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Abstract — The current paper investigates the possibility to 

design a discrete multivariable H∞ PID controller using the 

MATLAB hinfstruct() function. Two PIDs are designed. They 

are compared against a full order H∞ controller and a 
decentralized PID with a static decoupling matrix. Frequency 

response of the singular values of the closed loop sensitivity 

functions are calculated and compared. All controllers are 

tested on a laboratory model, representing a thermal plant. The 

control algorithms are implemented on a Programmable Logic 
Controller. The elements of the multivariable PIDs are 

implemented using velocity form for simpler anti wind-up 

mechanism realization. The parameters are calculated by 

MATLAB and then transferred using OPC connection to a 

SCADA system. Two sets of experiments are conducted with the 
real system, testing two different sets of reference signal 

changes. Based on known performance criteria, a comparison is 

made. The results show the viability of a fixed order, fixed 

structure controller designed based on H∞ theory. 
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I. INTRODUCTION 

Most industrial installations today still depend on the PID 

control law for the lower level [1]. On one hand it is due to the 
simplicity of the controller. It consists mainly of three 

parameters. These parameters have physical meaning and are 

easily understood by engineers and maintenance personnel of 
the operating plants. On the other hand, it is due to all the 

accumulated knowledge on the topic and all the existing 
hardware and software solutions. Despite that, the application 

of the PID control law into the multivariable case is not 
simple. For a long time, there was no general solution or 

framework, describing a procedure or algorithm for parameter 

calculation. 

Parallel to the PID control theory, as early as the 80s the 

H∞ theory has been developing rapidly [2]. It attracts many 
researchers. A general solution was found through numerical 

calculations. Controllers designed using the H∞ theory might 
be optimal or suboptimal in the sense of norm H∞. One 

disadvantage of the general H∞ theory framework was that the 

received controllers cannot have fixed structure a priori. That 
led to research in this direction and some solutions in this 

regard were proposed. Now it is even possible to design a PID 

controller based on a H∞ criterion. 

The present article would like to try and combine the PID 
controller and the H∞ theory in application to the multivariable 

case for a plant having simple dynamics. 

II. H∞ CONTROLLER DESIGN 

The plant to be controlled is shown of Fig. 1. It is a  thermal 

plant consisting of 4 pieces of aluminum.  

 

Fig. 1. Thermal plant 

At each piece a thermocouple is attached. On three of them 

a heater is used for control and on the fourth a fan. An 

identification procedure based on the subspace method [3] is 
conducted and a discrete multivariable state space plant with 

the three heaters acting as inputs is obtained. The outputs to 
be controlled are the temperatures of three of the aluminum 

pieces. The model has nine states. Step response with 3 
standard deviations confidence interval and frequency 

response of the singular values of the identified plant are 

shown on Fig. 2 and Fig. 3 

 

Fig. 2. Step response of the plant 

The plant is controlled in a standard negative feedback 

loop configuration as shown on Fig. 4. 

The signal r is the reference, e is the control error, u is the 

control signal, d represents low frequency output disturbance, 
n is high frequency noise, y is the output of the plant G to be 

controlled by K. Basic equations describing the relation 

between the different signals are shown in (1) and (2) 

𝑦 = 𝑇𝑜(𝑟 − 𝑛) + 𝑆𝑜𝑑  () 

𝑢 = 𝐾𝑆𝑜(𝑟 − 𝑛 − 𝑑)  () 
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To denotes the output complementary sensitivity function, 
So denotes the output sensitivity function and KSo denotes the 

sensitivity at the plant input. To and So are formed by (3) 

𝑇𝑜 =
𝐺𝐾

𝐼+𝐺𝐾
, 𝑆𝑜 = (𝐼 + 𝐺𝐾)−1  () 

Where I is the identity matrix. The current work uses 

mixed S/KS sensitivity scheme [4] for the design of H∞ 

controller shown on Fig. 5. 

 

Fig. 3. Frequency response of the singular values of the plant 
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Fig. 4. Block-diagram of the closed loop system 
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Fig. 5. Mixed S/KS design 

The signal w represents the external input to the loop, z are 

the error signals or the signals acting as quality measures, u is 
the control signal, y is the feedback signal, K is the controller 

to be designed and P represents the extended plant. The 

extended plant consists of the plant to be controlled G and the 
transfer matrices of the weighting filters Wp and Wu. In this 

case the disturbance at the plant output d acts as external signal 
w. The plant output y in the presence of output disturbance and 

the control signal u act as error signals to be minimized. The 
input to the controller is the control error, due to existence of 

disturbance at the plant output. Then the problem is to find a 

stabilizing controller K such that (4): 

min
𝐾

max
𝜔

𝜎̅(𝐹𝑙 (𝑗𝜔))  () 

where Fl is (5): 

