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Abstract: Poly(vinyl alcohol) is one of the most attractive polymers with a wide range of uses because
of its water solubility, biocompatibility, low toxicity, good mechanical properties, and relatively low
cost. This review article focuses on recent advances in poly(vinyl alcohol) electrospinning and summa-
rizes parameters of the process (voltage, distance, flow rate, and collector), solution (molecular weight
and concentration), and ambient (humidity and temperature) in order to comprehend the influence on
the structural, mechanical, and chemical properties of poly(vinyl alcohol)-based electrospun matrices.
The importance of poly(vinyl alcohol) electrospinning in biomedical applications is emphasized by
exploring a literature review on biomedical applications including wound dressings, drug delivery,
tissue engineering, and biosensors. The study also highlights a new promising area of particles
formation through the electrospraying of poly(vinyl alcohol). The limitations and advantages of
working with different poly(vinyl alcohol) matrices are reviewed, and some recommendations for
the future are made to advance this field of study.

Keywords: poly(vinyl alcohol); electrospinning; nanofiber; fiber morphology; electrospun mats;
biomedical applications

1. Introduction

Poly(vinyl alcohol) (PVA) is a synthetic polymer bearing CH2CH(OH) repeating units.
This polymer composed of vinyl monomers is not prepared directly from vinyl alcohol
because of its instability, which induces a tautomerization mechanism to acetaldehyde.
It is obtained following a post-polymerization reaction of a homopolymer composed of
protected monomer units such as vinyl acetate, vinyl ester, or vinyl ether. The first patent
for the preparation of PVA dates back to 1924 by W.O. Herrmann et al., where a solution of
PVA was obtained by saponifying poly(vinyl ester) with a caustic soda solution [1]. Since
then, the production of this polymer has grown steadily to become a plastic material used
in many fields of application, with an annual growth rate of over 4% for 2030. PVA can be
obtained through various synthetic routes, of which the method developed by Hermann
and Haehnel remains the most used. This process is based on the radical polymerization of
vinyl acetate followed by the hydrolysis of the acetate groups in the presence of a strong
base in methanol [2]. The resulting product, for which its physico-chemical properties
depend on the degree of polymerization and the hydrolysis kinetics, is then precipitated,
washed, and dried. Vinyl ester monomers can also be used as PVA precursors in the same
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way as vinyl acetate [3]. Using vinyl ethers (CH2=CHOR) via cationic polymerization using
a Lewis acid catalyst results in a homopolymer hydrolyzed under acidic conditions to
form PVA [4]. This process preferably leads to the obtainment of an isotactic PVA. Another
possibility described in the literature is to use an aldol group transfer polymerization from
silylated vinyl aldehydes and ethers (CH2=CHOSiR3) to produce a silylated vinyl alcohol
polymer with a terminal aldehyde group [5].

PVA is a synthetic and semicrystalline polymer with multi-hydroxyl groups, with an
excellent oxygen barrier, dyeing properties, and mechanical strength [6–8]. The physico-
chemical properties of PVA are closely related to its preparation method and, in particular,
to the state of hydrolysis, which can be either complete or partial. The synthesis conditions
allow for different molar masses, solubility, and adhesion or mechanical characteristics.
Conventional two-figure PVA grade nomenclature includes information on the parameters
affecting the properties of this polymer in solution, namely the apparent viscosity value
of the concentrated solution at 4 wt.% at 20 ◦C, and the degree of hydrolysis (DH) of the
polymer. Thus, PVA-10-98 means that this grade has a viscosity of 10 mPa.s, and is 98%
hydrolyzed [9]. These two parameters are known to have a significant influence on the
processability and performance of this polymer. Thus, as the degree of hydrolysis increases,
so do the crystallinity, melting temperature, and mechanical strength due to the high level
of hydrogen bonding between the chains [10–12]. A lower grade of hydrolysis leads to
higher solubility in water and may have better compatibility with other excipients. Its
unique properties make it the material of choice for various industries and application
areas. It has good mechanical performance, high tensile strength and flexibility, and oxygen
and aroma barrier properties. In addition, it is odorless and non-toxic and has excellent
film-forming, emulsifying, and adhesive properties. It also has good tolerance to grease,
oil, and a wide range of solvents. However, as a water-soluble polymer, these properties
depend on moisture levels. Thus, water molecules act as a plasticizer, decreasing tensile
strength while increasing its elongation at break. It is a semi-crystalline and biodegradable
polyhydroxy polymer and has been studied intensively due to its good thermal stability,
biocompatibility, chemical resistance, hydrophilicity, biocompatibility, and biodegradability,
and inexpensiveness [13–16].

Many biomedical products, including surgical sutures [17,18], contact lenses [19,20],
and wound dressing [21], are made from PVA. It is also known that PVA can be employed
in internal biomedical applications by using artificial organ designs such as artificial kidney
membranes [22], and articular cartilage for orthopedic implants [7]. PVA has a wide range
of uses in the textile industry [23], either as a formulating agent such as a thickener [24],
surfactant [25], sizing agent [8,26], or microcapsule membrane material [27,28], or as
coating [29], or water-soluble synthetic fiber [30]. PVA-based fibers have many potential
applications in the textile industry. For example, short fibers are often used as reinforcement
material in geotextile cements or cementitious composites [31–33], while long fibers are used
in the manufacturing of geotextile products for soil reinforcement. PVA fibers have drawn
tremendous interest for decades due to their unique physico-chemical and mechanical
properties, which make them widely applied in various areas depending on the fiber mean
diameter. Nanofibers are mainly used in applications such as membrane fabrications, tissue
engineering, biomedical devices, and optical sensors [34]. Although its use in clothing
is much less popular than that of other synthetic fibers, PVA fiber is still known for its
moisture absorption and wear-resistance properties. The use of PVA multifilament yarns
has been studied for biomedical applications [35], to improve the comfort of textiles [36,37],
to design electrically conductive structures [38], as superabsorbent textile fabric [39], as
sacrificial fibers for porous structures [40–44], and so on. The properties of PVA-based
yarns vary according to the production method used and the intended application, such as
wet spinning, melt spinning, gel spinning, and wet-dry spinning [45].

Electrospinning is a robust and versatile method for manufacturing fibers from the
nanometer to the micrometer scale, based on adjusting a wide range of operational, process,
and formulation parameters [46]. This method is based on establishing an electrostatic force
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to stretch polymer solutions from a Taylor cone formation to continuous fiber [47,48]. The
conventional device consists of a high-voltage power supply, a syringe pump to regulate
polymer solution flow through a capillary die or conductive needle, and the resulting fibers
collected on a collector [49]. The significant variability in plant modifications and spinning
solution formulations makes it possible to diversify the method. The electrospinning
process involves many interrelated variables. Changing one of these parameters can
influence the required range of another for an optimized process. The process parameters
usually adjusted to control the physical properties of the fibers include the type of collector
with different topographies, the distance between the polymer jet emission zone and the
collector (tip to collector distance—TCD), the voltage applied to the power supply, the inner
diameter of the nozzle or spinneret (gauge), and the flow rate of the spinning solution [50].
Fibers are obtained when the electrostatic force’s value exceeds the spinning solutions’
surface tension to form a Taylor cone [51]. It is, therefore, necessary to control the physico-
chemical properties of the solutions (viscosity, surface tension, conductivity) related to
the choice of polymer and its chemical characteristics (molecular weight, concentration,
solubility) [52]. Environmental parameters such as relative humidity and temperature also
influence the electrospinning process. Variations in relative humidity lead to changes in the
solidification process of the charged jet, resulting in variations in nanofiber diameters and
morphologies, mainly through the creation of pores when a mixture of solvents is used [53].
An increase in temperature modifies the solutions’ viscosity and the solvent’s evaporation
kinetics, reducing the nanofibers’ diameter [54].

