
31st National Conference with International Participation "Telecom 2023", November 16 - 17, 2023, Sofia, Bulgaria

979-8-3503-0329-2/23/$31.00 ©2023 IEEE

Using Python for development of an application for
building and experimenting with GPSS simulation

models

Aleksandar Hristov
Department "Information Technologies

in Industry"
Technical University of Sofia

Sofia, Bulgaria
ahristov@tu-sofia.bg

Abstract—The present paper aims to propose an open
source application with graphical user interface for simulating
models, created by General Purpose Simulation System
(GPSS). The application is similar to the well-known discrete
event simulator GPSS. The application has the following
functionalities: Open a GPSS file, Enter or edit the model
directly in the GPSS model editor window, experimenting with
the entered GPSS model and displaying the results on the
screen.

Keywords— GPSS, Python, simulation, software
development, Windows application

I. INTRODUCTION

Simulation modeling is preferred when a complex system
has to be simulated, because analytical modeling [4] is a very
rough approximation of reality. In the simulation model, the
behavior of each component of the system is described by a
set of algorithms that implement the events occurring in a
real complex system.

The model time is modified at the moments that
correspond to the occurrence of events in the real system.
The processing of simultaneously occurring events is carried
out sequentially (constant model time) by the simulation
controller.

One of the most widely used simulation language is
General Purpose Simulation System - GPSS, originally
created by IBM. GPSS [3] is based on the concept of
simulating discrete systems by moving dynamic objects
(transactions) through static objects (blocks). This movement
is performed following a certain logic set by the arrangement
of the blocks in the GPSS program. There are multiple
versions of the GPSS language, eg GPSS/H, GPSS/PC,
GPSS World, as well as web-based ones, eg AGPSS, etc.
The different GPSS versions have some differences in the
syntax. They also have different limitations in terms of the
number of blocks, compatibility with different hardware and
operating systems and accessibility. For example, the free
version of GPSS World can create models of up to 180
blocks, whereas the web-based versions are not always
available 24/7. In order to address this problem, an author’s
GPSS simulator will be proposed below. For creating of this
simulator, it has been chosen Python.

Python is a high level programming language [1] and has
a wide range of programming tasks that it can solve. In other

words, there is almost nothing that cannot be created with
Python. Although Python is primarily used for web
development, it is increasingly being used for desktop and
mobile application development. Some of the advantages of
Python are given below:

- It is an open source project and all the accompanying
resources that are needed (modules, libraries and other tools)
are also free and available;

- It is known for its productivity and efficiency - Python
makes it possible to write programs with fewer lines of code;

- It is compatible with almost all known platforms and
operating systems;

- It can handle large volumes of information and complex
mathematical calculations;

- It has a huge number of pre-built libraries of code that
perform individual functions. These libraries include variety
of functions (from mathematical processing to graphics or
computer vision).

As technology improves and evolves, the devices that are
used are becoming more powerful and faster, which erases
Python's only downside - its speed. Also, due to the Python
multiplatform abilities, the applications build with it have
some limitations related to the Graphical User Interface
(GUI).

The present paper aims to propose a GPSS simulator as
well as to describe the process of creating it and to conduct
an experiment with model of multiprocessors for validating
the simulation results. Python has been chosen as a
programming language for creating this simulator.

II. APPLICATION FOR BUILDING AND EXPERIMENTING WITH

GPSS SIMULATION MODELS

In this section, an open source Windows application with
graphical user interface for simulating models, created by
General Purpose Simulation System (GPSS) has been
proposed. This application is similar to the visual
environment for simulation of wireless networks [2]. As it
was mentioned above, Python was used for the
implementation of the application. Screenshot of the main
screen of the developed application is shown in Fig. 1.

The application has the following functionalities:

1. Open GPSS file – by clicking the ‘Open GPSS file’ a
file dialogue is opened and the user should choose a GPSS
file with .gps extension. The file is then loaded into the
GPSS model editor - left part of the main screen;

2. Enter or edit the model directly in the GPSS model
editor window;

3. Save to file - saves the model to a file named
model.gps in the same folder as the application by clicking
the ‘Save To File’ button;

4. Start GPSS Simulation – by clicking the ‘Start GPSS
Simulation’, the model from the editor is saved to a file
named model.gps and simulation starts. This gives the
opportunity for experimenting with the entered GPSS model
and displaying the results on the right part of the screen.

Fig. 1. Screenshot of the developed application

The application uses the gpss.py package [7], which is an
open-source Python implementation of the GPSS system for
simulating the models..

III. IMPLEMENTATION OF THE APPLICATION

Due to the limited scope of the present paper, a brief
description of the more important parts of the Python code is
given here. Full Python code is available at [6]. Below the
steps of the implementation are given:

- The modules tkinter and gpss are imported

- The main window (root) is created

- Two tabs (GPSStab and helpTab) are created and
added to the main window

- The tabs are split into rows and columns

- Three buttons (openFilebtn, saveToFilebtn and
startGPSSbtn) are created and added into the grid

- Two textboxes (GPSSmodel and
resultsFromGPSSTextbox) are created and added into the
grid for the GPSStab and another one (infoTextbox) is
created and added into the grid for the helpTab

- The openFile function is created

- The saveToFile function is created

- The startGPSS function is created

Below these 9 steps are described.

