
Proc. XXXII International Scientific Conference Electronics - ET2023, September 13 - 15, 2023, Sozopol, Bulgaria

979-8-3503-0200-4/23/$31.00 ©2023 IEEE

FPGA-Based Implementation for QRS Detection in

Electrocardiogram

Ivo Iliev, Lubomir Bogdanov and Serafim Tabakov
Department of Electronics, Faculty of Electronic Engineering and Technologies

Technical University of Sofia
8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria

{izi, lbogdanov}@tu-sofia.bg
{savi}@ecad.tu-sofia.bg

Abstract – This paper presents an implementation of a QRS

detection algorithm in C with custom IP library blocks written

in Verilog for a FPGA chip. The hardware design adds support

for the processing of the data array that contains the

electrocardiographic samples. Focus is put on the software and

hardware structure, as well as some performance metrics – the

used memory and the time for execution of the processing

procedures. Final results shown that the hardware

implementation is slower than the microprocessor-only

implementation, its ROM usage is 700 bytes less. The RAM

usage is equal in both cases. The hardware IP would also allow

for other devices in the system to get more microprocessor time

(e.g. interrupt handling).

Keywords – FPGA-based ECG; digital filter;

electrocardiogram; embedded systems; FPGA; Verilog.

I. INTRODUCTION

 The electrocardiogram (ECG) is one of the most
commonly used diagnostic procedures in the medicine. It is
a fact that modern electronic devices for recording of heart
activity are subject to intensive development in order to
increase their diagnostic capabilities. Typical examples are
connected with the requirements to minimize size and power
consumption in specific applications, such as in long-term
monitoring, remote monitoring, wearable applications, etc.
In recent years, the attention of researchers and developers
has increasingly turned to Field Programmable Gate Array
(FPGA-based) hardware implementations. The main reason
is the presence of a serious computing resource in these
architectures, allowing parallel processing of data in real
time. In particular, for the processing of ECG signals, such
applications prove their applicability, especially in the
implementation of interference filtering algorithms (base-
line drift, power line interference, electromyographic noises,
etc.), subsequent detection of QRS complexes, recognition
of rhythm abnormalities, shape analysis, etc. In one of the
first publications [1] devoted to the application of FPGA for
ECG signal processing, the authors present algorithm
performing QRS complexes detection and beats
classification. The advantage of parallelization in the
processing of the data by the hardware and software part of
the system is evaluated, allowing a significant increase in
speed, even at a lower clock frequency. In later publications,
the authors present FPGA-based solutions for both rhythm
analysis [2], [3] and digital ECG signal processing applying

least-square linear phase finite impulse response (FIR) filter
[4], least-square FIR filter [5], Hermite polynomials for
ECG signal characterization [6]. It should be noted that the
majority of FPGA applications are aimed at performing a
separate stage of the overall process of ECG signal
registration.
 In the focus of this work is an approach different from
existing implementations because it uses both a
microprocessor and a programmable logic. This is
appropriate for devices that implement more than one
function – such as ECG processing, visualizing the data on
a graphic display and sending the data through a
communication interface. In addition, some metrics related
to the required memory and signal processing time were
evaluated.

II. METHOD

 The block diagram of the hardware is shown in Fig. 1. The
FPGA chip has many integrated modules, however, only the
blocks that are used in described below procedures are
shown in Fig. 1. A demo board from Digilent is being used.
The model is Zybo (first revision) and it is populated with a
Xilinx FPGA part number XC7Z010, from the Zynq family.
This FPGA has a 12-bit A/D converter which makes it
suitable for a final implementation of an ECG device. The
FPGA comes integrated with two ARM Cortex A9
microprocessors, as well as many hard-wired modules such
as USB, Ethernet, SD card module, GPIO, UART, I2C, etc.

Fig. 1. Block diagram of the proposed hardware for QRS
detection. Auxiliary modules not shown for clarity.

