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Abstract. This paper considers the problem of analytic approximation of nonlinearities with memory. The mathematical models
for nonlinearities with memory used in the paper are differential-based, rate dependent and two-valued, involving the input signal
velocity in its description. The nonlinear characteristics, considered in the paper, are the shifted unpolarized relay with hysteresis,
relay with hysteresis and dead zone, and relay with hysteresis and saturation. Explicit formulas for their mathematical models
are presented, containing the ideal relay as basic element in their description. The analytic approximation for nonlinearities with
memory reduces to the problem of rational function approximation of the ideal relay switching behavior. The discontinuous jumps
are presented by hyperbolic tangent functions, where the exponential terms are approximated by using the chained fraction method.
The error of approximation is reduced by introducing a parameter in the hyperbolic tangent presentation and the corresponding
errors of approximation are discussed.

INTRODUCTION

The existence of nonlinearities is important element in modeling classical control systems. In most of the cases, the
nonlinear characteristics are linearized and the resultant dynamical system is addressed as a linear one. The wide scope
of linear analysis and design techniques enable the practicing engineer to solve a large variety of control system prob-
lems. One of the difficulties of using linearization is the range of system operation, i.e. the operating signals should
be small and the system behavior is reliable only in small neighborhood around the equilibrium position. Another
problem with linearization is the requirement for differentiability of the nonlinear characteristics under consideration.
The condition for differentiability of nonlinear characteristics is additional limitation over the system description.
Very often the nature of the nonlinear element does not allow to use linearization techniques. Such nonlinear elements
that rule out using linearization procedures are known as essential nonlinearities. The essential nonlinearities include
all relay characteristics describing abrupt change in system behavior. Some of the most severe limitations for using
linearization techniques are produced by the relay with hysteresis characteristics. The presence of hysteresis loops is
a special feature in a large variety of nonlinear control systems. Hysteresis is a phenomenon that is observed in many
physical processes like mechanical systems, ferromagnetic materials and electromagnetic devices. The substance of
hysteresis is the existence of multiple state equilibria associated with system dynamics. Important property of the
hysteresis loop is the introduction of dynamical component in the nonlinear element characterization. The dynamics
of the hysteresis nonlinearity is illustrated by the memory effect in the output signal. This memory effect is described
by the property, that the response to particular changes is a function of preceding responses. The hysteresis nonlin-
earity can lead to performance degradation mainly in positioning accuracy of system performance. The difficulty in
modeling hysteresis loops results from the existence of multivalued behavior. For different input values, two output
values of the hysteresis characteristic are possible and which one of these two values will occur depends on the history
of the input.

There exist different approaches in the control literature for modeling the hysteresis loops [17]. These approaches
can be divided into two main groups: i) operator-based or static models, which use operators to describe the physical
phenomenon and ii) differential-based or dynamic models, which use differential equations to model the hysteresis
characteristic [7], [12], [13]. The first group of hysteresis models includes the Preisach model [7], [3], the Krasnosel-
skii – Pokrovskii model [8], [19], the Prandtl – Ishlinskii model [11], [10], the Maxwell – Slip model [7], etc. A
specific feature of the operator-based models is the rate-independent effect of the hysteresis loop. This effect means
that the branches of the hysteresis loop are determined only by the past extremum values of the input, while the
speed of the input variations has no influence on branching. The differential-based models use differential equations
to describe the hysteresis phenomenon [18]. A specific feature of differential-based models is to underline the rate-
dependent effect of the hysteresis loops and to indicate that branching depends on the input rate of change. Thus,
the output present value depends not only on the input present value but also on its velocity. Main representatives of
the differential-based models are the Bouc-Wen model [4], the Duhem model [5], the Jiles-Atherton model, the Chua
model, the Hodgon model and others [14], [12], [7]. Other applications of hysteresis loops find in control system



