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Abstract — The current paper investigates the possibility of 

H∞ controller order reduction for a simple dynamic plants, 

which are predominand in the industry. A design procedure is 

carried out for a thermal plant model, received by system 

identification. Two full order controllers with integral part are 
obtained having series and parallel form. A mixed S/KS 

sensitivity structure is employed. Using Hankel singular values 

additional 5 reduced order controllers are obtained. Finally 

based on reduced plant model 4 new controllers are obtained. 

All control algorithms are implemented in digital form based on 
discrete state space equations, on a Programmable Logic 

Controller. Simple programs are developed for matrix addition 

and multiplication based on user defined PLC type. Additionally 

some programs are implemented for matrix transfer between a 

MATLAB client and SCADA OPC server. Experiments are 
conducted with a real plant. All eleven closed loop systems are 

compared by the singular values of their sensitivity functions. 

Performance characteristics are calculated and arranged on 

table. For the plant employed, the results show strong possibility 

of order reduction without significant loss of performance. The 
parallel form controller makes it possible to reduce the 

controller further that the series form. 

Keywords— Hankel Singular values, H∞ theory, reduced 

order controller, PLC 

I. INTRODUCTION 

Although there exists already a solution for the task of 

finding a fixed order H∞ controller [1], the problem of order 
reduction based on full order controllers is still an interesting 

one. Often the obtained controllers are of high order, dictated 
by the plant order and the use of weighting fiters [2]. The 

higher the filter order is the higher the controller order gets. 
Significant part of industrial plants are self-regulating and are 

characterized by simple dynamics. In that case the use of high 

order controller might not be waranted. On top of that higher 
order leads to more calculations. Keeping in mind the limited 

precision of number representation, one would like to avoid 
the need for too many calculations, to minimize the 

accumulation of numerical errors. 

II. H∞ CONTROLLER DESIGN 

The plant to be controlled is shown of Fig. 1. It is a  thermal 
plant consisting of 4 pieces of aluminum. At each piece a 

thermosensor is attached. On three of them a heater is used for 
control and on the fourth a fan. An identification procedure is 

conducted, based on the subspace method [3] and a discrete 

multivariable plant with the three heaters as inputs is received. 
The outputs to be controlled are the temperatures of three of 

the aluminum pieces. The model order is nine. Validation tests 

are shown on Fig. 2 and Fig. 3 

 

 

Fig. 1. Thermal plant 

 

Fig. 2. Correlation test 

 

Fig. 3. Comparison test 
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The comparison test shows around 88% overlap, between 
the received model and the experimental data. The residual 

error has characteristics of a white noise, meaning the plant 
parameter estimates are not biased. Additionally, time and 

frequency responses of the plant are shown on Fig. 4 and Fig. 

5. 

 

Fig. 4. Step response of the plant 

 

Fig. 5. Frequency response of the singular values of the plant 

The plant needs at least 2000s to get to a steady state. 
There are no oscillations. The temperature rises 

monotonically. One could note that the dynamic is a simple 
one. But the small proportional gain could lead to input 

saturation of the closed loop system. 

The current work uses mixed S/KS sensitivity scheme for 

the design of H∞ controllers [4]. Two possible arrangements 

of the controller and the integral part are tried, as shown on 

Fig. 6 and Fig 7. 

On Fig. 6 the controller and the integral part are arranged 
in a series form and on Fig. 7 a parallel form is used. For both 

cases w represents the external input to the loop, z are the error 
signals or the signals acting as quality measures, u is the 

control signal, y is the feedback signal, K is the controller to 

be designed and P represents the extended plant. The extended 
plant consists of the plant to be controlled and the transfer 

matrices of the weighting filters Wp and Wu. 

The task at hand is to find a stabilizing controller K such 

that (1): 
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Fig. 6. Hinf synthesis of series integral controller 
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Fig. 7. Hinf synthesis of parallel integral controller 

min
𝐾

max
𝜔

𝜎̅(𝐹𝑙 (𝑗𝜔)), ∀𝜔  () 

where Fl is (2): 

𝐹𝑙 = [
𝑆𝑜
𝐾𝑆𝑜

]  () 

So denotes the output sensitivity function and KSo denotes 

the sensitivity at the plant input. The current work uses the 
disturbance at the plant output as external signal w, the plant 

output and input as error signals to be minimized. The input to 
the controller is the control error, due to existence of 

disturbance at the plant output. This problem is know as the 

regulation problem. 