𝐹𝑙 = [
𝑊𝑝𝑆𝑜
𝑊𝑢𝐾𝑆𝑜

] () 

Furthermore, the desired controller K has a fixed order and 

a fixed structure as shown on (6): 

𝐾(𝑧) = (
𝐾11 ⋯ 𝐾1𝑚
⋮ ⋱ ⋮

𝐾𝑟1 ⋯ 𝐾𝑟𝑚

)

𝐾𝑖𝑗(𝑧) = (𝐾𝑝 + 𝐾𝑖
𝑇𝑠𝑧

𝑧−1
+ 𝐾𝑑

1

𝑇𝑓+
𝑇𝑠𝑧

𝑧−1

)

 () 

Where Kij is a  discrete PID controller, having Kp as 

proportional gain, Ki as integral gain, Kd as derivative gain and 
Tf as filter constant. The solution for fixed order and fixed 

structure H∞ controller could be found in [5]. The authors of 
[5] propose a method, based on no smooth techniques suited 

for H∞ synthesis and for semi-infinite eigenvalue or singular 
value optimization programs. MATLAB introduced a 

function hinfstruct(), which implements the proposed 

techniques by Apkarian and Noll since version 2010b. In 
general the hinfstruct() function takes a fixed structure 

controller with tunable parameters and an extended plant P as 
outlined on Fig. 4. The output of the function is a tuned 

controller, minimizing the H∞ norm of the closed loop 
structure, describing the connection between the external 

signals w and the error signals z. For further documentation 

the reader is pointed to [6]. 

Setting the weighting filters Wp and Wu as diagonal 

matrices with elements (7) and (8) 

𝑊𝑝
(𝑠) =

𝑠

1.4
+0.01

𝑠
 () 

𝑊𝑢
(𝑠) = 0.01 (

1
0.1

𝑠+1

1

10
𝑠+1

) () 

one receives a multivariable discrete PID controller. The 

filters are chosen in a way to provide a certain shape to the 
output sensitivity function So and KSo. It is desired that the 

bandwidth of the closed loop system is no more than 0.01 rad/s 
and the maximum of the output sensitivity function not exceed 

1.4. For the KSo it is desired that the control amplitudes for 
signals with spectral components at around 0.1 rad/s not 

exceed 40dB. After that the limit decreases by 20 dB/decade 

until 10 rad/s to eliminate high control amplitudes for high 
frequency signals. Preliminary simulations showed 

unacceptable transient response of the closed loop system, 
when the reference change leads to control signal saturation. 

For this reason, a second PID controller is designed, with the 
goal of reduced control amplitudes at the expense of slower 

transients. The weighting filters for the second controller are 

diagonal matrices with elements (9) and (10):  

𝑊𝑝
(𝑠) =

𝑠

1.4
+0.006

𝑠
 () 

𝑊𝑢
(𝑠) = 0.06 (

1
0.1

𝑠+1

1

10
𝑠+1

) () 

The desired bandwidth of the closed loop system is 
decreased to 0.006 rad/s and the limit for low frequency 

signals is decreased to 24.43dB. Comparison of the frequency 



response of the singular values of the sensitivity functions of 
the closed loop systems for the two PID controllers are shown 

on Fig. 6 to Fig. 8. 

For the output complementary sensitivity function To one 

could note that the first PID controller (annotated as f for 
“fast”) provides the closed loop system with a wider 

bandwidth. But this could lead to higher noise amplification 

at the system output, compared to the second controller 
(annotated as s for “slow”). Both systems lack high values for 

the maximum singular value of To, meaning that both systems 

should be robust to multiplicative model uncertainty. 

The output sensitivity function So has values between 2.5 
and 3 dB for the highest point of the maximum singular value 

for both systems. This values are well below the 
recommended limit of 6dB, leading to good stability margin. 

The feedback loop for the fast system is effective at around 

0.004 rad/s, and for the slow one at around 0.0023 rad/s. 

 

Fig. 6. Output complementary functions comparison 

For the sensitivity at the plant input KSo а difference in the 

high frequency region is observed. A high frequency noise 
would be amplified even further by the fast system. 

Additionally, a  higher amplitude control signals are expected. 

A good test for the fixed order controllers would be a 

comparison with a full order H∞ controller and a PID 
controller with a decoupling matrix designed as outlined in 

[7]. 