theory. A special type of hysteresis characteristic representation is the relay with hysteresis nonlinear element, which
can be considered as representative of a delayed relay operator with thresholds [1]. In electrical engineering, the relay
with hysteresis characteristic model is used to estimate the energy losses in electrical machines for the purpose of
electrical device design [3]. Another very effective application of the relay with hysteresis characteristic is in auto-
matic tuning of PID regulators, where a relay with hysteresis is inserted in the closed loop and is used for adjustment
of the PID parameters [9]. Relay with hysteresis characteristics find also their application in many algorithms and
logic schemes, where switching with phase delay is taking part. In many analysis and design methods for nonlinear
control systems, a main requirement is to have differentiable nonlinear trajectories. The differentiability requirement
is especially demanded for all methods related to Lyapunov stability theory. However, the differentiability condition
is not satisfied when the system exhibits jump behavior, which is the case for relay with hysteresis characteristics.
This situation is resolved when the hysteresis loop is approximated by using smooth functions.

This paper considers the problem of smooth function approximation of nonlinearities with memory and more specif-
ically, nonlinear characteristics with hysteresis loops. The paper appears as an extension of previous result on the ra-
tional function approximation of relay with hysteresis [15]. Several different nonlinear characteristics with hysteresis
loops are examined: shifted unpolarized relay characteristic with hysteresis, relay with hysteresis and dead zone, relay
with hysteresis and saturation. Explicit expressions for these characteristics are developed, where the ideal relay plays
important role. Using the approximation formula for the ideal relay, all three characteristics are described in terms of
analytic functions.

RATIONAL FUNCTION APPROXIMATION OF THE IDEAL RELAY
CHARACTERISTICS

The rational function approximation of the ideal relay characteristic plays central role in the approximation of hys-
teresis loops. The ideal relay characteristic can be presented by the following expression:

N(x) = sgn(x) =

 1, x > 0
0, x = 0
−1, x < 0

(1)

This characteristic is nondifferentiable at the point x = 0, where the relay behavior changes with jump. Therefore, the
relay characteristic at this point is not only nondifferentiable, but it is also discontinuous. The discontinuous jump
of any nonlinear characteristic imposes heavy limitations for its analytic approximation. One possible approximation
method is by using gate functions [16]. A common gate function is the hyperbolic tangent function:

N(x)≈ tanh(Ax), (2)

where A is a parameter. A gate function approximation of the ideal relay for different values of the parameter A is
shown in figure 1. where for A = 1 (the dashed line), the approximation curve deviates to a considerable extent from
the ideal relay characteristic. For A = 2 (the dotted line) and A = 10 (the dashed-dotted line), the approximation curve
gets closer to the relay characteristic and the approximation error reduces considerably. Finally for A = 100 (the solid
line), the difference between the true and approximated characteristics is insignificant. From figure 1 is clearly seen
that by increasing the value of the parameter A, the accuracy of approximation is also increased.

We assume as criterion for accuracy of approximation the mean square approximation error:

δmse =

{
1

b−a

∫ b

a
[N(x)− f (x)]2 dx

}1/2

, (3)

where N(x) is given by (1) and f (x) = tanh(Ax) is the approximation function. Using (3), we obtain for A = 1,
δmse = 0.3562, for A = 2, δmse = 0.2502, for A = 10, δmse = 0.1061 and for A = 100, δmse = 0.01392. Therefore, the
experimental data confirms the theoretical inference that as higher is the value of the parameter value A, as smaller is
the value of the approximation error δmse.

The next problem is to approximate the hyperbolic tangent function in terms of rational functions of the argument.
The computation of the hyperbolic tangent function, available in the computer libraries in FORTRAN or C languages,
are presented in [2]. We accept the partition of the positive real line into two intervals for evaluation of the hyperbolic



FIGURE 1. Approximation for the ideal relay f (x) = tanh(Ax)

tangent function. For x < xlarge = 19.06155, the the hyperbolic tangent function is presented by the expression [2]:

tanh(x) = 1− 2
exp(2x)+1

(4)

and for x ≥ xlarge, the value of the hyperbolic tangent function is considered as one. The value xlarge = 19.06155 is
obtained from the formula [2]:

2
exp(2x)

< B−(t+1) (5)

where B is the machine base and t is the number of significant digits in the machine representation, i.e. B = 2 and for
double precision t = 53. The reason behind (5) is that for large x, the value of exp(2x)+1� 1 and the second term
in the right hand side of (4) is less than the machine representation error. The solution of (5), when the inequality is
replaced by equality, gives the computed value for xlarge.