The developments in this study are supported by the Bulgarian National
Science Fund, grant KП-06-H37/9.

This part of the FPGA is called by the manufacturer as a
“processing system” (PS) and is basically a full-featured
microcontroller without memories (RAM and ROM). Next
to it, a “programmable logic” (PL) part of the chip could be
found. This is the classic FPGA containing complex logic
blocks (CLB), digital signal processor blocks (DSP) and
block random access memory (BRAM) cells. To reduce on-
chip resource spending from the PL part, an external DDR3
RAM is used. It contains the C program to be executed, as
well as the input array of samples. The purpose of making
an ECG block on an FPGA is to allow for rapid development
of new designs – engineers who are not familiar with the
specific data processing can just drag and drop a custom
ECG module. DDR SDRAM is connected through a hard-
wired memory controller that allows up to 1 GB external
memory to be connected with speeds of up to 1333 Mb/s. If
the design is to be implemented as a working device in the
future, an option to connect external non-volatile memory
exists – the processing part of FPGA contains a
NAND/NOR/QSPI flash interfaces for adding external
ROM memory. The current hardware solution uses the
DRAM for instruction and data storage during a single
debug session that is enough for implementing the algorithm
and performing the tests.

III. ALGORITHM OF TEST PROCEDURE FOR QRS DETECTION

 An algorithm consisting of two parts (digital filter for
ECG signal de-noising and QRS detector), was developed,
implemented and applied for processing a signal from the
MIT-BIH database [7]. The consecutive steps of the
algorithm are shown in Fig. 2.

Fig. 2. Block diagram of the test procedure for QRS detection.

The first step is to download the selected ECG signal from
the MIT-BIH database. To extract the data, one must install
the WFDB software package. It must be noted that this
package is open-sourced and stand-alone, and therefore no
MATLAB installation is needed. The chosen OS in this case

was Ubuntu Linux 20.04. The required dependencies for
Linux can be installed from a terminal with the command:

apt install gcc libcurl4-openssl-dev libexpat1-

dev

For the current work, the file number 200 was chosen. To
convert the raw data “200.dat” file to a comma-separated
value (CSV) text file, the following command has to be
invoked:

rdsamp -c -r mitdb/200 > 200.csv

It is important to note the parameters of the measurement
setup that sampled these signals because the processing
procedures are developed according to them. The input
range of the A/D converter is a bipolar +/- 5 mV voltage, the
resolution of the A/D converter is 11 bits, therefore the
integer outputs will be in the range 0 – 2047, where the zero
is represented with 1024. Each bit weight is 4.883 uV, and
the signal is sampled 360 times per second (360 Hz). The
mains frequency is 60 Hz.
 The second step of test procedure includes writing a C
program that performs the actual ECG processing. The
Eclipse integrated development environment (IDE) is used
for this purpose. The toolchain is GCC. To evaluate the
effectiveness of the filter procedure to remove power line
interference, a sinusoidal signal with a frequency fmains = 60
Hz and an amplitude as large as the reference signal is
superimposed on the ECG signal from the database.

����� = sin
2� �����
���

�� . ���� , (1)

where: fecg is the sample rate of the A/D conversion, NADC is
the resolution, T is the sampling period. Afterwards, the
points from the pl[] array are added to the ecg[] input array:

ecg_pl[T] = ecg[T] + pl[T] (2)

The filtering procedure for ECG signal de-noising is
thoroughly described in [8]. The used “FilterDxN” was
designed implementing the simple principle of moving
averaging of N signal samples distanced each other by D
samples. The filter has a comb frequency response
characteristic with a high-pass cut-off defined by N and
zeros at the integer ratio of the sampling frequency fs
divided by D. According to the signals included in the MIT-
BIH database we chose the values for D = 6 and N = 42.
Substituting these values into formulas 3 and 4 gives a first
zero at a power line frequency of 60 Hz and a cut-off
frequency f3db of approximately 1 Hz.

