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Abstract—In this paper we perform model predictive 

control (MPC) for a synchronous turbine generator of full and 

reduced order. The model reduction aims at facilitation of 

controller design and reduction of computational complexity 

in investigating the considered system. The suggested method 

for model reduction is a two stage method where balanced 

realization and Legendre polynomials approximation is 

presented. Then model predictive control design for the 

considered system also is performed. A numerical experiment 

is discussed showing that the computed responses for the 

turbine generator of full and reduced order are practically the 

same. This fact reveals the good approximation capabilities of 

the proposed approach. 
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I. INTRODUCTION  

The physical model that we consider in this paper 
represents a synchronous generator connected to the 
electrical power network. In order to study the process of 
delivering power to the network, it is necessary to develop 
sufficiently accurate model of the synchronous generator 
machine. 

 System modeling is an important part of the controller 
design procedure. The higher the degree of accuracy by 
adding more detail in model description, the higher the level 
of complication in model treatment by handling its different 
features and properties. One possible way to resolve this 
tradeoff is by using model reduction techniques. A good 
reference, describing different methods and techniques for 
model reduction, is the book [1]. This book considers the 
main approaches for order reduction and gives the details in 
their implementation. An important approach in this area is 
the procedure of balancing and then, applying the method of 
balanced truncation, which is initially developed in [2]. The 
balanced truncation method uses preliminary balancing, 
where the system gramians are transformed into equal 
diagonal matrices. The diagonal elements of these gramians 
show the contribution of system states to the system energy. 
The balanced truncation procedure is further extended to 
balanced residualization [3], [4], and [5]. The balanced 
residualization procedure utilizes singular perturbation 
approximation, where system states are divided into slow 
and fast modes. The derivatives of the fastest modes are 
allowed to approach zero and then, substituted in the state 
equation. The advantage of using balanced residualization is 
preservation of system gain and good approximation 
properties at low frequencies, while balanced truncation is 

characterized by good approximation properties at high 
frequencies. Another extension of balanced model reduction 
is where, system gramians are presented in terms of certain 
system trajectories, which are approximated by using 
Legendre orthogonal polynomials [6].    

 MPC is a regulation strategy based on numerical 
optimization [7]. Future plant responses and control inputs 
are predicted with a system model and an optimization 
procedure is then applied at given time intervals for a 
specified cost function. MPC with inputs and states 
constraints is considered in [8]. MPC is an approach applied 
to improve control specifications in many industrial 
applications and emerges as the most applied advanced 
control method used in industry nowadays [9]. 

There exist several papers devoted to MPC of turbine  
generators. In [10] model predictive control technique is 
used to improve the power system stability. A data-driven 
MPC approach for oscillation damping for power system via 
excitation is applied in [11]. A predictive optimized adaptive 
technique in turbine generators  is incorporated in [12]. 

The remaining part of the note is structured in the 
following way. A Legendre polynomials approximation 
method is presented in Chapter 2. In Chapter 3 the 
mathematical description of the synchronous turbine 
generator is considered. Chapter 4 is devoted to illustration 
of the applied MPC design technique. Chapter 5 reveals a 
numerical example where the MPC design is performed to 
the generator of full and reduced order. Finally we finish our 
paper with some concluding remarks. 

II. BALANCED RESIDUALIZATION BY USING LEGENDRE 

ORTHOGONAL POLYNOMIALS APPROXIMATION 

We consider the linear state space model as follows: 

 ����� = ����� + 	
���,      ��0� = ��,                (1) 

 ��� = ����� + �
���,        � ≥ 0,         (2) 

where ���� ∈ ℝ� , 
��� ∈ ℝ� , ��� ∈ ℝ� . System 
balancing and balanced model reduction are basic methods 
related with reducing the size of the system describing 
equations. A central role for these methods implementation 
play the system gramians. The controllability gramian of the 
system is determined by the expression: 

 