This review aims to provide an overview of PVA electrospinning, including principles,
methods, PVA types, and applications. We begin by discussing the principle and typical
electrospinning apparatus to provide readers a clear picture of this versatile technique. We
then review the grades of PVA and formulations typically used for electrospinning. Next,
we examine how formulation compositions influence the resulting morphologies designed
to target different types of applications. All these attributes make PVA-based electrospun
nanofibers a class of nanomaterials well suited to a wide range of applications, including
tissue engineering [55], drug delivery [56], gas sensors [57], bioactive fibers [58], electronic
skin or smart textiles [59], energy storage [60], and thermal comfort [61]. We focus on
the most relevant examples to highlight the advances linked to developing PVA-based
electrospun nanofibers.

2. Electrospinning of PVA-Based Membrane

The electrospinning method is an alternative approach that enables the production
of fibers with diameters from a few nanometers to several micrometers and nonwoven
surfaces composed of these fibers by forming an electrically charged polymer solution
or melt jet [62]. Due to their high surface area/volume ratio, tiny pore diameters, and
high porosity, electrospun ultrafine fiber surfaces are particularly appealing for usage in
the medical industry [63]. Besides that, various fields such as food packaging [64,65] and
air [66] and water filtering [67,68] can benefit from the use of nanofibers. Its shape and
topographic features are similar to the extracellular matrix, so it is an ideal environment
that can provide cell adhesion, proliferation, and differentiation and can be a carrier surface
for bioactive active substances such as drugs and growth factors [69–72].

The electrospinning approach presents a simple procedure for producing fibrous
surfaces with superior mechanical properties, substantial surface areas, and dimensions on
the order of several nanometers [73]. Electrospinning is a fiber production method that uses
a top-down engineering approach to draw ultra-thin fibers from a viscoelastic polymer
solution or polymer melt using electrical force. A basic setup includes a syringe with a
needle, an injection pump for the spinning solution, a voltage power supply, and a collector
at an optimum distance [74]. In principle, four successive processes produce the fiber jet
from the polymer droplet (Figure 1). Positive charges gather around the droplet due to the
high voltage supplied to the polymer melt or solution at the syringe tip. As the voltage
rises, the surface tension of the polymer at the nozzle tip cannot resist the repelling force of
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the charges, and the droplet turns into a conical shape known as a Taylor cone. The droplet
carries fewer positive charges than the polymer jet after developing the Taylor cone. A
continuous fiber jet is ejected from the Taylor cone’s tip toward the collector at a critical
voltage. The density of the surface charges rises as the fluid jet moves closer to the collector.
Surface charges eventually prevail over surface tension, causing this continuous thin fiber
to begin coiling. A fibrous, nonwoven surface is formed by the piling of the solid fibers
reaching the collector after the complete evaporation of the solvent during the jet’s ejection
to the collector [75,76].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 33 
 

 

polymer solution or polymer melt using electrical force. A basic setup includes a syringe 
with a needle, an injection pump for the spinning solution, a voltage power supply, and a 
collector at an optimum distance [74]. In principle, four successive processes produce the 
fiber jet from the polymer droplet (Figure 1). Positive charges gather around the droplet 
due to the high voltage supplied to the polymer melt or solution at the syringe tip. As the 
voltage rises, the surface tension of the polymer at the nozzle tip cannot resist the repelling 
force of the charges, and the droplet turns into a conical shape known as a Taylor cone. 
The droplet carries fewer positive charges than the polymer jet after developing the Taylor 
cone. A continuous fiber jet is ejected from the Taylor cone’s tip toward the collector at a 
critical voltage. The density of the surface charges rises as the fluid jet moves closer to the 
collector. Surface charges eventually prevail over surface tension, causing this continuous 
thin fiber to begin coiling. A fibrous, nonwoven surface is formed by the piling of the solid 
fibers reaching the collector after the complete evaporation of the solvent during the jet’s 
ejection to the collector [75,76]. 

 
Figure 1. Deformation modes of the polymer droplets or jet during the electrospinning process mod-
ified after [76,77]. 

Numerous equipment configurations have been created to improve the typical elec-
trospinning plant, overcome various plant limitations, improve the spinning process, fur-
ther improve in versatility, and perform the resulting fibrous materials. The classification 
shown in Figure 2 is divided into two leading families based on the use or non-use of 
needles and considers the method of fiber generation, die movement, and fiber collection 
direction, as well as the use or non-use of needles [78]. Methods based on using multiple 
jets have been created to improve nanofiber production. However, because of the multiple 
jets, the nanofiber web is not uniform due to the replenishment effect between the jets. 
Needle-free processes have been developed to improve nanofiber production rates and 
depend, in this case, on the dies’ shape, which also modifies morphology [79]. 

  

Figure 1. Deformation modes of the polymer droplets or jet during the electrospinning process
modified after [76,77].

Numerous equipment configurations have been created to improve the typical electro-
spinning plant, overcome various plant limitations, improve the spinning process, further
improve in versatility, and perform the resulting fibrous materials. The classification shown
in Figure 2 is divided into two leading families based on the use or non-use of needles
and considers the method of fiber generation, die movement, and fiber collection direction,
as well as the use or non-use of needles [78]. Methods based on using multiple jets have
been created to improve nanofiber production. However, because of the multiple jets, the
nanofiber web is not uniform due to the replenishment effect between the jets. Needle-free
processes have been developed to improve nanofiber production rates and depend, in this
case, on the dies’ shape, which also modifies morphology [79].
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The device is typically horizontal [92], but can alternatively be vertical [80,93–95]. The
resulting fiber morphology and spinning efficiency differ in horizontal and vertical systems
due to gravity’s impact on the Taylor cone and polymer droplet morphologies [76,96]. Al-
though static collectors are frequently employed in the literature [97,98], dynamic collectors
like rotating drums [94,99] and rotating discs are also available [100], which create a more
aligned deposition (Figure 3) [101].
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The optimization of electrospun fiber is based on the final application and researchers’
desire. However, it should be known that six forces need to be considered for optimizing the
parameters in the electrospinning method, i.e., (i) the gravitational force; (ii) the electrostatic
force exerted on the charges present along the polymer jet, and allowing its movement from
the needle to the collector; (iii) the repulsion forces between charges of mutual polarities
or coulombic stretching force that allows the thinning or stretching of the charged jet
during its flight toward the collector; (iv) the viscoelastic force that attempts to prevent
the charged jet from stretching; (v) the surface tension that opposes the stretching of the
charged jet’s surface; and (vi) the drag force initiated by the friction between the charged
jet and the environment [13]. The influence of the force of gravity on the electrospinning
process, which depends on the density of the solution, depends on the configuration of
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the equipment. Apart from the fact that it affects the formation of the Taylor cone and the
shape of the droplet leaving the nozzle, its existence in a horizontal process will require
higher electric fields to overcome it, as well as the surface tension of the solution. In the
case of a vertical installation, they will act on the jet of polymer solution, accelerating its
elongation. Furthermore, it appears that the influence of this force, like that of electronic
forces (a function of the electric field and the conductivity of the solution) and drag forces,
is limited on the formation and morphology of nanofibers compared with the coulombic,
viscoelastic, and surface tension forces [102].