The weighting filters matrices are set as diagonal, with 

elements as shown in (3) and (4): 

𝑊𝑝
(𝑠) =

𝑠

1.4
+0.011

𝑠+0.011𝑒−3
 () 
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(𝑠) = 0.01 (

1

0.1
𝑠+1

1

10
𝑠+1

) () 

The design procedure leads to values 2.04 and 1.9768 for 

𝛾 for the series and parallel form respectively, which means 
that the controllers are neither optimal nor suboptimal. The 

order of both controllers is 18 without the integral part , which 
further increases it by 3, making the whole control algorithm 

of order 21. It is not unusual for the H∞ design procedure to 

lead to controllers of high order. The order equals the order of 
the extended plant plus the order of the weighting filters. 

Settings even tighter performance limits by higher order 
transfer functions on the diagonal of weighting filters would 

increase the controller order even further.  



For order reduction the balred() function of MATLAB is 
used. By default the method outlined in [5] is used. The task 

at hand is to reduce the order of the controller K by keeping 

the absolute error (5) small. 

‖𝐾(𝑠) − 𝐾𝑟(𝑠)‖∞   () 

where Kr is the reduced order controller. The obtained 
controllers are in a balanced realization form. It is related to 

the observability and controllability gramians. The reduced 

order controllers have their DC gain matched. 

Fig. 8 shows the Hankel singular values of the series form 

controller. 

Judging from the absolute error bound and the state 

contribution the order could be reduced to atleast 14. 
Furthermore the order could be reduced to 10. Any further 

reduction leads to steady state errors, shown by a simulation 

of the closed loop system. 

Fig. 9 shows the Hankel singular values of the parallel 

form controller. 

For comparison reasons the same order reduction (14 and 
10) is applied. Additionaly the parallel form makes it possible 

to reduce the order even further than the series form. A 

reduced controller of order six is obtained. It is even possible 
to reduce the order to 3, but the output signals tend to have a 

high overshoot so it is avoided. Looking at Fig. 8 and Fig. 9 
one could see an interesting difference. The contribution of 

states for the series controller are more evenly distributed, 
excluding the last 4 states. The contributions for the parallel 

controller are mainly concentrated into the first 3 states, than 

the next 4 and from now on the contributions dicrease linearly. 

 

Fig. 8. Hankel singular values for series controller 

Lastly a design procedure is carried for a H∞ controllers in 

a series and parallel form based on reduced order (6 and 3) 
models of the plant. Correlation test for these models show 

that the residuals are not white noise, meaning that their 
parameters are biased or incorrect in the sense of system 

identification, nonetheless the results for transient behavoir of 
the closed loop systems still have a good performance. The 

resulting controllers are of order 15 and 12 and the values for 

𝛾  are 2.04, 2.038, 1.977, 19747 for the series and parallel 
respectively for the 6th and 3rd order reduced models. The 

changes to 𝛾 are marginal. 

 

 

Fig. 9. Hankel singular values for parallel controller 

Different sensitivity functions of the closed loop systems 

for the eleven controllers are calculated. To avoid visual 

clutter, only the singular values of the closed loop systems 
with the highest and the lowest order controllers are shown. 

Fig. 10 to Fig. 12 represent the singular values of the 

sensitivity functions for the series form. 

 

Fig. 10. Output complementary sensitivity singular values - series 

 

Fig. 11. Output sensitivity function singular values - series 



 

Fig. 12. Sensitivity at plant input singular values – series 

 

Index h means highest order, index l means lowest order. 
One could observe the lack of difference, with the exception 

of a negligible deviation in the high frequency region for the 
KSo transfer matrix. The feedback loop should be effective at 

around 0.004 rad/s. The maximum of the sensitivity function 
is at 1.47, which is under the proposed limit of 2. The control 

signals could exhibit amplitudes ten times the reference or 

disturbance change. 