The modules tkinter and gpss are imported. Python has
many GUI frameworks, but Tkinter is the only one built into
the Python standard library, and is therefore the preferred
choice for GUI application development. As it was
mentioned above, Python applications have some limitations
related to the Graphical User Interface (GUI). The
implementation of the GUI of the proposed application is
simple, but user-friendly.

The gpss package includes open-source implementation
of the well-known discrete event simulator – GPSS and
executes the statements that create a model. The gpss
package is able to execute the following statements:
GENERATE, QUEUE, ADVANCE, DEPART,
TERMINATE with the relevant operands.

The main window (root) is created with the following
parameters: title, dimensions, etc.

The tabs of the main window are created. The GPSStab is
the main one and in it the user has the opportunity to enter or
edit the model directly in the editor of GPSS models. Also in
the right part of the screen, the results of the started
simulation are available. The buttons for controlling the
simulator are located at the bottom part of the screen. The
second tab (helpTab) is where the user gets acquainted with
the functionalities of the simulator and how it works. Those
two tabs are added to the root window via the Notebook
widget from the tkinter module.

The grid geometry manager is used in order to make the
design responsive and to give the user the ability to resize the
window of the application. Grid geometry manager uses the
concepts of rows and columns to arrange the widgets. The
GPSStab is split into 3 rows with the rowconfigure method.
Also, the GPSStab is split into 2 columns with the
columnconfigure method. The helpTab contains only one
textbox so it is not split and contains one row and one
column.

The openFilebtn, saveToFilebtn and startGPSSbtn
buttons are added. The Button method from the ttk module is
used for creating them. The buttons are then deployed in the
grid using the grid method, with the relevant parameters such
as row and column index, paddings and relative placement
on the screen. The openFilebtn button is used to open a
GPSS file dialog for selecting a file with the appropriate
extension. The saveToFilebtn button is used to save the
edited model to a file named model.gps. The startGPSSbtn
button is used for starting the simulation. This gives the
opportunity for experimenting with the entered GPSS model
and displaying the results on the right part of the screen.

The textboxes GPSSmodel and
resultsFromGPSSTextbox are added. The Text method from
the tk module is used for creating them. The textboxes are
then deployed in the grid using the grid method, with the
relevant parameters such as row and column index, paddings
and relative placement on the screen. Similarly, an
infoTextbox textbox is added in the Help tab of the
application.

The openFile function is created, which is called when
the openFilebtn button is pressed. When the button is clicked
a file dialogue is opened and the user should choose a GPSS
file with .gps extension. The file is then loaded into the
GPSS model editor - left part of the main screen.

Fig. 3. Screenshot of the developed application

The saveToFile function is created, which is called when
the saveToFilebtn button is pressed. With this function the
contents of the GPSSmodel textbox are written to a file
named model.gps using the writelines method.

The startGPSS function is created, which is called when
the startGPSSbtn button is pressed. It first clears the contents
of the resultsFromGPSSTextbox textbox, and then calls the
saveToFile function. The simulation is then started using the
gpss.run method, and the result is saved using the
gpss.createReport method. Finally, the result from the
simulation is shown in the resultsFromGPSSTextbox textbox
and the user can view or copy it. If there is a GPSS parser
error, it is shown in the resultsFromGPSSTextbox textbox so
that the user edit the model..

IV. CREATING AN EXECUTABLE FILE FROM THE PYTHON

SCRIPT

The Python script for the application is used for creating
a Windows executable file using the PyInstaller tool,
following these 3 simple steps:

- Open the Command Prompt (CMD);

- Navigate to the directory containing the Python script
for the application;

- Execute the command: pyinstaller --onefile
gpssGUI.py.

The approach for creating an executable file for MacOS
X and Linux is similar.

V. EXPERIMENT

There are two ways of conducting laboratory exercises
with students – from distance or online [9],[10] and
traditional (in-laboratory). The author of this paper is PhD
and assistant with specialty “Computer systems, complex
and networks” at Faculty of computer systems and
technologies and conducts laboratory exercises in various
disciplines. One of them is “High Performance Computer
Systems”. Below is given a brief description of the course:

- It is compulsory for the students of specialty
Computer and Software Engineering in the bachelor
programme of the Faculty of Computer Systems and
Technologies.

- The purpose of the course is to give the students a
good understating of concepts and mechanisms related to the
design of modern high-performance computer systems as
well as to be able to apply the main architectural styles.

- Main topics of are: Taxonomy; Scalable high-
performance computer systems; Vector processors; Massive
parallel processors; Clusters of servers and workstations;
Symmetrical and CC-NUMA multiprocessors; System
interconnection networks for high- performance computer
systems and complexes; Parallel GPU architectures;
Supercomputers.

