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Abstract – This paper presents an implementation of a QRS 

detection algorithm in C with custom IP library blocks written 

in Verilog for a FPGA chip. The hardware design adds support 

for the processing of the data array that contains the 

electrocardiographic samples. Focus is put on the software and 

hardware structure, as well as some performance metrics – the 

used memory and the time for execution of the processing 

procedures. Final results shown that the hardware 

implementation is slower than the microprocessor-only 

implementation, its ROM usage is 700 bytes less. The RAM 

usage is equal in both cases. The hardware IP would also allow 

for other devices in the system to get more microprocessor time 

(e.g. interrupt handling).   
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I. INTRODUCTION 
 
 The electrocardiogram (ECG) is one of the most 
commonly used diagnostic procedures in the medicine. It is 
a fact that modern electronic devices for recording of heart 
activity are subject to intensive development in order to 
increase their diagnostic capabilities. Typical examples are 
connected with the requirements to minimize size and power 
consumption in specific applications, such as in long-term 
monitoring, remote monitoring, wearable applications, etc. 
In recent years, the attention of researchers and developers 
has increasingly turned to Field Programmable Gate Array 
(FPGA-based) hardware implementations. The main reason 
is the presence of a serious computing resource in these 
architectures, allowing parallel processing of data in real 
time. In particular, for the processing of ECG signals, such 
applications prove their applicability, especially in the 
implementation of interference filtering algorithms (base-
line drift, power line interference, electromyographic noises, 
etc.), subsequent detection of QRS complexes, recognition 
of rhythm abnormalities, shape analysis, etc. In one of the 
first publications [1] devoted to the application of FPGA for 
ECG signal processing, the authors present algorithm 
performing QRS complexes detection and beats 
classification. The advantage of parallelization in the 
processing of the data by the hardware and software part of 
the system is evaluated, allowing a significant increase in 
speed, even at a lower clock frequency. In later publications, 
the authors present FPGA-based solutions  for both rhythm 
analysis [2], [3] and digital ECG signal processing applying  

 
 
least-square linear phase finite impulse response (FIR) filter 
[4], least-square FIR filter [5], Hermite polynomials for 
ECG signal characterization [6]. It should be noted that the 
majority of FPGA applications are aimed at performing a 
separate stage of the overall process of ECG signal 
registration.  
 In the focus of this work is an approach different from 
existing implementations because it uses both a 
microprocessor and a programmable logic. This is 
appropriate for devices that implement more than one 
function – such as ECG processing, visualizing the data on 
a graphic display and sending the data through a 
communication interface. In addition, some metrics related 
to the required memory and signal processing time were 
evaluated. 

  
II. METHOD  

 
 The block diagram of the hardware is shown in Fig. 1. The 
FPGA chip has many integrated modules, however, only the 
blocks that are used in described below procedures are 
shown in Fig. 1. A demo board from Digilent is being used. 
The model is Zybo (first revision) and it is populated with a 
Xilinx FPGA part number XC7Z010, from the Zynq family. 
This FPGA has a 12-bit A/D converter which makes it 
suitable for a final implementation of an ECG device. The 
FPGA comes integrated with two ARM Cortex A9 
microprocessors, as well as many hard-wired modules such 
as USB, Ethernet, SD card module, GPIO, UART, I2C, etc. 

 

Fig. 1. Block diagram of the proposed hardware for QRS 
detection. Auxiliary modules not shown for clarity. 
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This part of the FPGA is called by the manufacturer as a 
“processing system” (PS) and is basically a full-featured 
microcontroller without memories (RAM and ROM). Next 
to it, a “programmable logic” (PL) part of the chip could be 
found. This is the classic FPGA containing complex logic 
blocks (CLB), digital signal processor blocks (DSP) and 
block random access memory (BRAM) cells. To reduce on-
chip resource spending from the PL part, an external DDR3 
RAM is used. It contains the C program to be executed, as 
well as the input array of samples. The purpose of making 
an ECG block on an FPGA is to allow for rapid development 
of new designs – engineers who are not familiar with the 
specific data processing can just drag and drop a custom 
ECG module. DDR SDRAM is connected through a hard-
wired memory controller that allows up to 1 GB external 
memory to be connected with speeds of up to 1333 Mb/s. If 
the design is to be implemented as a working device in the 
future, an option to connect external non-volatile memory 
exists – the processing part of FPGA contains a 
NAND/NOR/QSPI flash interfaces for adding external 
ROM memory. The current hardware solution uses the 
DRAM for instruction and data storage during a single 
debug session that is enough for implementing the algorithm 
and performing the tests. 
 