The optimizing of the conditions of the electrospinning process results in homoge-
neous, reproducible electrospun nanofibers. The primary known defects occurring in the
electrospinning process are the presence of branched nanofibers, beaded nanofibers, curled
nanofibers, and flat (ribbon-like) nanofibers. Thus, process, formulation, and ambient
parameters affect the homogeneity and reproducibility of the electrospinning process. Pa-
rameters affecting the electrospinning process can be divided into three categories, i.e.,
(i) process parameters, (ii) solution parameters, and (iii) ambient parameters. Although the
optimization of these three categories of parameters is correlated, each has a distinct effect
on fiber morphology and must be studied to produce electrospun fibers with the desired
morphologies and diameters [103].

2.1. Influence of Operating Parameters on Electrospinning PVA Nanofibers
2.1.1. Voltage

The electric field strength is known to increase with an increase in the applied voltage.
However, a critical voltage is required to obtain the cone for fiber formation, even though
the working distance is minimal with a high electric field strength. The unbalanced effect
results in the prepared fiber exhibiting a wide size distribution when high voltage is
applied [104].

The applied electrical voltage has an evident influence on the fiber’s morphology. The
surface tension of the solution and the electrostatic force should be balanced to obtain
stable jets to form continuous fibers. Once the applied voltage exceeds the critical voltage,
the jets of the liquids will be ejected from the cone tip. The jets, responsible for the bead
formation (sometimes called electrospray if the beads are separate particles), will not be
stable if the solution viscosity is extremely low. High voltages can generate more charges
to the solution or droplet surface located at the tip of the needle (higher coulombic forces)
as well as a higher electrical field (larger electrostatic forces), both of which will stretch the
jets fully for the favorable formation of uniform and smooth fibers [105,106].

Ding et al. observed that the fiber diameters decreased with an increase in the applied
electrical voltage [107]. Also, they achieved fibers with more uniform sizes at a higher
applied electrical voltage (20 kV). The increase in the electric field strength should enhance
the electrostatic force on the solution jet, which will facilitate thinner fiber formations. In
another study, increasing the voltage from 15 to 30 kV decreased the mean diameter of
nanofibers by 25% [108].

2.1.2. Feed Rate

A low feed rate results in the presence of a vacuum inside the needle; however, larger
feed rates cause the polymer to deposit on the tip’s edge, which disrupts the Taylor cone
formation. To achieve and maintain a stable Taylor cone for each applied voltage, an ideal
feed rate value is required [109,110].

It has been pointed out that the polymer solution’s feed rate strongly influences the
polymer fiber morphology [34]. There is an optimum for the feed rate, and once the feed
rate is sufficient to form fibers, a higher feed rate will supply more PVA solution, which
is recognized as excess, producing fibers with beads [105]. Ding et al. observed that the
average diameter was almost the same with an increasing feed rate [107]. This indicates that
the electrospun PVA fibers’ morphology, diameter, size, and uniformity are not significantly
influenced by the feed rate.
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2.1.3. Tip-to-Collector Working Distance (TCD)

The TCD primarily influences the evaporation of the solvent in the solution and the
stretching of a PVA macromolecular chain, but it also affects the strength of the electric field.
If the TCD decreases, the strength of the electric field increases. Polymer jets are stretched
under electrostatic force when they travel through the electrical field. During this process,
the solvent evaporates, and the polymer jets maintain their elasticity. It is reported that
the possibility of fiber contraction (shrinkage) increases with an increase in the working
distance [108]. If the fiber diameter is observed to decrease, uniformity is achieved by
increasing it gradually with increases in the working distance to reach an optimum point;
after this point, by increasing the distance, the uniformity of the fibers decreases, and even
some cracks are observed in the PVA fibers [107]. However, varying the TCD over a small
distance range, between 10 and 15 cm in the case of Phachamud’s experiment, did not limit
the formation of pearled fibers or defects [104].

The influence of increasing the distance on the average diameter of nanofibers is a
controversial topic in the literature. On the one hand, Ding et al. observed that the diameter
of a PVA nanofiber slightly increases by increasing the tip-to-collector distance from 6 to
14 cm [111]. On the other hand, Supaphol and Chuangchote attributed the decrease in
fiber diameter to the increase in distance, resulting in an increase in the total trajectory of
the charged jet, time of flight, and more uniform stretching [13]. Selected SEM images in
Figure 4 illustrate the morphological appearance of the as-spun fibers from the sonicated
10% w/v PVA solution collected at various collection distances in the range of 5 to 20 cm.
Evidently, at the collection distance of 5 cm, a combination of smooth and beaded fibers
was obtained, and some of the adjacent fibers appeared to fuse at touching points, an
indication of the incomplete drying of the jet prior to deposition on the collector. Increasing
the distance between the needle tip and the collector reduces the electric field intensity,
decreasing electrostatic and coulombic repulsion forces. These changes lead to instability in
the emission of the solution jet and, consequently, to an increase in the flight path, allowing
the solvent to evaporate and the stretching of the polymer jets to result in fibers with
smaller diameters. Conversely, a decrease in the TCD generally induces incomplete solvent
evaporation, with partially solvent-swollen fibers collapsing to form non-uniform fibers
with larger diameters or beads. Thus, increasing the trajectory between the needle point
and the collector is necessary for obtaining smooth, uniform fibers or microparticles.
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reference [13] with permission).



Int. J. Mol. Sci. 2024, 25, 1668 8 of 31

2.1.4. Collector Design

Conductive collectors act as a substrate to collect the charged fibers during the electro-
spinning process. The kind of collector majorly influences the structure and performance
of the collected nanofibers [112]. Due to the instability of the electrospinning jet, typical
electrospun nanofibers are generally collected as non-woven or randomly oriented struc-
tures, especially when using a static collector such as a metal plate. Only coulomb forces
produced by an applied voltage act on the electrospinning process in the static collector. As
the fibrous structure’s disordered orientation and low mechanical strength have limited
applications, many studies have focused on fiber alignment [113]. Furthermore, it can be
noticed that nanofibers with a similar alignment and average diameter also have similar
melting temperatures and crystallinity [114].

One method of obtaining aligned electrospun fibers is to use parallel electrodes, or
two parallel plates (separated by a gap) connected to a grounded electrode [115]. As the
distance between the two conductive collectors increases, the average diameter of the
nanofibers decreases with a high degree of alignment [116]. The concept proposed by
Rakesh et al. is based on modifying the nature of the electrostatic field on the collector
plate by creating a repulsive field of different magnitudes and directions using collector
plates with various geometric slots to produce aligned electrospun nanofibers [117]. A
modification of the frame collector technique, known as the dual vertical wire technique,
was introduced by Chuang-chote and Supaphol [118]. This approach involves two vertical
stainless steel wires as the secondary target and a grounded aluminum foil as the primary
target. The wires are positioned in parallel along a central axis between a blunt-ended
stainless steel needle and the grounded aluminum foil. Both the needle and the foil are
tilted at approximately 45 degrees from the vertical baseline. This configuration enables
the simultaneous collection of aligned fibers (between the parallel wires) and a randomly
aligned fiber mat (on the aluminum foil).