- The teaching methods include: lectures using video-
presentation with beamer; laboratory exercises ending with
presentation of the results, parallelism profiles and
estimation of the performance parameters of the parallel
system for the certain task.

One of the laboratory exercises is related to analytical
and simulation investigation of multiprocessors.
Multiprocessors with multiport memory is shown on fig. 2.

Fig. 2. Screenshot of the developed application

The purpose of this exercise is to create a simulation
model for investigating the memory and processors

utilization of the multiport memory multiprocessor and to
conduct experiments by changing values of the selected
controllable factors, and finally summarizing and analyzing
the obtained experimental results.

In this section, an experiment with a GPSS model of
multiprocessors (fig. 3) has been conducted in order to
validate the simulation results of the application.

At the beginning, the GPSS model (left part of the
screenshot, fig. 3) includes definition of number of shared
memory ports through the MEM STORAGE statement. The
block GENERATE is used to create as many transactions as
the number of processors there are in the multiprocessor.
Then, in a loop starting with the BEGN label, the following
actions take place: the transaction is held for a certain
amount of time, corresponding to CPU processing time
before it needs to access the memory; then transactions
occupy the storage for a time corresponding to a successful
memory access and performing load/store operation (the
time in the second ADVANCE block) and finally
transactions leave the storage (corresponding to releasing the
occupied memory port).

As it can be seen, the experiment has been conducted
with the following input factors:

- number of memory ports – 4 (ports A, B, C, D, fig. 2);

- number of processors – 20;

- processing time for 1 iteration of the loop – 50 ± 10
units;

- time for performing operation with memory – 50 ± 10
units.

As it can be seen from the right part of the screenshot,
fig. 3, for these input factors, the average utilization of
memory is 100%, the average processing time is 50.026 and
the number of executed tasks (Entries) is 79954. Utilization
of processors is calculated by the following manner:

 utl = 79954.50/(20.1000000

The 100% memory usage and 20% processor usage
means that the memory is the bottleneck in that
multiprocessor.

The result for Entries is 79954, while the result from
GPSS World Student version is 80004. The difference
between the two values is 0.06%. One possible explanation
for this difference is the different random number generators
that these GPSS interpreters use. All other results are the
same. This can be considered as a verification of the correct
operation of the proposed application.

VI. CONCLUSION

In the present paper, an open source Windows
application with graphical user interface for simulating

models, created by General Purpose Simulation System
(GPSS) has been proposed.

The functionalities of proposed application and
introductions for using it have been described, thus the paper
is a kind of user guide. The proposed visual environment is
very convenient for both research and educational purposes.

The developed application allows integration and
implementation with external forms for entering parameters
of a specific GPSS model.

As a future work, through a user-friendly form for users
unfamiliar with the GPSS simulation system, investigation
will be done for the time of conducting successful DDoS
attacks in IIoT networks [8], initialization time of a secure
exchange using Zero-knowledge Proof and Smart
Questioning [5] and etc.

ACKNOWLEDGMENT

The presented research is for the scientific-research
project № КП-06-ПН47/27 “Possibility Investigation of
Increasing the Cybersecurity of the Systems in Industry 4.0
using Artificial Intelligence” funded by National Science
Fund under the Ministry of Education and Science in
Bulgaria with contract КП-06-Н 47/7.

REFERENCES

[1] Hunt, J. Advanced Guide to Python 3 Programming, 2nd Edition,

Springer, 2023

[2] HRISTOV, V. A visual environment for simulation of 802.11n
wireless networks, BJED, no10, 2012, pp. 37-44 (in bulgarian)

[3] Mitrev, R. Computer modeling and Simulation, Propeler,Sofia, 2021
(in bulgarian)

[4] Romansky R., Noninska I. Software tools for analytical modeling of
workload, AIP Conference Proceedings · September 2022, DOI:
10.1063/5.0100691.

[5] Stefanova-Stoyanova, V., Stankov, I. and Danov, B. Exploring the
Synergy between Zero-knowledge Proof and Smart Questioning,
Proceedings of the 11th International Scientific Conference
COMPUTER SCIENCE, IEEE Conference, Rec # 59259, 18 – 20
September, Sozopol, Bulgaria

[6] Hristov, A. GPSS Simulation Tool online available:
https://github.com/sashkinaaa/gpssGUI

[7] Documentation of gpss.py package online available:
https://github.com/martendo/gpss.py

[8] Hristov, A. et al. Developing and experimenting simulation models of
DDoS attacks in IIoT networks using Python, "TELECOM 2023"
(IEEE Conference record # 59629), Sofia, 16 – 17 November 2023,
submitted

[9] Hristov, V., et. al. Conducting a cycle of remote laboratory
exercises, International Scientific Conference Computer
Science’2020, Velingrad, Bulgaria, October 18th – 21th, 2020,
ISBN: 978-619-167-177-9, pp.166-172

[10] Nachev, V. Web-Based Remote Laboratory For Programming
Arduino-Based Experiments, "TELECOM 2023" (IEEE Conference
record # 59629), Sofia, 16 – 17 November 2023, submitted