        ���0, �� = � ���		�� �����  �,                    (3) 

257



where !0, �"  is the time interval, where the gramian is 
computed. The observability gramian on the same time 
interval is determined from  the expression: 

        �#�0, �� = � � �����������  �                    (4) 

For asymptotically stable systems and � → ∞, the gramians 
can be computed by solving the Lyapunov matrix equations: 

   ��� + ���� + 		� = 0,      (5) 

   ���# + �#� + ��� = 0      (6) 

Based on the computed gramians, one can derive similarity 
transformation, which transforms the system into a balanced 
form: 

     �&��0, �� = �&#�0, �� =  '()*+,, +-, ⋯ , +�/     (7)  

 A specific feature of this form is that the gramians are 
presented by equal, diagonal matrices, with Hankel singular 
values as diagonal elements. The states, corresponding to 
small Hankel singular values are simultaneously difficult to 
control and observe. Truncating these system states will have 
a small impact on the system input/output relation. This 
approach for model reduction by truncating the states 
corresponding to small Hankel singular values is called 
balanced truncation. The similarity transformation matrices 
for balancing the system are computed as follows: 0 =Ξ2, -⁄ 4�5�  and 02, = 6�Ξ2, -⁄ , where matrix 5  is the 
Cholesky factor of the observability gramian �# = 55�, 6 is 
the Cholesky factor of the controllability gramian �� =66� , �  and 4  are derived from the singular value 
decomposition of the Cholesky factors product 6�5 =�Ξ4�.   

Another approach for model reduction by using balancing is 
based on the singular perturbation approximation of system 
equations. Using the information from the set of Hankel 
singular values, the already balanced system can be 
partitioned in two parts. The first part Σ, = *�,,, 	,, �,, �/ 
corresponds to the large Hankel singular values and the 
second part Σ- = *�--, 	-, �-, �/ corresponds to small ones. 
We assume that matrix �--  is Hurwitz and therefore, 
invertible. By solving the already balanced system with 
respect to the state vector of Σ-, we obtain the reduced order 
system as follows: 

 ��, = ��,, − �,-�--2,�-,��, + �	, − �,-�--2,	-�,     (8) 

            = ��, − �-�--2,�-,��, + �� − �-�--2,	-�
     (9) 

The system, described by state equations (8) and output 
equation (9) is called a balanced residualization realization.  
Balanced residualization represents a singular perturbation 
approximation of the balanced system. Since the balanced 
residualization system comprise the second part of the 
balancing process, the error of model reduction at very high 
frequencies tends to zero [4]. The balanced residualization 
system preserves the DC gain [5] and therefore, the model 
reduction procedure has small error at low and high 
frequencies.  

From the presentation so far, it is clear that the key 
feature of the balancing procedure is to derive the system 
gramians. The standard approach is by solving the equations 
of Lyapunov, and thus obtaining the steady-state gramians. 
The problem with this approach is when the relative stability 
of the linear system is small. The low level of relative 

stability is a source of numerical errors. This is the reason to 
propose a method for computing the gramians, which avoids 
solving the equations of Lyapunov.  

Our method relies on the information obtained from the 
system trajectories and is based on Legendre series 
approximation of these trajectories to compute the gramians. 
The Legendre polynomials are easy to compute due to the 
existing recurrence procedure and do not require a weighting 
function for deriving the series expansion coefficients. The 
proposed method is practical since the system trajectories 
can be obtained either by measurement or by computer 
simulations. The proposed method is derived in detail in [6] 
and here we present its short description. 

Let us consider the state solution of equation (1): 

       ���� = ����� + � ����29�	
�:� :��                     (10) 

We first consider the zero-input part, where the external 
input 
��� = 0. In order to obtain the observability gramian, 
we consider expression (10) and compute the output, i.e. ��� = ������ . From the definition of the observability 
gramian (4), it is clear that the expression under interest is ��� = ������� , which is obtained by sequentially assuming �� to be the columns of the identity matrix ;�. We consider 
first the SISO case. The observability gramian can be 
presented in the form: 

                �#�0, �� = � <���<���� ���                   (11) 

Therefore, the observability gramian can be obtained by 
implementing Legendre orthogonal polynomials series   
approximation of the signal <���.  