The rotating collector, in addition to coulomb forces, can offer a mechanical stretch
force to align molecule chains. In other words, during electrospinning, the high-speed ro-
tating collector supplies elongation forces and arranges macromolecular chains to produce
aligned fibers. The rotary drum is the most widely used collector, where the fiber diameter
is controlled by varying the drum speed. Fiber alignment is achieved with an improved
mechanical performance at higher speeds [119,120]. Li et al. designed a novel tubular
collector with helically arranged metal wires for electrospinning PVA-styrylpyridinium
pendent groups (SbQ) fibers into a 3D helical structure [121]. This method not only offers
the potential for creating biomimetic scaffolds or grafts, but also provides an approach that
could lead to the development of scaffolds more precisely mimicking the fibrous structure
of specific blood vessels. Using a rotating disc represents a significant advantage over
other rotating systems, as the edge of the disc is covered by a massive deposit of aligned
fibers [122]. An electric field exists between the polymer jet and the rotating wheel, and
as the wheel rotates, the field is affected by the sharp edge of the wheel. In addition, the
polymer jet is subjected to a tensile force from the wheel, causing the deposited nanofiber to
stretch and become finer. The deposited fibers align themselves while remaining separated
using a repulsive force, as each of the fibers carry a residual charge as it accumulates in the
rotating collector. Another approach was developed by Chvojka et al. [123], who used a
special saw-shaped collector to produce PVA nanowires. The collector shape was designed
to align the nanofibers in the space between neighboring lamellae, thanks to the distribution
of the electric field in the vicinity of the collection device.

2.2. Influence of Formulation Parameters on Electrospinning PVA Nanofibers

The effects of processing parameters for the polymer solution and processing con-
dition on the morphology, such as the polymer concentration, its molecular weight, and
the solution’s electrical conductivity, were found as dominant parameters to control the
morphology of electrospun polymer fibers [124]. The diameter of the electrospun fibers
dramatically decrease with a decreasing polymer concentration. Surface tension effects
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could dominate with a decreased polymer concentration and solution viscosity, and beaded
fibers are consequently produced. Non-uniform fibers are formed more easily with a low
polymer molecular weight. The molecular weight of the polymer reflects the number
of entanglements of polymer chains in a solution. Thus, sufficient solution viscosity is
necessary to produce a uniform jet during electrospinning and restrain surface tension
effects. It was found that the diameter of the electrospun fibers is not dramatically changed
with varied applied voltages. The voltage effect is notably diminished when the polymer
concentration is low.

2.2.1. Polymer Concentration, Viscosity, and Surface Tension

The molecular weight (Mw) of commercially available PVA is generally between
9000 and 186,000 g.mol−1 [125]. PVA solution viscosity increases with concentration, im-
pacting the electrospinning process. Excessively viscous solutions can lead to beaded
fiber formations, while insufficient viscosity prevents jet development and fiber growth.
Colby et al. identified four concentration regimes, i.e., (i) diluted, (ii) semi-dilute unen-
tangled, (iii) semi-dilute entangled, and (iv) concentrated [126]. The critical concentra-
tion (C*) transitions to the semi-dilute unentangled regime, where beaded fibers form.
The entanglement concentration (Ce) signifies a significant viscosity increase, ensuring
consistent bead-free fibers (Figure 5). Highly viscous solutions can cause issues during
feeding [127,128]. The critical concentration (C*) can be determined as 1/[η], and the
transition from semi-dilute untangled to entangled regimes is determined from viscosity
vs. shear rate graphs. Gupta et al. [12] investigated various c/C* values for different
solution regimes, including dilute (c/C* < 1), semi-dilute unentangled (1 < c/C* < 3),
semi-dilute entangled (3 < c/C* < 6), entanglement concentration (Ce) (c/C* > 6), and
highly concentrated solutions (C** = c/C* > 10) [129]. Above C**, fibers become signifi-
cantly concentrated, increasing in diameter and losing their circular cross-section. Notably,
the theoretical crossover value of semi-dilute unentangled to entangled regimes (C*) is
higher than the experimentally determined value.
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Polymer concentration is an essential operational parameter in the electrospinning
process, significantly influencing the fiber morphology. The formation of the fibers is
inhibited in the solutions with high concentrations due to their high viscosity [105]. The
high viscosity makes it extremely difficult for the solutions to flow through the syringe
needle to form nanofibers under an electrostatic force [104]. Therefore, an appropriate
solution concentration becomes one of the critical parameters required to optimize the final
electrospinning fibers. An extremely low solution viscosity can cause the formation of beads
in nanofibers. In a solution with relatively high viscosity, the stable jets, without breaking
due to the cohesive nature of the high viscosity, travel to the electrode and finally form the
uniform fibers on the collecting grounded electrode. The viscosity and conductivity of the
PVA solution are evidently increased as the polymer concentration was increased [104]. In
another study, Supaphol et al. reported increased viscosity and conductivity by increasing
the PVA concentration [13]. By increasing the viscosity, the average diameter of the PVA
nanofibers increases by 18 and 36% with an increase in polymer concentration from 9 to 10
and 11% by weight [107]. This means that a high-concentration solution results in high
viscosity and high surface tension; after that, the stretching ability is reduced, so the
diameter of the nanofibers increases. In a study by El-Aziz et al., they chose 10 wt.% of
PVA water solution based on the smallest fiber diameters and the highest surface area of
the membrane [108]. Another item that affects the viscosity of the solution is the use of
sonication for PVA. Using sonication to prepare a PVA solution causes the viscosity of the
solution to decrease the average diameters of the as-spun fibers [13].

Solution surface tension plays an essential role in electrospinning since it is the main
force opposing the repulsive force of the charges on the jet surface. As such, it influences
the formation of the Taylor cone and the initiation of the solution jet and, consequently, the
fiber diameter [130]. In addition, a high surface tension has much the same effect as low
viscosity, i.e., the creation of instabilities in the solution jet, leading to the appearance of
beaded filaments. If the surface tension is too high, a higher voltage must be applied to
produce fibers [131]; if the surface tension is too low, it is no longer suitable.

This characteristic essentially depends on the composition of the polymer solution,
i.e., the choice of solvent for solubilizing the PVA, the physico-chemical properties of
the PVA (molecular weight (g.mol−1) (Mw), degree of hydrolysis (DH), concentration
(wt.%)) [132–134], and the presence or absence of a surfactant [135]. PVA, as a polymer col-
loid, has a surface effect in an aqueous solution by creating H-bonds between the hydroxyl
groups of the PVA chains and water. At low concentrations, the surface tension of an aque-
ous solution decreases drastically, reaching a plateau between 40 and 50 mN/m depending
on the formulation used, for a polymer concentration range from 0.1 to 0.2 wt.%. The
decrease in surface tension is linked to the adsorption of macromolecules at the air–water
interface as concentration increases. For the concentration ranges used in electrospin-
ning, the surface tension of polymer solutions does not change, regardless of the polymer
concentration and molecular weight used, indicating solution saturation [136].