The next step in the approximation procedure is to replace the exponential term in (4) by a rational function of
the argument x. Due to the wide scope of application, the exponential function exp(x) is one of the most often
approximated functions and there exist different approximation procedures. We apply the method of chained fractions
for its rational function representation. The chained fraction expansion of the exponential function exp(x) can be
presented as follows [6]:

exp(x) =
[

0; 1
1 ,

−2x
2+x ,

x2

6 ,
x2

10 ,
x2

14 ,
x2

18 ,
x2

22 ,
x2

26 ,
x2

30 , . . . x2

4n+2 , . . .
]
. (6)

The above chained fraction can be rewritten in terms of two variables ratios as follows:

exp(x) =
[

a0,
b1
a1
, b2

a2
, b3

a3
, b4

a4
, b5

a5
, b6

a6
, . . .

]
. (7)



Then exp(x) can be evaluated as a ratio of two indexed polynomials, with indices corresponding to their degree, and
satisfying the recurrence relations [6]:

Pk(x) = akPk−1(x)+bkPk−2(x), (8)

Qk(x) = akQk−1(x)+bkQk−2(x), k = 1,2,3, . . . (9)

where the initial polynomials are defined as follows:

P−1(x) = 1, Q−1(x) = 0, P0(x) = a0, Q0(x) = 1. (10)

The nth order approximation of the exponential function is given by the expression exp(x) ≈ Pn(x)
Qn(x)

. The first few

polynomials are obtained as follows: P1(x) = 1, Q1(x) = 1; P2(x) = 2+ x, Q2(x) = 2− x; P3(x) = x2 + 6x+ 12,
Q3(x) = x2− 6x+ 12 . . ., P9(x) = 518918400+ 259459200x+ 60540480x2 + 8648640x3 + 831600x4 + 211440x5 +
2520x6 + 272x7 + x8, Q9(x) = 518918400− 259459200x + 60540480x2 − 8648640x3 + 831600x4 − 211440x5 +
2520x6− 272x7 + x8, etc. The chained fraction approximation of the exponential function for the value x = 1 and
n = 9 is given by the expression e≈ P9(x)

Q9(x)
= 2.718281828459045, that is evaluated with an error ε = O(10−16). The

corresponding tanh(Ax) for |x|< xlarge is approximated by the expression: tanh(Ax)≈ 1− 2
P9(2Ax)
Q9(2Ax)+1

.

RATIONAL FUNCTION APPROXIMATION FOR NONLINEARITIES WITH
MEMORY

The nonlinearities with memory characteristics play important role for modeling nonlinear phenomena, where the
system behavior changes with jump depending on the signal sign of velocity before the jump occurs. One of the main
relay characteristic with memory is the characteristic of shifted unpolarized relay with positive hysteresis, shown in
fig. 2.

The mathematical expression describing this nonlinear element is given as follows:

N(x) =


c, x > b,
0, x < a,
c, a < x≤ b, ẋ < 0
0, a≤ x < b, ẋ > 0

(11)

Using the ideal relay model, we can obtain the following expression for the shifted unpolarized relay with positive
hysteresis model:

N(x) =
c
2
{1+0.5sgn(x−b) [1+ sgn(ẋ)]+0.5sgn(x−a) [1− sgn(ẋ)]} (12)

We make the following notations:

N1(x) = 0.5sgn(x−b) [1+ sgn(ẋ)] (13)

N2(x) = 0.5sgn(x−a) [1− sgn(ẋ)] (14)

Then we have N(x) = c
2 [1+N1(x)+N2(x)]. When ẋ > 0, N2(x) = 0. Then, if x > b, N1(x) = 1 and N(x) = c. If x < b,

N1(x) = −1 and N(x) = 0. When ẋ < 0, N1(x) = 0. Then, if x > a, N2(x) = 1 and N(x) = c. If x < a, N2(x) = −1
and N(x) = 0. From the above derivations follows, that no matter of the velocity sign, if x > b, N(x) = c and if x < a,
N(x) = 0. The two-valued region of the hysteresis loop is in the interval a < x < b, where if the argument velocity is
positive, N(x) = 0 and if the argument velocity is negative, N(x) = c. The analytic approximation of expression (11)
is developed by replacing the sgn(x) function in terms of the function tanh(Ax). For example, the approximations are
implemented along the line sgn(x−b)≈ tanh[A(x−b)], sgn(x−a)≈ tanh[A(x−a)] and sgn(ẋ)≈ tanh(Aẋ). Then for
values of the argument x < xlarge, the hyperbolic tangent function is substituted by tanh(Ax) ≈ 1− 2

Pn(2Ax)/Qn(2Ax)+1 .