III. ALGORITHM OF TEST PROCEDURE FOR QRS DETECTION  

 
 An algorithm consisting of two parts (digital filter for 
ECG signal de-noising and QRS detector), was developed, 
implemented and applied for processing a signal from the 
MIT-BIH database [7]. The consecutive steps of the 
algorithm are shown in Fig. 2. 
 
 

 
 

Fig. 2. Block diagram of the test procedure for QRS detection. 
 

The first step is to download the selected ECG signal from 
the MIT-BIH database. To extract the data, one must install 
the WFDB software package. It must be noted that this 
package is open-sourced and stand-alone, and therefore no 
MATLAB installation is needed. The chosen OS in this case 

was Ubuntu Linux 20.04. The required dependencies for 
Linux can be installed from a terminal with the command: 
 

apt install gcc libcurl4-openssl-dev libexpat1-

dev 

For the current work, the file number 200 was chosen. To 
convert the raw data “200.dat” file to a comma-separated 
value (CSV) text file, the following command has to be 
invoked: 
 
rdsamp -c -r mitdb/200 > 200.csv  

 
It is important to note the parameters of the measurement 
setup that sampled these signals because the processing 
procedures are developed according to them. The input 
range of the A/D converter is a bipolar +/- 5 mV voltage, the 
resolution of the A/D converter is 11 bits, therefore the 
integer outputs will be in the range 0 – 2047, where the zero 
is represented with 1024. Each bit weight is 4.883 uV, and 
the signal is sampled 360 times per second (360 Hz). The 
mains frequency is 60 Hz. 
 The second step of test procedure includes writing a C 
program that performs the actual ECG processing. The 
Eclipse integrated development environment (IDE) is used 
for this purpose. The toolchain is GCC. To evaluate the 
effectiveness of the filter procedure to remove power line 
interference, a sinusoidal signal with a frequency fmains = 60 
Hz and an amplitude as large as the reference signal is 
superimposed on the ECG signal from the database. 
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where: fecg is the sample rate of the A/D conversion, NADC is 
the resolution, T is the sampling period. Afterwards, the 
points from the pl[ ] array are added to the ecg[ ] input array: 
 

ecg_pl[T] = ecg[T] + pl[T]                     (2) 
 
The filtering procedure for ECG signal de-noising is 
thoroughly described in [8]. The used “FilterDxN” was 
designed implementing the simple principle of moving 
averaging of N signal samples distanced each other by D 
samples. The filter has a comb frequency response 
characteristic with a high-pass cut-off defined by N and 
zeros at the integer ratio of the sampling frequency fs 
divided by D. According to the signals included in the MIT-
BIH database we chose the values for D = 6 and N = 42. 
Substituting these values into formulas 3 and 4 gives a first 
zero at a power line frequency of 60 Hz and a cut-off 
frequency f3db of approximately 1 Hz.  
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    After the successful filtering of the ECG signal, the QRS 
complex detection algorithm described in [9], with adaptive 
amplitude and slope criteria for R-peak recognition, is 
applied.  

        



 To increase the processing speed of the design, the 
algorithm uses only integer values. This makes the program 
easier to implement on microarchitectures without a floating 
point unit (FPU). As a side test, the same algorithm was 
written with floating point variables and the processing was 
run again. There were no differences in the output result 
between the integer and floating point versions.  
  