For that reason, additional full order H∞ controller is 

designed as well as a PID controller and a static decoupling 

matrix. Comparison of the frequency response of the singular 
values of the sensitivity functions of the closed loop systems 

for the fast PID and the full order H∞ controller is shown on 

Fig. 9 to Fig. 11. 

The singular values of the PID system are noted with a p 
subscript. The subscript h denotes the singular values of the 

H∞ controller system. Excluding the higher values of the KSo 

sensitivity of the PID controller, there is no big difference 

between the two systems. 

Although the plant to be controlled has a simple, slow 
dynamics, there is one restrictive constraint, imposed by the 

control signals. The singular values of the scaled plant are 

shown on Fig. 12. 

Based on [8] for perfect control the following requirement 

needs to be fulfilled (11): 

𝜎(𝐺) > 1 () 

where 𝜎(𝐺) is the minimal singular value of the plant. Clearly 

this requirement is violated, meaning that for a sufficiently big 
reference signal the closed loop system would operate in the 

saturation limit, leading to deterioration of the overall 

performance. 

 

Fig. 7. Output sensitivity functions comparison 

 

Fig. 8. Sensitivity at the plant input comparison 

 

Fig. 9. Output complementary functions comparison 

 

Fig. 10. Output sensitivity functions comparison 



III. IMPLEMENTATION 

The control algorithms and all supporting functions are 

developed with TIA Portal V18 and are executed by a 
Programmable Logic Controller (PLC). The elements of the 

multivariable PID controllers are implemented using a 

velocity form [8] as shown in (12). 

 

Fig. 11. Sensitivity at the plant input comparison 

 

Fig. 12. Singular values of the scaled plant 

𝐾𝑖𝑗 (𝑧) =
𝑇𝑠𝑧

𝑧−1
(𝐾𝑝

𝑧−1

𝑇𝑠𝑧
+ 𝐾𝑖 + 𝐾𝑑

𝑧−1

𝑇𝑠𝑧(𝑇𝑓+
𝑇𝑠𝑧

𝑧−1
)
) () 

The use of (12) is dictated by the need for a simple anti 

wind-up solution. If one factorizes the discrete integral term 
for every control signal as shown on Fig. 13 then the solution 

to the anti-wind-up problem in this case would be to simply 

stop integrating in the presence of saturation. 

The integral and derivative parts are implemented by 
backward Euler difference approximation. The sample time is 

set to ten seconds. As outlined earlier the design procedure of 

the controllers is carried out by MATLAB using hinfstruct() 
function. The values for the proportional, integral and 

derivative terms are send to the PLC through OPC connection. 

A SCADA system is developed using WinCC Unified 

V18. It provides process visualization, possibility for mode of 
operation change (auto/manual), collecting signals values in a 

text file for further analysis, initiating controller parameters 

transfer etc. 

IV. EXPERIMENTAL RESULTS 
All controllers are tested in a closed loop system 

experiments, in regard to reference change. Two cases are 

tried. The first one leads to different amplitudes of the 
reference for all loops. The change of the reference signals 

varies between 30 and 40 degrees. Results are shown on Fig. 

14 to Fig. 19. The notation is the following, DPID is the PID 
controller and the decoupling matrix, Hinf  is the H∞ controller, 

MPIDf  is the “fast” multivariable PID and MPIDs is the 
“slow” one, ref represents the reference signal. Some variance 

in the initial conditions might be observed due to inability to 

control the environment and the temperature in the room. 
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Fig. 13. Control structure of the closed loop system 

All systems, excluding the “fast” PID have comparable 
performance if we neglect the difference in overshoot. The 

outlier mentioned exhibits strange behavior. 

The control signal of the “fast” PID quickly exits the 

saturation limit and continues to decrease despite the existence 

of a big control error. This phenomenon leads to slower 
transient response and smaller control signal compared to the 

rest. One should note that this result is the opposite of what 
the frequency response of the singular values of the different 

sensitivity functions showed earlier. That is a  good example 
of the dangers operating a closed loop system into the 

saturation limit. 

Some performance criteria are calculated and shown in 
TABLE I, where overshoot, Se and Su are defined as (13), (14) 

and (15). 

𝜎 =
(𝑦(𝑚𝑎𝑥)−𝑦(∞))

(𝑦(∞)−𝑦(0))
100  () 

𝑆𝑒 = √
1

𝑇
∑ 𝑒2(𝑘)𝑇
0 , 𝑘 = 0, . . , (𝑁 − 1) () 

𝑆𝑢 = √
1

𝑇
∑ 𝑢2(𝑘)𝑇
0 , 𝑘 = 0, . . , (𝑁 − 1) () 

where Т is the time frame of the experiment, e is the control 

error and u is the control signal, k is the discrete time step and 

N is the number of samples. The rise time, settling time and 

overshoot are calculated using stepinfo() MATLAB function. 