Legendre orthogonal polynomials form a complete set of 
orthogonal polynomials in the Hilbert space 5-!−1,1". From 
the theorem of Weierstrass follows that any continuous 
function on the interval !−1,1"  can be approximated 
arbitrarily close by a series of orthogonal polynomials. The 
Legendre orthogonal polynomials are derived by a recurrence 
relation: 

     5�>,��� = ,�>, !�2@ + 1��5���� − @5�2,���",    (12) 

where 5���� = 1 , 5,��� = � , @ = 1,2, ⋯ . The Legendre 
polynomials are additionally normalized for obtaining the 

Legendre orthonormal functions A���� = B-�>,- 5���� . 

When the time interval is different than !−1,1", the Legendre 
orthonormal functions can be shifted. For example, the 
Legendre orthonormal functions in the vector space 5-!0, �" 
are obtained by introducing a change of variables as follows: 

          A���� = B-�>,- 5� C-� � − 1D, for � ∈ !0, �"    (13) 

The Legendre orthogonal series representation of the vector 
function <��� takes the form: 

          <��� = ∑ )�B-�>,- 5� C-� � − 1DF�G� =         

       = ∑ )�A����F�G� ,           � ∈ !0, �"                 (14) 

where the series vector coefficients are computed as follows: 

      )� = B-�>,- � <���5� C-� � − 1D  ���    (15) 
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Therefore, the observability gramian (4) is computed as 
follows [6]: 

�#�0, �� = H �����������
�  � = H <���<���� ��

� = 

   = �- � ∑ )�A���� ∑ )��A����I�G�I�G���  � =  �- ∑ )�I�G� )�� , 

                  (16) 

where K is the series truncation order  and the orthogonal 
series are truncated, thus introducing certain error of 
approximation. 

 In order to obtain the controllability gramian, we 
consider the linear system impulse response, when 
��� =L��� is a delta impulse, and then we have ���� = ���	. The 
controllability gramian can be written in the form: 

 ���0, �� = � ���		�������  � = � ��������� ���          

Then using similar arguments as for the observability 
gramian, we obtain the controllability gramian as [6]: 

                   ���0, �� ≈ �- ∑ N�I�G� N��,       (17) 

where, N�,  @ = 0,1,2, ⋯ are the Legendre series coefficients 
for the system impulse response, i.e. ���� = ∑ N�A����F�G�  
and K is the truncation order.  

In the MIMO case, we use the dyadic expansion of the 
product of two matrices. If there exist three matrices 	 ∈ℝ�×� , � ∈ ℝ�×�  and � ∈ ℝ�×� , such that � = 	� , then 

matrix � can be presented in the form � = ∑ PQRQ��QG, , where PQ  is the '�S  column of 	  and RQ�  is the '�S  row of � , ' =1,2, ⋯ , @. Applying this property of the dyadic expansion, 
we can compute the system gramians in the MIMO case as: 

        �#�0, �� ≈ �- ∑ ∑ )�T U)�T V��TG,I�G� ,    (18) 

         ���0, �� ≈ �- ∑ ∑ N�Q�N�Q���QG,I�G� ,                  (19) 

where )�T  are the Legendre orthogonal series vector 
coefficients with respect to the W�S  row of matrix � , W =1,2, ⋯ , X and N�Q  are the Legendre orthogonal series vector 
coefficients with respect to the '�S column of matrix 	, ' =1,2, ⋯ , Y, see [6]. 