IV. PORTING THE ALGORITHM IN C TO THE FPGA 
 
 The third, and final, step was to port the existing C code 
to an FPGA. To do this, the first test is to make the original 
C code work on the FPGA without custom intellectual 
property (IP) blocks. The synthesis of the 60 Hz mains signal 
and its addition to the reference signal can be skipped. The 
resulting reference-plus-mains array is generated from the 
original C program with the help of the printf( ) function: 
 
printf("uint8_t ecg_pl[] = {\n"); 
for(int i = 0; i < RECORD_LENGTH; i++){ 

printf("%d, ", ecg_plus_power_line[i]); 

 if((i % 8) == 0){ 

  printf("\n"); 
 } 

} 

printf("};\n");   

 
The STDOUT output is written to a header file and included 
in the FPGA project. A GPIO module was added to the 
programmable logic part of the FPGA. It was used for timing 
measurements. A UART module was initialized from the 
processing system part of the FPGA. It was used for printing 
the output buffer. The design showed exactly the same 
results as the results from the original C program performed 
by a PC. Next, the hardware IP modules had to be developed. 
    To create a custom IP, the Vivado IP integrator can be 
used [10], [11]. Most of the top-level Verilog descriptions 
are written automatically by Vivado. The only part that has 
to be written by the user is the HDL code of the IP block 
itself [12], [13]. There are not enough CLB to synthesize the 
whole detector – the current device has 4400 slices, and the 
DxN filter itself takes 4600 slices. So, only parts of the signal 
denoising and parts of the QRS detection from the original 
C program will be implemented with hardware. The final 
design will be a mix of the microcontroller firmware and 
small FPGA accelerators. 
 The first hardware IP that is to be implemented is an 
averaging circuit from the DxN filter that would replace the 
following code in C: 
 
m = 0; 

for(int j = -21; j < 21; j++){ 
m = m + ecg_plus_power_line[i + (j * 6)]; 

} 

m = m / 42; 

 
where “i" is the current sample that is to be processed by the 
filter algorithm. The corresponding Verilog code is: 
 
always @(posedge clk)  
 
begin:B1                  
if(control_reg[0] == 31'h01) 
begin        

    status_reg[0] = 31'h00;      
             
    sum =  
input_reg[0]+input_reg[1]+input_reg[2]+ 
input_reg[3]+input_reg[4]+input_reg[5]+ 
input_reg[6]+input_reg[7]+input_reg[8]+ 
input_reg[9]+input_reg[10]+input_reg[11]+ 
input_reg[12]+input_reg[13]+input_reg[14]+ 
input_reg[15]+input_reg[16]+input_reg[17]+ 
input_reg[18]+input_reg[19]+input_reg[20]+ 
input_reg[21]+input_reg[22]+input_reg[23]+ 
input_reg[24]+input_reg[25]+input_reg[26]+ 
input_reg[27]+input_reg[28]+input_reg[29]+ 
input_reg[30]+input_reg[31]+input_reg[32]+ 
input_reg[33]+input_reg[34]+input_reg[35]+ 
input_reg[36]+input_reg[37]+input_reg[38]+ 
input_reg[39]+input_reg[40]+input_reg[41]; 
         
        div_sum = sum / 42; 
         
        output_reg = iterator_reg - div_sum;              
    end 
end 

            
 The second hardware IP is an averaging function from the 
ECG detection algorithm:  
 

int avg(int *arr, int size){ 

 int sum = 0; 

 int i; 
 

 for(i = 0; i < size; i++){ 

  sum += arr[i]; 

 } 

 
 return sum / size; 

} 

 
and because this function is invoked twice, there are two 
instances of the Verilog IP in the design. The Verilog code 
equivalent is: 
 
always @(posedge clk)  

begin:C1     

    id_reg = 32'h0000000d;  

                  
    if(control_reg[0] == 32'h01) 

    begin        

       status_reg[0] = 32'h00;     

         

        sum <= input_reg[0] + input_reg[1] +  

               input_reg[2] + input_reg[3];  
        output_reg <= sum >> 2; 

        status_reg[0] = 32'h01;     

    end 

end 

 
The resulting FPGA design is shown in Fig. 3. This is a 
block design view from Vivado. The ZYNQ Processing 
system, Processor System Reset, Advanced Extensible 
Interconnect (AXI) crossbar switch and AXI GPIO blocks 
are standard IP blocks from Xilinx. The DDR memory is off-
chip, that is why it is not shown in the diagram. The system 
frequency is 100 MHz but could be lowered, if needed. This 
is the frequency at which the hardware IP blocks would be 
running also. 