Fig 13 to Fig. 15 show the singular values of the sensitivity 

functions for the parallel form. 

One could observer a bigger difference between the 

highest and the lowest possible order for the parallel form. 
Nonetheless the deviations are not significant. On top of that 

the profile for the singular values is almost the same for the 

series and parallel form, but one should not forget the 

possibility of higher order reduction on the parallel side. 

 

Fig. 13. Output complementary sensitivity singular values – parallel 

 

III. IMPLEMENTATION 

The control algorithms are executed by a Programmable 
Logic Controller (PLC). All software is developed by Siemens 

TIA Portal V18. The algorithms themselves are implemented 

in a discrete state space form as show in (6) and (7). 

 

 

Fig. 14. Output sensitivity function singular values – parallel 

 

Fig. 15. Sensitivity at plant input singular values – parallel 

𝑥𝑐(𝑘 + 1) = 𝐴𝑐𝑥𝑐(𝑘) + 𝐵𝑐𝑒𝑖(𝑘)

𝑢(𝑘) = 𝐶𝑐𝑥𝑐(𝑘) + 𝐷𝑐𝑒𝑖(𝑘)
  () 

𝑥𝑐(𝑘 + 1) = 𝐴𝑐𝑥𝑐(𝑘) + 𝐵𝑐 [𝑒(𝑘) 𝑒𝑖(𝑘)]
𝑇

𝑢(𝑘) = 𝐶𝑐𝑥𝑐(𝑘) + 𝐷𝑐 [𝑒(𝑘) 𝑒𝑖(𝑘) ]
𝑇  () 

where 𝐴𝑐 ,𝐵𝑐 , 𝐶𝑐,𝐷𝑐  are the controller matrices, 𝑥𝑐 is the state 

vector, 𝑢 is the control signal, 𝑒 and 𝑒𝑖 are the control error 
and the integral control error respectivly. The integral part is 

implemented by backward Euler difference approximation  
[6]. The sample time is set to ten seconds. Both the series and 

the parallel controller possess an anti wind-up mechanism by 

use of back calculation [7]. 

Since matrix operations are not readily available, one 

needs to develop simple functions to supplement the state 
space controller implementation. By inspection of (6) and (7) 

only “addition” and “multiplication” operations are needed. In 
the current work this functions are created in such a way that 

they operate on a user defined PLC type. This type is called 
“MATRIX” and consists of a two-dimensional array for the 

matrix elements, and two unsigned integers for the row and 

column dimensions. 

The matrices of the controllers are calculated with 

MATLAB hinfsyn() function. An OPC connection is 
established between the SCADA system and the MATLAB 



client. This connection is used to pass the parameters of the 
matrices, calculated in MATLAB to the PLC. Because for the 

current implementation of the OPC by Siemens, multi-
dimensional arrays are not supported, one needs to implement 

additional functions on the client side and the SCADA side. 
This functions rearrange a matrix in a vector and vice-versa. 

Additionaly to index the array elements Tag multiplexing is 

needed on the SCADA side. 

Finally a SCADA system is implemented using WinCC 

Unified V18. It is used for data visualisation, automatic and 
manual control, as well as for matrix transfer and archival of 

signals and data. 

IV. EXPERIMENTAL RESULTS 
All the eleven closed loop systems were tested. For the 

reference signal, a  step is applied at all loops. A different 

amplitude is used for every reference signal. For the first loop 
the reference signal is 60 degree, 50 for the second and 5 for 

the third. The results are shown on Fig.16 to Fig. 21. One 

could see a small variance of the initial conditions of every 
test. This is due to inability to control the environement and 

the ambient temprature in the room. The outputs are plotted 
together just to show the small difference, despite their 

different order. 