III. MATHEMATICAL DESCRIPTION OF THE SYNHRONUOUS 

TURBINE GENERATOR 

The small signal behavior of synchronous turbine  
generator is initially described by the classical linearized 
model developed in [13] and finds its detailed 
characterization in [14]. A short description of the linearized 
model is provided in [15], where it is shown that it has Y =2  input signals, X = 2  output signals and @ = 10  state 
variables. The first input signal is the voltage reference signal 
to the generator 
, = 4Z[\ and the second input signal is the 

mechanical torque 
- = �� . The first output signal is the 
base rotor angle , = L and the second output signal is the 
generator terminal voltage - = 4�. The state variables are 
presented as follows: the field flux linkage voltage �, = ]^ , 

the per unit speed deviation �- = _Z , the base rotor angle �` = L,  the output voltage of the transducer �a = 4, , the 
output voltage of the rate feedback �b = 4- , the output 
voltage of the phase lead circuit first stage �c = 4̀ , the 
output voltage of the phase lead circuit second stage �d = 4a, 

the output voltage of the washout circuit �e = 4b , the lag 
circuit output voltage �f = 4g  and the field voltage �,� =]hi . The system matrices are presented as follows: 
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It is clear that the system model is of order ten. We apply 
the balanced residualization model reduction procedure 
from the previous section and obtain the reduced fifth order 
model as follows: 

         � =
⎣⎢⎢
⎢⎡−0.21 −3.2 −0.42 −0.17 0.093.17 −0.24 −0.46 −0.23 0.110.27−0.170.04

0.160.130.13
−0.841.59−0.66

−1.6−0.710.63
0.530.79−2.3⎦⎥⎥

⎥⎤
, 

          	 = x0.86 0.32 −2.04 1.03 −0.772.12 −2.22 −0.23 0.61 0.1 y�
, 

         � = x 2.29 2.23 1.95 0.93 −0.42−0.11 −0.22 −0.59 −0.76 0.65y, 

         � = x0.0015 −0.00060.0078 −0.0036y.  

 Further we will discretize the presented model using 
zero-order hold on the inputs. 

IV. MODEL PREDICTIVE CONTROL DESIGN 

The main advantage of the MPC in general is based on 
the fact that it is the main robust design technique suitable to 
control industrial plants and processes. The advantage of the 
considered MPC method considered in this chapter is 
connected with the possibility to formulate a control law that 
ensures very good reference tracking of the output signal. 

Let the discretized system is depicted by the set of 
equations: 

x�k+1�=Fx�k�+Gu�k�, 
                           �z� = ���z�                                    (20) 

The predicted elements formed by the expression (20) 
with input elements u(k) can be written 

x(k|k)=x�k� 

x(k+1|k)=Fx�k�+Gu�k|k� 

x(k+2|k)=�-x�k�+FGu�k|k�+Gu�k+1|k� ⋮ 
In vector-matrix represemtation: 

x(k+i|k)=�Qx�k�+ℂQu�k�,   i=0,…,N 
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               ��z� = ���z� + ℂ u�k�, where  �
= � ��-⋮���.                                                 �21� 

Here ℂ  is the (convolution) matrix with rows ℂQ , that is  
defined by the expression: 

                   ℂ = � � 0 ⋯ 0�� � ⋯ 0⋮��2,� ⋮��2-� ⋱⋯ ⋮��,                  (22) 

where ℂ� = 0,and ℂQ = ' th block row of ℂ.  

If we create the vector of the predicted values of the 
output N samples ahead (prediction horizon) and the vector 
of the predicted control actions in the separate samples 

        �=��z + 1��z + 2�⋮�z + ��� , �=� 
�z�
�z + 1�⋮
�z + � − 1��               (23) 

then for the predicted values of the output we derive the 
equation  

                             � = ����z� + ���.                           (24) 

The matrices �� and �� are derived when applying the terms 
(21) and (22) after multiplying each of the corresponding 
elements with the matrix C from (20). Finally the matrices �� and �� are of the following type 

   �� = � ����-⋮����,  �� = � �� 0 ⋯ 0��� �� ⋯ 0⋮���2,� ⋮���2-� ⋱⋯ ⋮���  (25) 

Let’s the vector of the reference elements is specified as:  

         � = !��z + 1� ��z + 2� ⋯ ��z + ��"�.     (26) 

The following cost function is formulated as: 

                   � = �� − ������ − �� + ����.                 (27) 

Here �  and �  are performance weighting functions and � 

and � are the vectors defined in (23) and (26). After applying 
expression (24) for � for the cost function we are able to 
obtain � = ������� + ��� − ����������� + ��� − �� + ����.          