 After the successful synthesis, a driver has to be written 
in Xilinx Vitis to expose the custom IP input/output registers 
to the firmware of the ARM Cortex-A9 microprocessor. To 
 

 

Fig. 3. Block diagram of the proposed hardware. 

do this, a structure in C has to be mapped to the 
corresponding registers from the register map with the 
following code (only the DxN averaging circuit is given, the 
code for the ECG blocks is analogous): 
 
typedef struct { 

    uint32_t control_reg; 

    uint32_t status_reg; 

    uint32_t iterator_reg; 
    uint32_t input_reg[10]; 

    uint32_t output_reg; 

}averager_d_x_n_t; 

#define AVERAGER_D_X_N_0 ((averager_d_x_n_t*) 

XPAR_AVG_DXN_0_S00_AXI_BASEADDR),where the base 
address macro for this block 
XPAR_AVG_DXN_0_S00_AXI_BASEADDR is genera-
ted by Vivado, and currently is 0x43c0.0000.  
 

 
 

Fig. 4. Memory map of the AXI peripherals in the system. 

The memory map of the AXI peripherals in the system is 
shown in Fig. 4. The two instances of the ECG blocks are at 
0x43c1.0000 and 0x43c2.0000. These addresses are fixed 
and cannot be changed after the synthesis is complete. The 
addresses of the registers do not change during the signal 
processing but the values of these registers can be loaded 
with new samples arbitrarily. Only one signal from the test 
data set can be processed at a time. The DDR and the internal 
UART are not part of this map, because Vivado shows only 
the synthesized blocks there. 
 

V. RESULTS 
 
 The final firmware and bit-stream file were downloaded 
to the target FPGA. An oscilloscope probe was connected to 
one of the GPIO pins to help with the timing measurements. 
The final results are shown in Table 1 and in Fig. 5. The 
“ecg” plot is the reference signal, the “ecg_pl” is the 
reference signal with added power line noise of 60 Hz, the 
“ecg_filter” plot is the filtered signal with the DxN filter, the 
“qrs” plot shows the detected R-peaks.  
 A comparison with a non-FPGA implementation 
consisting of a NRF52832 microcontroller, operating at 64 
MHz was also made. The chosen microcontroller has a 
Bluetooth Low Energy (BLE) module that makes it suitable 
for portable ECG detection. The chip integrates a Cortex-M4 
microprocessor with 512 kB of Flash memory and 64 kB of 
SRAM.  
 Although the hardware implementation is slower than the 
no-custom IP implementation, it is faster than the 
microcontroller-only one. The RAM usage is equal in both 
FPGA cases because the algorithms share the same data 
buffer. The hardware IP would allow for other devices in the 
system to get more microprocessor time (e.g. interrupt 
handling), so the overall utilization of the system resources 
may be better with the custom IP blocks. The design could 
be implemented as a single block on more advanced FPGA 
and be used for the purpose of medical devices.  
 

TABLE 1. DESIGN PERFORMANCE AND RESOURCE CONSUMPTIONS 
(1000 SAMPLES OR 3.846 SEC WINDOW) 

 

 NRF528

32 

DxN+ 

QRS 

FPGA, 

No IP, 

DxN+ 

QRS 

FPGA, 

With 

IP, 

DxN 

FPGA, 

With IP, 

QRS 

ROM, 

bytes 

21240 9596 3876 5864 

RAM, 

bytes 

32888 33936 33936 33936 

Exec, 

ms 

31.5 1.516 0.412 8.240 

 
VI. CONCLUSION 

 
    The presented work in this paper shows an 
implementation of a QRS detection algorithm on an FPGA 
device. The original algorithm was ported from C to Verilog 
and some timing tests were performed. The output results

 

       

 

       

 



 
 

Fig. 5. Results from the FPGA design implementing a QRS detection algorithm. 

are accurate and coincide with the ones from the original 
program. Future improvement of the design might include 
better Verilog custom IP libraries to increase the speed of 
the detection. The target FPGA device could be changed 
with a better one, with more resources. This would allow 
more parts of the original code to be implemented in the 
hardware. The design could be tested along other running 
software/hardware like screen updating, communication 
with a remote host, keyboard scanning, etc.  
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