Looking at the rise time, the H∞ controller and the 
decoupling PID are close, but if one accounts for the settling 

time the first one is clearly better in terms of fast response. On 
top of that the overshoot for the H∞ controller is quite lower at 

around 2 to 3 %. 



 

Fig. 14. Output 1 – comparison 

 

Fig. 15. Output 2 – comparison 

 

Fig. 16. Output 3 – comparison 

 

Fig. 17. Input 1 – comparison 

For the seconds case the same reference change is applied 

at all loops. The amplitude is only 15 degrees, leading to 
smaller control signals and avoiding going into the saturation 

limit. Results are shown on Fig. 20 to Fig. 22. Notations are 

the same as in the previous case. Performance criteria are 

calculated and arranged in TABLE II. 

 

Fig. 18. Input 2 – comparison 

 

Fig. 19. Input 3 – comparison 

The results above are in line with the frequency response 
of the singular values of the sensitivity functions of the closed 

loop system. All systems operate without entering saturation 
state. The “slow” PID leads to smaller control amplitudes at 

the expense of slow transient response. The “fast” PID leads 
to almost the same behavior as the full order H∞ controller, 

which shows the potential of the fixed order design of a 

multivariable PID. Interesting enough is the result for the 
decentralized PID controller with the static decoupling. 

Excluding the settling time all other criteria are quite close to 
the rest of the stack, showing the possibility of a simple control 

strategy without the need of full knowledge of a model. The 
slow settling time might be due to not adequate anti wind-up 

mechanism. 

V. CONCLUSION 

The current paper investigated the viability of the 
hinfstruct() MATLAB function for design of multivariable 

discrete PID controllers. Two multivariable PIDs were 

designed and were compared against a full order H∞ controller 
and a decentralized PID using static decoupling matrix. 

Frequency response of the singular values of the closed loop 
sensitivity functions were plotted. The controllers were tested 

on a laboratory thermal plant. 

They were implemented using velocity form on a PLC 

controller. Two sets of test were conducted, using different 

amplitudes for the reference signal change, leading to different 
operating conditions of the closed loop systems. The results 

showed comparable performance between the full order H∞ 
controller and the multivariable PIDs, supporting the idea of 

the viability of fixed order and fixed structure controller 

design. 



TABLE I. PERFORMANCE INDEX CASE 1

Criterion 
Rise Time [s] Settling time [s] Overshoot [%] Se [-] Su [-] 

Type and 
order 

HPID fast 1661.6 1286.6 1167.1 2436.7 2691.7 2506.5 0 0 0 11.31 7.81 9.2 67.96 27.47 37.95 

HPID slow 697.55 518.79 518.2 2010.4 2008.8 1563.7 3.52 3.54 5.57 11.0 7.58 8.91 70.37 28.87 44.46 

H∞ 604.83 351.26 433.62 1057 988.8 892.45 2.61 2.9 2.63 10.3 6.51 8.13 70.41 34.53 43.54 

DPID 595.13 367.16 502.54 1922.4 1963.2 1794.9 7.6 8.67 5.55 9.96 6.29 7.73 71.2 30.05 40.62 

TABLE II. PERFORMANCE INDEX CASE 2 

Criterion 

Rise Time [s] Settling time [s] Overshoot [%] Se [-] Su [-] 
Type and 

order 

HPID fast 1661.6 1286.6 1167.1 2436.7 2691.7 2506.5 0 0 0 11.31 7.81 9.2 67.96 27.47 37.95 

HPID slow 697.55 518.79 518.2 2010.4 2008.8 1563.7 3.52 3.54 5.57 11.0 7.58 8.91 70.37 28.87 44.46 

H∞ 604.83 351.26 433.62 1057 988.8 892.45 2.61 2.9 2.63 10.3 6.51 8.13 70.41 34.53 43.54 

DPID 595.13 367.16 502.54 1922.4 1963.2 1794.9 7.6 8.67 5.55 9.96 6.29 7.73 71.2 30.05 40.62 

 

Fig. 20. Output 1 – comparison 

 

Fig. 21. Output 2 – comparison 

Since the received result are just from a single plant, they 

should not be generalized, but they give a good insight to the 
corresponding problem. Potential future work might include 

the robustness topic of the closed loop systems, designed by 
use of fixed structure PID controllers. A new plant is already 

constructed – two water level coupled tanks with possibility 

to change the outlet valve positions, leading to variable 

dynamics. 

 

Fig. 22. Output 3 – comparison 
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