To reduce the surface tension of PVA-based solutions, in addition to selecting solvents
other than water, a co-solvent with low surface tension leads to smooth nanofibers [137].
Another strategy described in the literature is to use a surfactant [135,138], which also
leads to uniform nanofibers. The introduction of non-ionic and anionic surfactants at low
concentrations contributes to a reduction in solution surface tension in PVA solutions.
Indeed, for concentrations above 1% (v/v) or above the critical micelle concentration, it
has been observed that surface tension increases due to interactions between polymer and
surfactant, and to the formation of free micelles corresponding to the saturation of polymer–
surfactant interactions. Adding an ionic surfactant, such as sodium dodecylbenzene
sulfonate (SDBS) not only decreases the surface tension of the solution, but also helps
increase electrical conductivity, thereby reducing the nanofiber diameter and contributing
to fiber homogeneity [138]. Jia and Qin observed that the introduction of cationic surfactants
led to a decrease in surface tension by 33%, depending on the concentration [135]. When
the concentration of anionic surfactant was less than 1% (v/v), the surface tension of the



Int. J. Mol. Sci. 2024, 25, 1668 11 of 31

PVA solution with anionic surfactant was reduced to half; whereas with 1.2% (v/v) anionic
surfactant, it increased by half. The addition of non-ionic surfactant decreased the surface
tension to 4.6 mN/m; and similar to the introduction of anionic surfactant, when the
concentration of the non-ionic surfactant was 1.2% (v/v), the surface tension increased to
32.6 mN/m. On the other hand, the effect of using an amphoteric surfactant on surface
tension was negligible. These variations in surface tension due to macromolecule–molecule
interactions are also correlated with variations in viscosity in the dope solution.

2.2.2. Conductivity

The conductivity of a fluid has a direct impact on the amplitude of jet instability
modes. A solution with a high conductivity has a greater capacity to transport charges
than a solution with a low conductivity, which increases the stretching of the solution jet.
This parameter plays a less important role than the other physico-chemical parameters of
solutions. Highly conductive solutions cause jet instabilities in the presence of high electric
fields, resulting in instabilities at the Taylor cone and consequently increasing the mean
diameter and distribution of the resulting nanofibers [139]. The solutions’ conductivity
also influences the nanofibers’ morphology, and Itoh et al. observed that the introduction
of salt led to an increase in conductivity, resulting in the development of ribbon-like
fibers [140]. However, the effect of salts on the nanofibers’ morphology and average
diameter also depends on these species’ chemical nature [134] and their interactions with
macromolecules, which influence all other physico-chemical properties.

2.2.3. Solvent

Solvents influence the physico-chemical properties of solutions, particularly surface
tension. A high concentration of free solvent molecules contributes to the aggregation of
solvent molecules, enabling the solution to adopt a spherical shape. Interactions between
solvent and macromolecules increase viscosity, so when the solution is stretched under
the influence of charges, the solvent molecules will tend to spread out over the entangled
macromolecules, limiting the aggregation of solvent molecules under the influence of
surface tension [135].

The physico-chemical properties of the solutions also depend on the solvent used to
solubilize the PVA. Solubility also depends on the degree of polymerization, hydrolysis,
and solution temperature [141]. A change in any of these factors alters the possibility
of hydrogen creation in the medium, affecting solubility and solution properties. PVA
is soluble in polar solvents such as water, dimethyl sulfoxide (DMSO), ethylene glycol
(EG), and N-methyl pyrrolidone (NMP) [142], though water is the most commonly used
solvent for PVA. The use of a solvent mixture has been reported several times in the
literature. However, it also appears that a mixture of two suitable solvents, such as water
and DMSO, acts as a non-solvent for PVA due to stronger solvent–solvent interactions than
polymer–solvent interactions [143]. Therefore, the morphology of electrospun nanofibers
depends on the ratio between the two solvents, water/DMSO. According to Gupta et al.,
low DMSO content leads to uniform fibers, with an increase in diameter as a function of
DMSO addition [142]. This variation is linked to a change in the rheological properties
of the solutions and, in particular, the relaxation time of the macromolecular chains. The
solutions exhibit poor spinnability at molar ratios of 1:2–1:3, forming non-uniform pearled
fibers. The choice of a co-solvent can also be made based on a Teas graph, considering the
solvents’ polar, dispersive, or hydrogen components. For example, Mahmud et al. found
that solution spinnability improved with increasing dispersion strengths or dispersive
components for water–ethanol or water–acetic acid mixtures, with a contribution to solution
viscosity, particularly for high-molecular-weight PVA [144]. During the process, solvent
evaporation kinetics determine the nanofibers obtained. Adding a low-vapor-pressure
solvent such as dimethylformamide (DMF) to the aqueous solution provides greater control
over fiber morphology [145].
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2.3. Influence of Relative Humidity on Electrospinning PVA Nanofibers

Relative humidity influences solvent volatilization, which influences PVA nanofiber
formation and fiber surface structure or morphology. Depending on the relative humidity,
the electrospun nanofiber’s diameter changes. A thicker nanofiber results from quick
solvent evaporation under low relative humidity, while a thinner nanofiber results from in-
creasing the relative humidity’s inhibition of solvent evaporation, because high evaporation
increases the spinning fluid viscosity, and polymer chains are not subjected to voltage-
induced stress, increasing the fiber diameter [146–148]. Due to PVA’s great hydrophilicity,
the environment’s humidity will impact how nanofibers develop and the physical char-
acteristics of the resulting structures. Only a few articles have focused on the effect of
moisture on PVA nanofibers. The impact of moisture on the morphological and mechanical
characteristics of PVA nanofibers was established by Pelipenko et al. [147]. The diameter
of the nanofibers decreased with increasing relative humidity (RH%), from 667 ± 83 nm
(RH 4%) to 161 ± 42 nm (RH 60%). The relative standard deviation significantly increased,
and uneven fiber morphology with beads was observed at the most significant relative
humidity tested (70%). Additionally, mechanical analyses of nanofibers below 250 nm
showed that the stiffer fiber structures resulted from the reduction in nanofiber diameter
produced with higher RH values employed during electrospinning.

Nanofibers with diameters greater than 250 nm have constant mechanical character-
istics due to size-dependent surface effects. Changes in RH substantially influence the
packing density and fiber diameter [146]. Higher RH values support the construction of
a more closed structure with thinner diameters, whereas lower RH values favor an open
structure. This is explained by two phenomena that happen when RH increases: the polar-
ization of the air caused by the high electric field created by the formation of ozone and the
increase in conductivity of the medium as a result of the increase in conductive paths cre-
ated by the water dipoles along the fiber spinning gap. Raksa et al. investigated the effects
of RH on surface porosity and fiber diameter on PVA-silk fibroin blend nanofibers [148].
A less interconnected pore distribution was found on the surface in low RH conditions
since the rapid solid fiber formation due to solvent evaporation limited the entrapment
of water molecules and condensing of moisture on the surface during the process. The
nanofiber electrospun at the lowest RH (50%) has the maximum tensile strength with the
lowest % elongation at break. The nanofibers displayed a loose texture at a high RH (80%),
indicating inadequate fiber–fiber bonding.

3. Morphology of Electrosprayed/Electrospun PVA Materials

The properties of electrospun PVA are greatly influenced by its Mw and DH, impacting
physical and chemical characteristics, working concentration, fiber morphology, cross-
section, and the occurrence of bead formation [93]. Lee et al. found that a higher Mw
PVA produces superior physical characteristics, enhancing the electrospun mats’ stability
and mechanical strength [94]. Peresin et al. noted a significant increase in the degree
of crystallinity of electrospun PVA due to improved crystallization under high shear
stresses, though the polymer matrix’s structure remained unaffected [149]. Additionally,
Restrepo et al. reported that polylactid acid/PVA (PLA/PVA) blended with higher Mw
and PVA hydrolysis levels exhibited superior thermal stability [150]. Considering the multi-
disciplinary nature of PVA, it is notable that limited research has explicitly investigated
the impact of physico-chemical parameters within PVA solutions on the fabrication of
electrospun structures. Understanding these relationships between Mw and DH within
PVA solutions is crucial for optimizing electrospun mats, particularly for applications such
as wound dressing, tissue engineering, and drug delivery systems.