 � = ��
!"#$% (3)

� = &
' (!"#$%

&)* + (4)

 After the successful filtering of the ECG signal, the QRS
complex detection algorithm described in [9], with adaptive
amplitude and slope criteria for R-peak recognition, is
applied.

 To increase the processing speed of the design, the
algorithm uses only integer values. This makes the program
easier to implement on microarchitectures without a floating
point unit (FPU). As a side test, the same algorithm was
written with floating point variables and the processing was
run again. There were no differences in the output result
between the integer and floating point versions.

IV. PORTING THE ALGORITHM IN C TO THE FPGA

 The third, and final, step was to port the existing C code
to an FPGA. To do this, the first test is to make the original
C code work on the FPGA without custom intellectual
property (IP) blocks. The synthesis of the 60 Hz mains signal
and its addition to the reference signal can be skipped. The
resulting reference-plus-mains array is generated from the
original C program with the help of the printf() function:

printf("uint8_t ecg_pl[] = {\n");
for(int i = 0; i < RECORD_LENGTH; i++){

printf("%d, ", ecg_plus_power_line[i]);

 if((i % 8) == 0){

 printf("\n");
 }

}

printf("};\n");

The STDOUT output is written to a header file and included
in the FPGA project. A GPIO module was added to the
programmable logic part of the FPGA. It was used for timing
measurements. A UART module was initialized from the
processing system part of the FPGA. It was used for printing
the output buffer. The design showed exactly the same
results as the results from the original C program performed
by a PC. Next, the hardware IP modules had to be developed.
 To create a custom IP, the Vivado IP integrator can be
used [10], [11]. Most of the top-level Verilog descriptions
are written automatically by Vivado. The only part that has
to be written by the user is the HDL code of the IP block
itself [12], [13]. There are not enough CLB to synthesize the
whole detector – the current device has 4400 slices, and the
DxN filter itself takes 4600 slices. So, only parts of the signal
denoising and parts of the QRS detection from the original
C program will be implemented with hardware. The final
design will be a mix of the microcontroller firmware and
small FPGA accelerators.
 The first hardware IP that is to be implemented is an
averaging circuit from the DxN filter that would replace the
following code in C:

m = 0;

for(int j = -21; j < 21; j++){
m = m + ecg_plus_power_line[i + (j * 6)];

}

m = m / 42;

where “i" is the current sample that is to be processed by the
filter algorithm. The corresponding Verilog code is:

always @(posedge clk)

begin:B1
if(control_reg[0] == 31'h01)
begin

 status_reg[0] = 31'h00;

 sum =
input_reg[0]+input_reg[1]+input_reg[2]+
input_reg[3]+input_reg[4]+input_reg[5]+
input_reg[6]+input_reg[7]+input_reg[8]+
input_reg[9]+input_reg[10]+input_reg[11]+
input_reg[12]+input_reg[13]+input_reg[14]+
input_reg[15]+input_reg[16]+input_reg[17]+
input_reg[18]+input_reg[19]+input_reg[20]+
input_reg[21]+input_reg[22]+input_reg[23]+
input_reg[24]+input_reg[25]+input_reg[26]+
input_reg[27]+input_reg[28]+input_reg[29]+
input_reg[30]+input_reg[31]+input_reg[32]+
input_reg[33]+input_reg[34]+input_reg[35]+
input_reg[36]+input_reg[37]+input_reg[38]+
input_reg[39]+input_reg[40]+input_reg[41];

 div_sum = sum / 42;

 output_reg = iterator_reg - div_sum;
 end
end

 The second hardware IP is an averaging function from the
ECG detection algorithm:

int avg(int *arr, int size){

 int sum = 0;

 int i;

 for(i = 0; i < size; i++){

 sum += arr[i];

 }

 return sum / size;

