetoothDeviceInfo

but to include a Bluetooth support in the Qt project, the
following line has to be added to the “.pro” file, as well:

QT += bluetooth

 The current state of this library of classes has one minor
disadvantage - the main actor in the communication, an
object of type QLowEnergyController, can only make a
connection to a single peripheral device. This is due to the
fact that the events, called signals in Qt, can be sent only in
response to a single peripheral. There is no method of the
class that can distinguish between the signals sent from
different peripherals.
 To support multiple access (in a star topology), an array
of controller classes with a higher abstraction has to be
created. The index of the array would be the index of the
connection that is associated with a single peripheral, as
shown in Fig. 3. This would allow the server to be used in
multi-threaded environments, which is a major requirement
in the modern software.
 Each controller object has an array of classes for the
services, characteristics and the descriptors for a single
connection [7]. Each controller emits private signals within
the higher-level class and this is how the peripheral activity
is separated. To support the single TCP/IP channel for
communication with the user (as shown in Fig. 2), each
message is prepended with three numbers – device index,
service index and characteristic index. Next, the message is
transmitted. This works both for the peripheral and the
central data flow.

Fig. 3. Raising the level of abstraction of the
QLowEnergyController class.

V. SUPPORTED COMMANDS

To effectively support all features of the BLE
communication, message passing to all of the logical
endpoints has to be implemented for the service and the
characteristic. Even though the descriptor can be
implemented as a characteristic (from software point of
view), separate commands for it are created. A list of SCPI-
compatible commands is given in Table 1.

TABLE 1. SUPPORTED COMMANDS

Command
Argum-

ent
Reply Description

STSC [num]
[output]
+
DONE

STart SCanning for
BLE devices for
'num' of
milliseconds.

CONN [num] DONE
CONNect to BLE
device 'num' from
the device list.

SRVD [num]
[output]
+
DONE

Start SeRVice
Discovery for
device 'num'.

CHRD
[num0]
[num1]

[output]
+
DONE

Start
CHaRacteristic
Discovery for
device 'num0' and
for service 'num1'
from the service list.

DCED [num] DDFC
Disconnect CEntral
from Device 'num'.

DWRI
[num0]
[num1]
[str]

DONE

Descriptor WRIte
data. Here 'num0' is
the device index,
'num1' is the
service, 'num2' is
the descriptor index
from the
characteristic list,
'str' is the data to be
written.

CWRI

[num0]
[num1]
[num2]
[str]

DONE

Characteristic
WRIte data. Here
'num0' is the device
index, 'num1' is the
service, 'num2' is
the characteristic,
'str' is the data to be
written.

EXIT - -
Terminate the
Bluetooth-TCP/IP
server.

LIST -
[output]
+
DONE

Show a list of BLE
connected devices.

RAWD [0/1] DONE
Set data format, 0 -
use strings, 1 - use
binary.

TEST - TEST
For testing
purposes, reply with
the string ‘TEST’.

HELP - DONE
Print all of the
commands to the
user.

*IDN? -

Nextlab
Ltd,Blu
etooth-
to-
TCP/IP
bridge,1
.3

Get the Bluetooth-
TCP/IP server
software revision
number.

 Some of the commands could fail. In those cases, the
string “ERRO” is returned. Peripheral device replies are
prepended with the string “REPL”, so that the controlling
application could parse their output easily.
 The scanning for the BLE devices command returns a list
with nearby devices and their radio emission power in dBm.
The closer the device to the central is, the more positive
(towards 0) the power reading is:

STSC 5000
0|-68| MAC address shown here |Bluetooth
1|-73| MAC address shown here |Water Vasko
2|-77| MAC address shown here |Water Prof
3|-73| MAC address shown here |Bluetooth
DONE

In the excerpt above, the closest device is device #0, with
power reading of -68 dBm. The fields of the STSC command
are separated with the ‘|’ character and start with device
index, given by the server program. This index is used in
every other command as a first argument, e.g. if a connection
to device “Water Prof” is needed, the command “CONN 2”
should be executed, and so on. The second field is the
measured power. The third field is the MAC address of each
peripheral (hidden in the excerpt for security reasons). The
fourth, and final, field is the string that is being advertised
by the peripheral.
 To be able to write to a characteristic, a certain set of
commands has to be initiated and their ordering must be
preserved:

 peripherals discovery;
 connection to one or multiple peripherals;
 service discovery;
 characteristic discovery.