Low polymer concentrations (c < C*) correspond to a dilute regime where the polymer
chains are isolated. The critical concentration C* marks the boundary between the dilute
and semi-dilute regimes. There is no cohesion in the polymer chains in this state because
they are too far apart to interact. The Rayleigh instability will induce droplet formation,
and only the particles will be collected. This process is called electrospraying [151–154].
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Electrospraying is a unique method for creating polymer-based micro- and nanoparticles.
It has recently gained popularity due to its benefits, including ease of batch manufacturing,
high yield, and narrow size distribution [155]. The electrospraying technique is based on
the same principle as the electric field fiber-spinning method. The difference between the
two techniques is achieved by varying the properties of the solution, such as concentration,
solvent, and viscosity, and process parameters, such as flow rate, distance from needle tip
to collector, and voltage [156]. Micro- and nanoparticles can be formed by electrospray-
ing, disrupting the Taylor cone and endless fiber formation stage and forming droplets
(Figure 6) [72]. Li et al. encapsulated in situ synthesized Fe3O4 nanoparticles inside a PVA
shell by electrospraying for magnetic resonance imaging, which has been developed as
an alternative to X-ray digital subtraction angiography. Additionally, Fe3O4 nanoparticles
served as physical crosslinkers to help the PVA droplets gel and solidify into stable PVA
matrices [155]. The size distribution of nanoparticles with morphology close to spherical
was between 262 µm and 958 µm. Young et al. encapsulated L929 fibroblast cells within
PVA microspheres [157]. Unlike in the general approach, microcapsules were atomized into
a liquid rather than a surface, and this method is called submerged electrospraying. The
microspheres atomized into hydrogel macromer solution were simultaneously covalently
crosslinked under UV light. This method successfully produced uniform, spherical particles
with a customizable mean size from a few micrometers to several hundred micrometers,
depending on the flow rate and applied voltage.
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Figure 6. Schematic representation of the electrospraying process.

The viscosity of PVA solutions is directly related to PVA concentration, impacting
entanglement. As PVA concentration increases, viscosity rises (Figure 5). Distinct slopes
in the viscosity–concentration curve mark the transition from diluted to semi-diluted
regimes. Increased concentration leads to greater entanglement. Concentrations above the
entanglement concentration (Ce) have been used for electrospinning experiments. Viscosity
influences the formation and stability of the polymer jet and resulting mat. Morphologies
of electrospun PVA mats were compared with those in the literature based on Mw and
Berry number (Be = [η]C) (Figure 7). Be indicates chain entanglements, with Be > 1
denoting entanglement. Be values between 4 and 9 result in beaded fibers, while a Be
around 9 leads to beadless fibers [158]. In our study, beaded fibers were observed at Be
values between 4.6 and 8.6. Beadless nanofibers were achieved with a higher Mw PVA
(Mw 31,000 and 61,000 g.mol−1) at Be values of 7.2 to 10.8. To reduce Ce for a high Mw
PVA (130,000 g.mol−1), a co-solvent such as acetic acid (HAc) can be introduced, increasing
electrical conductivity [159]. However, higher conductivity may lead to an unstable cone
jet mode due to coulomb repulsion [160]. A bead-free nanofibrous surface was achieved
with 5% PVA-5 (7/3 distilled water/HAc) at Be = 5.3, which is lower than those of beadless
nanofibers produced with water alone (Figure 7).



Int. J. Mol. Sci. 2024, 25, 1668 14 of 31

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 14 of 33 
 

 

 
Figure 6. Schematic representation of the electrospraying process. 

The viscosity of PVA solutions is directly related to PVA concentration, impacting 
entanglement. As PVA concentration increases, viscosity rises (Figure 5). Distinct slopes 
in the viscosity–concentration curve mark the transition from diluted to semi-diluted re-
gimes. Increased concentration leads to greater entanglement. Concentrations above the 
entanglement concentration (Ce) have been used for electrospinning experiments. Viscos-
ity influences the formation and stability of the polymer jet and resulting mat. Morpholo-
gies of electrospun PVA mats were compared with those in the literature based on Mw 
and Berry number (Be = [η]C) (Figure 7). Be indicates chain entanglements, with Be > 1 
denoting entanglement. Be values between 4 and 9 result in beaded fibers, while a Be 
around 9 leads to beadless fibers [158]. In our study, beaded fibers were observed at Be 
values between 4.6 and 8.6. Beadless nanofibers were achieved with a higher Mw PVA 
(Mw 31,000 and 61,000 g.mol−1) at Be values of 7.2 to 10.8. To reduce Ce for a high Mw 
PVA (130,000 g.mol−1), a co-solvent such as acetic acid (HAc) can be introduced, increasing 
electrical conductivity [159]. However, higher conductivity may lead to an unstable cone 
jet mode due to coulomb repulsion [160]. A bead-free nanofibrous surface was achieved 
with 5% PVA-5 (7/3 distilled water/HAc) at Be = 5.3, which is lower than those of beadless 
nanofibers produced with water alone (Figure 7). 

 
Figure 7. Morphologies obtained using different concentrations of PVA on different Mws: (a) Berry 
number vs. Mw and (b) concentration (wt.%) vs MW (g/mol). 

Viscosity is important in fiber formation and morphology, directly influenced by so-
lution concentration and polymer Mw. Figure 8 illustrates the dependence of PVA fiber 
morphology on Mw and concentration. The data do not exhibit distinct groupings. Low 
Mw PVA (9000–10,000 g.mol−1) failed to produce beadless fibers even at a high viscosity 
(776 mPa.s). A viscosity of 399 mPa.s or higher is required to achieve non-beaded fibers, 

Figure 7. Morphologies obtained using different concentrations of PVA on different Mws: (a) Berry
number vs. Mw and (b) concentration (wt.%) vs MW (g/mol).