 

Fig. 16. Transient response of first output 

All three outputs of every closed loop system increase 

monotonically with a slight overshoot. There is no big 
variation of the input signal. For the first 500 to 600 seconds 

the control signal is saturated, then it converges to a stationary 
value. To assess the quality of the closed loop systems, some 

criteria  are calculated and arranged in TABLE I.  Notations 

“m3” and “m6” represent the plant order, three and six 

respectively. Se and Su are defined as (8) and (9). 

𝑆𝑒 = √
1

𝑇
∑ 𝑒2(𝑡)𝑇
0 , () 

𝑆𝑢 = √
1

𝑇
∑ 𝑢2(𝑡)𝑇
0  () 

where Т is the time frame of the experiment, e is the control 
error and u is the control signal. The rise time, settling time 

and overshoot are calculated using stepinfo() MATLAB 
function. Criterion (8), (9) and overshoot have small 

differences. Bigger variations one could observe in rise time 

and settling time, but they could be attributed to the difference 

of initial conditions. 

 

Fig. 17. Transient response of second output 

 

Fig. 18. Transient response of third output 

 

Fig. 19. Control signal of first input 

V. CONCLUSION 

The current work investigated the possibility of H∞ 
controller order reduction for a thermal plant. Two full order 



controllers were designed, four more were designed by use of 
reduced model order and 5 more by reduction balanced 

realizations based on Hankel singular values. All algorithms 
were implemented in a PLC and test were carried with a real 

system. The resulting closed loop systems were compared by 
their singular values of the respective sensitivity functions, 

transient behavior and by some quality criteria. 

 

Fig. 20. Control signal of second input 

 

Fig. 21. Control signal of third input 

The results showed marginal difference between the 

highest and the lowest order controller, meaning that order 

reduction does not lead to significant loss in performance. 

 

 

TABLE I. PERFORMANCE INDEX 

Criterion 

Rise Time, s Settling time, s Overshoot, % Se [-] Su [-] Type and 
order 

Serial 18 638.91 368.52 451.54 1144.2 1115.2 827.82 2.47 3.14 2.37 57.28 48.97 53.36 73.43 35.05 43.98 

Serial 14 613.83 364.01 446.1 1141.4 1125.2 851.84 2.57 3.38 2.63 57.43 48.98 53.36 70.76 34.05 43.09 

Serial 10 529.4 313.36 389.88 840.33 756.75 756.49 2.22 3.1 2.79 57.94 49.26 53.71 63.94 29.94 38.77 

Serial m6 628.36 380.26 457.55 1281.4 1381 849.34 2.74 3.41 2.56 57.36 48.94 53.34 70.62 34.84 43.53 

Serial m3 634.34 365.03 451.94 1201.6 803.04 809.52 2.68 3.37 2.43 57.28 48.96 53.31 73.41 34.8 44.08 

Parallel 18 604.83 351.26 433.62 1057 988.8 892.45 2.61 2.9 2.63 57.52 49.05 53.46 69.78 33.69 42.72 

Parallel 14 634.09 369.15 477.67 1076.2 821.04 542.65 2.18 2.74 1.88 57.3 48.9 53.33 74.19 35.33 44.4 

Parallel 10 626.49 381.21 463.72 1204.3 1318.8 953.68 2.94 3.5 2.8 57.3 48.94 53.32 71.44 35.08 43.82 

Parallel 6 604.99 358.95 442.49 1200.5 1405.9 1171.9 2.42 3.02 7.8 57.48 49.06 53.71 68.7 33.63 44.4 

Parallel m6 616.29 376.66 448.14 1072.4 1155 793.53 2.17 3.82 2.29 57.41 48.92 53.33 72.45 35.22 43.62 

Parallel m3 606.03 356.85 438.53 1173.4 1261 788.68 3.23 4.0 2.85 57.49 49.05 53.43 69.67 34.14 43.02 

Even the controllers designed by use of reduced order 

models, having biased parameters, showed performance in 
line with the rest of the pack. On top of that the parallel form 

made it possible to reduce the order further that the series form 

controller without much performance degradation. However 
the results shown should not be used to draw a general 

conclusions, simply because this is just one example with a 
simple dynamic plant. Nonetheless the current work shows a 

little insight of the practical aspects and the problem of 

reduced order controllers. 
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