}

and because this function is invoked twice, there are two
instances of the Verilog IP in the design. The Verilog code
equivalent is:

always @(posedge clk)

begin:C1

 id_reg = 32'h0000000d;

 if(control_reg[0] == 32'h01)

 begin

 status_reg[0] = 32'h00;

 sum <= input_reg[0] + input_reg[1] +

 input_reg[2] + input_reg[3];
 output_reg <= sum >> 2;

 status_reg[0] = 32'h01;

 end

end

The resulting FPGA design is shown in Fig. 3. This is a
block design view from Vivado. The ZYNQ Processing
system, Processor System Reset, Advanced Extensible
Interconnect (AXI) crossbar switch and AXI GPIO blocks
are standard IP blocks from Xilinx. The DDR memory is off-
chip, that is why it is not shown in the diagram. The system
frequency is 100 MHz but could be lowered, if needed. This
is the frequency at which the hardware IP blocks would be
running also.

 After the successful synthesis, a driver has to be written
in Xilinx Vitis to expose the custom IP input/output registers
to the firmware of the ARM Cortex-A9 microprocessor. To

Fig. 3. Block diagram of the proposed hardware.

do this, a structure in C has to be mapped to the
corresponding registers from the register map with the
following code (only the DxN averaging circuit is given, the
code for the ECG blocks is analogous):

typedef struct {

 uint32_t control_reg;

 uint32_t status_reg;

 uint32_t iterator_reg;
 uint32_t input_reg[10];

 uint32_t output_reg;

}averager_d_x_n_t;

#define AVERAGER_D_X_N_0 ((averager_d_x_n_t*)

XPAR_AVG_DXN_0_S00_AXI_BASEADDR),where the base
address macro for this block
XPAR_AVG_DXN_0_S00_AXI_BASEADDR is genera-
ted by Vivado, and currently is 0x43c0.0000.

Fig. 4. Memory map of the AXI peripherals in the system.

The memory map of the AXI peripherals in the system is
shown in Fig. 4. The two instances of the ECG blocks are at
0x43c1.0000 and 0x43c2.0000. These addresses are fixed
and cannot be changed after the synthesis is complete. The
addresses of the registers do not change during the signal
processing but the values of these registers can be loaded
with new samples arbitrarily. Only one signal from the test
data set can be processed at a time. The DDR and the internal
UART are not part of this map, because Vivado shows only
the synthesized blocks there.

V. RESULTS

 The final firmware and bit-stream file were downloaded
to the target FPGA. An oscilloscope probe was connected to
one of the GPIO pins to help with the timing measurements.
The final results are shown in Table 1 and in Fig. 5. The
“ecg” plot is the reference signal, the “ecg_pl” is the
reference signal with added power line noise of 60 Hz, the
“ecg_filter” plot is the filtered signal with the DxN filter, the
“qrs” plot shows the detected R-peaks.
 A comparison with a non-FPGA implementation
consisting of a NRF52832 microcontroller, operating at 64
MHz was also made. The chosen microcontroller has a
Bluetooth Low Energy (BLE) module that makes it suitable
for portable ECG detection. The chip integrates a Cortex-M4
microprocessor with 512 kB of Flash memory and 64 kB of
SRAM.
 Although the hardware implementation is slower than the
no-custom IP implementation, it is faster than the
microcontroller-only one. The RAM usage is equal in both
FPGA cases because the algorithms share the same data
buffer. The hardware IP would allow for other devices in the
system to get more microprocessor time (e.g. interrupt
handling), so the overall utilization of the system resources
may be better with the custom IP blocks. The design could
be implemented as a single block on more advanced FPGA
and be used for the purpose of medical devices.