Viscosity is important in fiber formation and morphology, directly influenced by
solution concentration and polymer Mw. Figure 8 illustrates the dependence of PVA
fiber morphology on Mw and concentration. The data do not exhibit distinct groupings.
Low Mw PVA (9000–10,000 g.mol−1) failed to produce beadless fibers even at a high
viscosity (776 mPa.s). A viscosity of 399 mPa.s or higher is required to achieve non-beaded
fibers, particularly for medium and high Mw PVA (Mw > 61,000 g.mol−1). However, it is
essential to consider the DH. PVA with Mw: 9000–10,000 g.mol−1 has the lowest DH (80%),
indicating a higher proportion of vinyl acetate monomers. The presence of acetyl groups in
PVA can impact hydroxyl group interactions, potentially altering electrospinning conditions
due to reduced hydrophilicity. The findings on the orientation show that regardless of
various production parameters and PVA types, there is no significant variation in fiber
alignment on the resulting web-like PVA surfaces.
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4. Applications of PVA Nanofibers

Electrospun nanofibers have been employed industrially for more than two decades.
Synthetic polymers have been focused on because of their inexpensiveness, abundance,
higher chemical and thermal stability, and more accessible and uniform fiber produc-
tion [162,163]. The efficiency and reproducibility of the electrospinning process of proteins
and polysaccharides, as well as the fiber uniformity, remain problematic due to the highly
diverse chain conformations, hydrodynamic responses, and repulsive forces in solution
among the polyanions of natural polymers, which restrict their practical application [164].
The desired application benefits from increased mechanical and biological features when
blended with natural polymers. PVA is a superior carrier polymer for blending natural
polymers due to its low cytotoxicity, water-solubility, and relatively more straightforward
electrospinnability. PVA can decrease repulsive forces in charged biopolymer liquids, en-
abling fibers to electrospin [163,165]. The temperatures at which PVA dissolves span a
considerable range. PVA dissolves partially at low temperatures, but entirely at temper-
atures above 70 ◦C, depending on the molecular weight and degree of hydrolysis [166].
Another benefit of employing PVA as a hydrophilic component in blends is that, at body or
room temperature, it does not quickly dissolve and leach into water or culture media [167].

Electrospun ultrafine fiber surfaces are particularly appealing for medical and cosmetic
purposes because of their high surface area/volume ratio, small pore sizes, and high
porosity. It has a perfect environment for cell adhesion, proliferation, and differentiation and
can be a carrier surface for bioactive active substances such as medicines and growth factors
due to its structure and topological properties that are similar to those of an extracellular
matrix [69–72].

4.1. Filtration

Filtration is a fundamental application area where electrospun nanofibers can be used
because of their high porosity, interconnected open pore structure, and desirable membrane
thickness. Maleic acid-crosslinked PVA nanofiber layers have been employed as a sub-layer
on spunbond or meltblown surfaces for air filtration [163,168], developed PVA/chitosan
(PVA/CS) and PVA/cyanobacterial extracellular polymeric substances (EPS), and blended
nanofibrous membranes for water filtration. The article showed the capability of blending
EPS with a PVA blend for the first time while having higher mechanical properties with a
lower disintegration in between 10 and 50 ◦C and a superior chromium binding capacity
than PVA-CS blends. The use of PVA in combination with other materials, such as chitosan,
has been reported to enhance the antibacterial properties and filter efficiency of the nanofi-
brous membranes, making them suitable for filtration applications [169]. Additionally,
the incorporation of photocatalytic materials, such as titanium dioxide (TiO2), into PVA
nanofibers has been shown to improve filtration efficiency, highlighting the versatility of
PVA-based nanofibrous membranes for filtration studies [170].

In the time of the COVID-19 pandemic, the significance of personal protective equip-
ment (PPE) heightened. Electrospun nanofibers, particularly those incorporating PVA, have
emerged as versatile materials for advanced PPE development. Numerous studies have
investigated the use of electrospun nanofibrous membranes in PPE applications, show-
casing their potential for providing UV-shielding, antibacterial and antiviral properties,
and high filtration efficiency [171–174]. Abbas et al. developed a novel multilayer mask
with a degradable, multifunctional hybrid filter composite. This composite, comprising
three electrospun nanofibrous layers, addresses challenges in face mask filters. The outer
layer, a TiO2/CS/PVA matrix with TiO2 nanotubes, acts as an antimicrobial and antiviral
agent. The middle CS/PVA layer provides natural air filtration and pathogen inactivation.
The inner layer, composed of silk/PVA nanofibers, enhances mechanical properties and
heat dissipation, contributing to wearer comfort [175]. Moreover, the combination of PVA
with other materials, such as metal–organic frameworks, has been employed to construct
composite membranes for highly efficient air filtration [176].
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PVA has also been explored for chemical filtration applications. Amino group (Hal-
NH2)-grafted halloysite nanotubes were utilized to enhance adsorption/filtration in elec-
trospun PVA/CS nanofibers. Employed in two modes—coated on the membrane and
embedded in the polymer solution—these cactus-like nanofibers demonstrated signifi-
cantly higher divalent cadmium (Cd(II)) and divalent lead (Pb(II)) adsorption capacities
compared to alternative functionalized materials. Notably, the stability of Hal-NH2 en-
trapped nanofibers endured, maintaining a nearly intact adsorption capacity over five
adsorption/desorption cycles, in contrast to Hal-NH2 coated samples [177].

Yang et al. have developed a green and environmentally friendly material for dispos-
able protective products such as masks [178]. The fiber membranes were modified with
glutaraldehyde (GA) vapor and hydrochloric acid to improve their resistance to hydrolysis.
The fiber membrane inhibited Staphylococcus aureus and Escherichia coli by over 97%. The
fibers exhibit free aldehyde groups after GA crosslinking, which have good antibacterial
properties. The filtration efficiency of the CS/PVA/GA fiber membrane was over 95%,
and the filtration resistance did not exceed 343.2 Pa, meeting the requirements of the filter
material used in the mask. The use of GA/HCl (hydrochloric acid) vapor for chemical
crosslinking resolves the instability of electrospun PVA fibers in an aqueous environment.
The CS/PVA/GA nanofiber composite membrane offers good hydrolysis resistance while
retaining good antibacterial properties and filtration efficiency.

4.2. Gas Sensor

Metal oxide semiconductors are a precious class of materials due to their potential
applications in photocatalysis, solar cells, and gas sensors. In contrast to traditional synthe-
sis methods, such as vacuum deposition, spin-coating, sputtering, sol-gel synthesis, and
thermal evaporation, electrospinning offers a cost-effective and versatile option for the
large-scale production of one-dimensional composite materials with high surface areas.
The self-supporting, entangled fiber structure of the material produced through electro-
spinning also leads to high porosity, which is beneficial for gas-sensing applications. In
reducing the size of the sensing material, the gas-sensing performance is increased due to
the increased surface-to-volume ratio and increased surface reaction sites for the absorption
of gas species [179].

Common polymers used in the production of electrospun metal oxide nanofibers in-
clude water-soluble polymers such as poly(vinylpyrrolidone), polyethylene oxide, poly(vinyl
acetate), and PVA. The integration of multifunctional materials, including metal oxides,
inorganic non-metals, metal–organic frameworks, and covalent organic frameworks, into
these polymers allows for the creation of composite nanofibers with diverse morphologies,
structures, and functionalities through controlled conditions [180].

Electrospinning is used due to several key advantages such as (1) the ability to produce
nanofibrous membranes with a range of specific surface areas by controlling fiber geometry
and pore size, which makes them ideal for use as sensors; (2) the versatility of fiber materials,
which allows for a wide range of applications based on their unique characteristics; (3) the
efficient molecular recognition capabilities of electrospun sensors, enabling rapid and
simple detection without the need for the pre-treatment of samples; (4) the high sensitivity
and quick response of the sensor interface to even small quantities of samples; (5) the
excellent repeatability, stability, and reusability of electrospun sensors; and (6) their cost-
effectiveness for detection. Furthermore, the large surface area of electrospun nanofibers
provides ample active adsorption sites for target analytes, leading to accelerated adsorption
and desorption rates for improved sensitivity and faster sensing [181].