FIGURE 2. Shifted unpolarized relay with hysteresis

In this sense we have sgn(x− b) ≈ 1− 2
Pn(2A(x−b))/Qn(2A(x−b))+1 , similarly sgn(x− a) ≈ 1− 2

Pn(2A(x−a))/Qn(2A(x−a))+1

and finally sgn(ẋ)≈ 1− 2
Pn(2A(ẋ))/Qn(2A(ẋ))+1 .

Another member of the relay with memory set is the characteristic of polarized relay with hysteresis and dead zone,
shown in fig. 3.

The mathematical model for this characteristic is given by the expression:

N(x) =



c, x > b,
−c x <−b
0, |x|< a,
c, a < x≤ b, ẋ < 0
0, a≤ x < b, ẋ > 0
−c −b≤ x <−a, ẋ > 0
0, −b < x≤−a, ẋ < 0

(15)

Using the sign function expression, we can obtain the following model for the polarized relay with hysteresis and
dead zone characteristic:

N(x) = c
2 {1+0.5sgn(x−b) [1+ sgn(ẋ)]+0.5sgn(x−a) [1− sgn(ẋ)]}−

c
2 {1+0.5sgn(−x−a) [1+ sgn(ẋ)]+0.5sgn(−x−b) [1− sgn(ẋ)]} (16)

We make the following notations:

N1(x) = 0.5sgn(x−b) [1+ sgn(ẋ)] (17)

N2(x) = 0.5sgn(x−a) [1− sgn(ẋ)] (18)

N3(x) = 0.5sgn(−x−a) [1+ sgn(ẋ)] (19)

N4(x) = 0.5sgn(−x−b) [1− sgn(ẋ)] (20)

and the model of the nonlinear element can be represented as:

N(x) =
c
2
[N1(x)+N2(x)−N3(x)−N4(x)] (21)

Further, we assume that ẋ > 0, then N2(x) = N4(x) = 0. If x > b, then N1(x) = 1, N3(x) = −1 and N(x) = c. If
a < x < b, then N1(x) = −1, N3(x) = −1 and N(x) = 0. If |x| < a then N1(x) = −1N3(x) = −1 and N(x) = 0. If



FIGURE 3. Relay with hysteresis and dead zone

−b < x < −a, then N(x) = −1, N3(x) = 1 and N(x) = −c. If x < −b, then N1(x) = −1, N3(x) = 1 and N(x) = −c.
Next we assume that ẋ < 0, then N1(x) = N3(x) = 0. If x > b, then N2(x) = 1, N4(x) =−1 and N(x) = c. If a < x < b,
then N2(x) = 1, N4(x) =−1 and N(x) = c. If |x|< a, then N2(x) =−1, N4(x) =−1 and N(x) = 0. If −b < x <−a,
then N2(x) =−1, N4(x) =−1 and N(x) = 0. Finally, if x <−b, then N2(x) =−1, N4(x) = 1 and N(x) =−c.

Similarly to the previous case, the analytic approximation of expression (16) is obtained by replacing the sign
function in terms of the hyperbolic tangent function, see (2). Another nonlinear element with memory is the relay
with hysteresis and saturation characteristic, shown in fig. 4.