If each phase goes without errors, the command for writing
has the following format:

CWRI 3 2 2 Peripheral command with arguments

that in this example means - device index 3, service index 2,
characteristic index 2.
 To allow for peripheral replies reception, a descriptor has
to be written with the appropriate values (usually 0x0001),
prior to characteristic writes. The replies have the following
format:

REPL 3 2 2 Peripheral reply as a string

that in this example means – a reply from device number 3,
service 2, characteristic 2 has been received.

VI. CONCLUSION

 The paper introduces a new method for bridging TCP/IP
and Bluetooth traffic. A server program that supports both
protocols channels messages from the internet to Bluetooth
devices. The server program is implemented in a low-level
abstraction and must be used with a higher level application
to ease the user.
 Future improvement may include several new features. A
high-level GUI program should be developed to provide
interface between the user and the server. The peripheral
indices for service and characteristics should be replaced
with device UUID numbers [8] that would make easier the
integration of the server with higher level applications (they
will not be forced to track indices internally, but just an
UUID number). Another update would be to use separate
TCP/IP ports for each peripheral connection (this would
separate the data flow between them). And as a final addition
– a command to use one of multiple Bluetooth adapters
would be useful because some hosts have more than one
such adapters (e.g. integrated one and a USB dongle).

ACKNOWLEDGMENT

 The authors would like to thank the Research and
Development Sector at the Technical University of Sofia for
the financial support.

REFERENCES
[1] U.F. Khan, S. Hameed, T. Macintyre, TCP/IP over Bluetooth,

Sobh, T. (eds) Advances in Computer and Information
Sciences and Engineering. Springer, Dordrecht.
https://doi.org/10.1007/978-1-4020-8741-7_85, 2008.

[2] J.V. Marcelo Paulon, B. Olivieri de Souza, M. Endler,
Exploring data collection on Bluetooth Mesh networks, Ad
Hoc Networks, Volume 130, 102809, ISSN 1570-8705,
https://doi.org/10.1016/j.adhoc.2022.102809, 2022.

[3] T. Caroff, S. Brulais, A. Faucon, A. Boness, A. Arrizabalaga, J.
Ellinger, Ultra low power wireless multi-sensor platform
dedicated to machine tool condition monitoring, Procedia
Manufacturing, Volume 51, Pages 296-301, ISSN 2351-9789,
https://doi.org/10.1016/j.promfg.2020.10.042, 2020.

[4] N. Johansson, M. Kihl, U. Körner, TCP/IP over the Bluetooth
wireless ad-hoc network, Lecture Notes in Computer Science
1815:799-810, Proceedings of conference NETWORKING
2000, Broadband Communications, High Performance
Networking, and Performance of Communication Networks,
IFIP-TC6 / European Commission International Conference,
DOI: 10.1007/3-540-45551-5_67, Paris, France, May 14-19,
2000.

[5] Abhimanyu Rathore, Understanding Bluetooth internet
gateways for IoT solutions, https://iot.electronicsforu.com ,
online, 2021.

[6] V. Schuermann, T. Mann, A. Buda, J. Wollert, Integrating
Bluetooth localization into existing TCP/IP networks, 2009
IEEE International Workshop on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and
Applications, ISBN:978-1-4244-4901-9, DOI:
10.1109/IDAACS.2009.5342903, Italy, 2009.

[7] C. Liu, Y. Zhang, H. Zhou, A comprehensive study of Bluetooth
Low Energy, Journal of Physics Conference Series
2093(1):012021, DOI: 10.1088/1742-6596/2093/1/012021,
2021.

[8] Yakov Shafranovich, Bluetooth data exchange between

Android phones without pairing, Networking and Internet
Architecture (cs.NI), arXiv:1507.00650, online, 2015.