(28) 

The first derivative of the relation (28) towards to the control 
vector � is calculated as shown:  ���� = 2�������� + ����z� − �� + 2�� = 

           = 2U������ + �V� + 2���������z� − ��    (29) 

The minimum value of the expression (28) is a solution of 

the equation 
 ¡ � = 0 i.e. U������ + �V� + ���������z� − �� = 0 

So, the control vector can be computed as follows: 

   � = − ¢U������ + �V2,���������z� − ��£.           (30) 

We introduce the following notation  

                    0 = U������ + �V2,����                    (31) 

in order to obtain the control vector as follows:                                  � = −0�����z� − ��.                        (32) 

V. SIMULATION RESULTS 

In this part of the note we perform MPC applying the 
technique presented in Chapter 4 for the turbine generator of 
full and reduced-fifth order. We consider the continuous-time 
system presented in the Section 3, which is discretized with 
sampling time �¤ = 0.1¥�R . The performance weighting 
matrices are chosen as � = ��� and � = 0.01. The numerical 
experiments are conducted with prediction horizon N, which 
has the value of 30 samples ahead.  

In Figure 1 the transient responses of the closed-loop system  
with respect to the input signal 
, = 4Z[\ [V] and the output 

signal  , = L  [rad] for the generator full and reduced fifth 
order models are presented.  

In Figure 2 the transient responses of the corresponding 
system with respect to the input signal 
- = �� [Nm] and the 
output signal  , = L [rad] for the generator full and reduced 
fifth order models are shown.  

In Figure 3 the transient responses of the closed-loop system 
with respect to the input signal 
, = 4Z[\ [V] and the output 

signal  - = 4� [V] for the generator full and reduced fifth order 
models are given. 

 
Fig.1. Transient closed-loop system response 
, = 4Z[\ v.s. , = L, full 

order – red and reduced order  - blue.  

In Figure 4 the transient responses of the corresponding 
system with respect to the input signal 
- = �� [Nm] and the 
output signal - = 4� [V] for the generator full order model and 
the corresponding reduced fifth order model are illustrated.  

It is obvious that all transient responses of the closed-loop 
system for the generator full order and reduced – fifth order 
models are almost the same i.e. the difference between them is 
very small and can be neglected. This fact confirms the good 
approximation capabilities of the presented balanced 
residualization technique, when applied for reducing the 
generator model in MPC.  
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Fig.2. Transient closed-loop system response 
- = �� v.s. , = L, full 

order – red and reduced order  - blue.  

CONCLUSIONS  

In this paper we perform MPC for a synchronous turbine 
generator of full and reduced order. The presented method 
utilizes model reduction technique based on balanced 
residualization and Legendre polynomials approximation. 
Several experiments are conducted comparing the transient 
responses of the full and reduced-fifth order models of the 
considered closed-loop system with the designed model 
predictive controller. The simulation results show almost 
complete coincidence of the simulated characteristics in time 
domain. This fact confirms the good approximation 
capabilities of the method and its ability to reduce the 
complexity of the control system problem.   

 

 
Fig.3. Transient closed-loop system response 
, = 4Z[\ v.s. - = 4�, full 

order – red and reduced order  - blue.  

 

 
   Fig.4. Transient closed-loop system response 
- = �� v.s. - = 4�, full 

order – red and reduced order  - blue.  
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