The mathematical expression for this characteristic is given as follows:

N(x) =



c x > b,
−c x <−b

x−a −b+2a≤ x≤ b, ẋ > 0
x+a, −b≤ x≤ b−2a, ẋ < 0

c, b−2a < x≤ b, ẋ < 0
−c −b≤ x <−b+2a, ẋ > 0

(22)

The model for the relay with hysteresis and saturation can be written in the form:

N(x) = c
4 [1+ sgn(ẋ)]

{ x−a
c [sgn(x−2a+b)− sgn(x−b)]+ sgn(x−b)− sgn(−x+2a−b)

}
+

c
4 [1− sgn(ẋ)]

{ x+a
c [sgn(x+b)− sgn(x+2a−b)]+ sgn(x+2a−b)− sgn(−x−b)

} (23)

where for simplicity of the expressions, we have assumed that b = 3a and c = 2a. We make the following notations:

N1(x) =
c
4
[1+ sgn(ẋ)]

{
x−a

c
[sgn(x−2a+b)− sgn(x−b)]+ sgn(x−b)− sgn(−x+2a−b)

}
(24)

N2(x) =
c
4
[1− sgn(ẋ)]

{
x+a

c
[sgn(x+b)− sgn(x+2a−b)]+ sgn(x+2a−b)− sgn(−x−b)

}
(25)

N3(x) =
x−a

c
[sgn(x−2a+b)− sgn(x−b)] (26)

N4(x) =
x+a

c
[sgn(x+b)− sgn(x+2a−b)] (27)



FIGURE 4. Relay with hysteresis and saturation

Then, using (26) and (27), expressions (24) (25) can be represented as:

N1(x) =
c
4
[1+ sgn(ẋ)] [N3(x)+ sgn(x−b)− sgn(−x+2a−b)] (28)

N2(x) =
c
4
[1− sgn(ẋ)] [N4(x)+ sgn(x+2a−b)− sgn(−x−b)] (29)

N(x) = N1(x)+N2(x) (30)

Then, we have:

N5(x) = N3(x)+ sgn(x−b)− sgn(−x+2a−b) (31)

N6(x) = N4(x)+ sgn(x+2a−b)− sgn(−x−b) (32)

First we assume that ẋ > 0 and therefore, N2(x) = 0. If x > b, then N3(x) = 0, N5(x) = 2 and N(x) = c. If a < x < b,
then N3(x) = 2 x−a

c , N5(x) = N3(x) and N(x) = (x− a). If |x| < a, then N3(x) = 2 x−a
c = −2 a−x

c , N5(x) = N3(x) and
N(x) = (x−a). If −b < x <−a, then N3(x) = 0, N5(x) =−2 and N(x) =−c. If x <−b, then N3(x) = 0, N5(x) =−2
and N(x) =−c. Next we assume that ẋ < 0 and therefore N1(x) = 0. If x > b, then N4(x) = 0, N6(x) = 2 and N(x) = c.
If a< x < b, then N4(x) = 0, N6(x) = 2 and N(x) = c. If |x|< a, then N4(x) = 2 x+a

c , N6(x) =N4(x) and N(x) = (x+a).
If−b< x<−a, then N4(x) = 2 x+a

c , N6(x) =N4(x) and N(x) = (x+a). Finally, if x<−b, then N4(x) = 0, N6(x) =−2
and N(x) =−c.

The analytic approximation of expression (23) is obtained by replacing the sgn(x) function in terms of the function
tanh(Ax) and then for |x|< xlarge we have tanh(Ax)≈ 1− 2

Pn(2Ax)
Qn(2Ax)+1

.

CONCLUSION

The paper considers the problem of analytic approximation of nonlinearities with memory. Three different nonlinear
characteristics are presented: shifted unpolarized relay with hysteresis, relay with hysteresis and dead zone and relay
with hysteresis and saturation. Explicit mathematical formulas for these characteristics are derived, which includes
the sign function as a basic element for describing the jump behavior of these characteristics. A specific feature of
nonlinearities with memory is the existence of hysteresis loops and therefore, two valued intervals in the mathematical
model. The existence of two valued intervals introduces the velocity of the input argument into the nonlinear element



description. The focus of our derivations is to approximate the discontinuous jump in the nonlinear characteristic. A
rational function approximation of the hyperbolic tangent function as a gate function for the jump in the hysteresis
loop is used. In this case, the chained fractions method is implemented to approximate the exponential function in the
hyperbolic tangent expression. Finally, some information about the error of approximation is also discussed.
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