TABLE 1. DESIGN PERFORMANCE AND RESOURCE CONSUMPTIONS
(1000 SAMPLES OR 3.846 SEC WINDOW)

 NRF528

32

DxN+

QRS

FPGA,

No IP,

DxN+

QRS

FPGA,

With

IP,

DxN

FPGA,

With IP,

QRS

ROM,

bytes

21240 9596 3876 5864

RAM,

bytes

32888 33936 33936 33936

Exec,

ms

31.5 1.516 0.412 8.240

VI. CONCLUSION

 The presented work in this paper shows an
implementation of a QRS detection algorithm on an FPGA
device. The original algorithm was ported from C to Verilog
and some timing tests were performed. The output results

Fig. 5. Results from the FPGA design implementing a QRS detection algorithm.

are accurate and coincide with the ones from the original
program. Future improvement of the design might include
better Verilog custom IP libraries to increase the speed of
the detection. The target FPGA device could be changed
with a better one, with more resources. This would allow
more parts of the original code to be implemented in the
hardware. The design could be tested along other running
software/hardware like screen updating, communication
with a remote host, keyboard scanning, etc.

ACKNOWLEDGMENT

The authors are thankful for the support provided by the
Bulgarian National Science Fund under Grant Ref. No. КП-
06-Н37/9 “Audio transformation (sonification) of the
electrocardiogram – a new approach for remote monitoring
of the heart activity”

REFERENCES

[1] M. Cvikl, A. Zemva / Digital Signal Processing 20 (2010) 238–

248
[2] L. V. Rajani Kumari, Y. Padma Sai, N. Balaji, K. Viswada,

"FPGA Based Arrhythmia Detection", 3rd International
Conference on Recent Trends in Computing 2015 (ICRTC-
2015), pp.970-979, Elsevier, 2015.

[3] Karataş, F.; Koyuncu, İ.; Tuna, M.; Alçın, M.; Avcioglu, E.;
Akgul, A. Design and implementation of arrhythmic ECG
signals for biomedical engineering applications on FPGA. Eur.

Phys. J. Spec. Top. 2022, 231, 869–884.
[4] M. G. Egila, M. A. El-Moursy, A. E. El-Hennawy, H. A. El-

Simary, A. Zaki, "FPGA-based electrocardiography (ECG)
signal analysis system using least-square linear phase finite

impulse response (FIR) filter", Journal of Electrical Systems
and Information Technology 3, pp. 513–526, 2016.

[5] K. Krishnan, K. Prabhu, S. Manimaran, M. Rajan, FPGA Based
electrocardiogram (ECG) signal analysis using linear phase
finite impulse response filter, International Research

 Journal of Engineering and Technology (IRJET), Volume: 07,
Issue: 03, pp.873-876, e-ISSN: 2395-0056, 2020.

[6] M. P. Desai, G. Caffarena, R. Jevtic, D. G. Marquez, A. Otero,
A Low-Latency, Low-Power FPGA Implementation of ECG
Signal Characterization Using Hermite Polynomials,
Electronics 2021, 10, 2324, https://doi.org/10.3390, 2021.

[7] G. B. Moody, R. G. Mark, "The impact of the MIT-BIH
Arrhythmia Database", IEEE Engineering in Medicine and
Biology Magazine, pp. 45-50, PMID: 11446209, DOI:
10.1109/51.932724, 2001.

[8] Iliev I, Tabakov S., Krasteva V., Combined High-Pass and
Power-Line Interference rejecter Filter for ECG Signal
Processing, Proceedings of the Technical University – Sofia,
vol. 58, book 2, pp. 7-13, 2008. ISSN 1311-0829

[9] Iliev I., V. Krasteva, S. Tabakov, 2007, Real-time detection of
pathological cardiac events in the electrocardiogram,
Physiological Measurement, 28, 259-276.

[10] Creating and using custom IP blocks both in Verilog and using
High-Level Synthesis, University of South Florida, online,
2019.

[11] Vivado Design Suite User Guide: Creating and Packaging
Custom IP, User guide UG1118, Xilinx Inc., online, 2023.

[12] 7 Series DSP48E1 Slice, User guide v1.10, Xilinx Inc., 2018.
[13] Vivado Design Suite Tutorial - Creating and Packaging

Custom IP, User guide UG1119 v2021.2, Xilinx Inc., online,
2021