Two significant methods exist for preparing sensors based on metal oxide materials
using electrospinning. The first involves creating nanofibers with inherent sensing capabil-
ities through the electrospinning of functional polymers, PVA, that serve as the sensors’
sensing elements [182]. The second method involves utilizing electrospun nanofibers as
templates and depositing responsive sensing materials with surface functionalization to
form micro- and nanostructures with specific sensing properties [183].
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4.3. Biosensors

In the field of biosensors, the investigation of employing PVA nanofibers for immo-
bilizing different nanoparticles, such as gold and palladium, has been conducted. This
integration is specifically engineered to enhance the electrochemical activity and might
provide antibacterial properties to the nanofibers. Xu et al. incorporated gold nanoparticles
into electrospun PVA/polyethyleneimine (PEI) nanofibers. The glutaraldehyde-crosslinked
nanofibrous mats served as nanoreactors, facilitating the complexation of tetrachloroaurate
ion (AuCl4) anions by binding with the free amine groups of PEI. This process led to the
subsequent formation and immobilization of gold nanoparticles (AuNPs), offering potential
applications in catalytic activity and reusability for the transformation of 4-nitrophenol to
4-aminophenol [184]. Wang et al. proposed an efficient method for fabricating electrochem-
ical biosensors, involving the immobilization of palladium nanoparticles onto PVA/PEI
nanofibers through a combination of electrospinning and in situ reduction processes [185].
This approach holds promise for environmental pollution monitoring devices. The resulting
nanocomposites demonstrated outstanding performances as electrochemical biosensors,
enhancing the detection of H2O2 by significantly improving the electron transfer between
the redox-active site of H2O2 and the glassy carbon electrode. Itani et al. developed a
biosensor—a fluorometric electrospun fiber sensor mesh based on enzymes—using blends
of polycaprolactone (PCL), poly(lactid-co-glycolic acid) (PLGA), and PVA nanofibers [186].
The resulting nanofibrous mat, produced with polymers, alcohol dehydrogenase, and
oxidized nicotinamide adenine dinucleotide, successfully targeted gaseous ethanol.

4.4. Tissue Engineering

Tissue engineering is a multidisciplinary field that aims to develop biological substi-
tutes to restore, repair, or replace damaged tissues and organs [187]. This field differs from
wound dressing in that it involves the construction of cells, biomaterials, and bioreactors
to develop three-dimensional artificial tissues and organs, whereas wound dressing is
primarily focused on promoting wound healing and preventing infections [188]. The main
organs of concern in tissue engineering include the bladder, blood vessels, heart valves,
tendons, and ligaments, among others [189–192]. The tissue engineering triad consists of
three main factors: cells, signaling molecules, and scaffold, which support and rely upon
one another [193,194].

The significance of electrospinning polyvinyl alcohol (PVA) in tissue engineering is
notable, illustrated by its diverse applications and contributions to the field. The extensive
use of electrospun PVA nanofibers in tissue engineering is due to their biocompatibil-
ity, biodegradability, and adjustable mechanical properties, rendering them suitable for
constructing scaffolds that mimic the extracellular matrix. This supports a conducive envi-
ronment for cell attachment, proliferation, and tissue regeneration [121,195]. Koosha and
Mirzadeh used PVA as a guest polymer to make chitosan electrospinnable by leveraging
favorable interactions between these polymers [99]. Nanofibers were drawn from blends
of different ratios prepared from a 7 wt.% solution of both polymers. While nanofibers
could not be obtained from chitosan solution alone, it was revealed that solutions were
more complex to spin when the ratio of chitosan to PVA was higher than 50/50. While the
average diameter of PVA fibers alone is 257 ± 63 nm, chitosan’s inclusion in the solution
led to a decrease in diameter due to raising the concentration of surface charges on the jet
because of its cationic polyelectrolytic properties in acidic environments. Nanofibers of
30/70 chitosan/PVA ratio were found as an optimum product with a more uniform fiber
distribution with a 223 ± 50 nm average fiber diameter but lower tensile strength than
pristine PVA samples. Sajeev et al. also developed PVA–chitosan nanofibers for medical
purposes and discussed the effect of the voltage, tip-to-target distance, and flow rate on fiber
morphology [95]. It has been shown that the addition of chitosan to the structure reduces
the fiber diameter and the lowest fiber diameter is obtained at a ratio of 8:2 PVA:chitosan
formed with 8% PVA at a distance of 8 cm under 15 kV voltage. Raska et al. blended silk
fibroin with PVA and produced nanofibrous scaffolds to replicate the radial, circumferential,
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and random directions of collagen fiber in the meniscus [148]. The scaffolds were examined
only in terms of mechanical and morphological properties. Eggshell-derived calcium phos-
phate (TCP) and carbon dots, known for their applications in intra-cellular bioimaging and
biosensors, were incorporated into poly(ε-caprolactone) (PCL)/PVA nanofibrous scaffolds
to impart osteoinductive properties [196]. The addition of 1 wt.% carbon dots and specific
TCP individually to PCL/PVA nanocomposite enhanced bone growth (ALS) activity and
cell proliferation. The synergistic effect of carbon dots and TCP resulted in the highest
osteogenic differentiation and proliferation rates compared to those of other scaffolds.
Liu et al. investigated the feasibility of assembling small diameter tubes with helically
arranged fibers to mimic the helical structure of native blood vessels [121]. The study
used photo-crosslinkable PVA with styrylpyridinium pendent groups (SbQ) to produce
nanofibers. Endothelial cells demonstrated a preference for attaching to PVA-SbQ fibers.
The experiment revealed that endothelial cells were guided to grow along the PVA-SbQ
fibers, emphasizing the potential and advantage of using these fibers in vascular grafts.
Ngadiman et al. pointed out the difficulty of producing three-dimensional (3D) tissue engi-
neering scaffolds, especially for hard tissues and proposed a technique that combines fused
deposition modeling 3D printing with electrospinning [195]. Electrospun PVA/maghemite
fibers are layered onto a 3D printed structure, forming a tissue engineering scaffold with
milli- and microporous internal structures and a nanoporous external structure. Analyses
revealed properties suitable for hard tissue engineering, including a compressive strength
of 78.7 ± 0.6 MPa, a Young’s modulus of 1.43 ± 0.82 GPa, and biocompatibility to human
fibroblast cells.

4.5. Wound Dressing

Wound dressings can be produced using electrospinning and electrospraying methods,
which might be included under the classification of textile-based modern wound dressings.
They have become increasingly popular, and there has been an increase in scientific studies
on these products in recent years. Due to the wide range of uses, lack of a hazardous solvent,
and good biocompatibility, studies on the electrospinning of PVA have primarily focused on
biomedical applications. Xu et al. made the in situ application of electrospun PVA dressings
with a hand-held device on the wound possible [197]. The device is operated with the push
of a finger, and distance information and feed rate are not provided. The wound dressing
was electrospun by 8 wt.% high molecular weight PVA in phosphate-buffered saline (PBS),
including bone marrow stem cells with a 133.4 ± 29.6 µm fiber diameter. In vitro tests
on cell growth and cytotoxicity demonstrated the dressing’s high biocompatibility; the
cell survival rate was more than 90% and tended to increase in the following days. It
was stated that using a relatively low voltage (10 kV) for fiber drawing did not adversely
affect cell viability. According to in vivo tests, wound repair and collagen deposition were
significantly faster in cell-included samples than in PVA alone and much faster in control
samples. Chen et al. also utilized stem cell therapy with electrospun PVA mats. Cell
electrospinning provided the advantages of achieving high cellular density, infiltration,
and uniform distribution, facilitating functional connections between cells [198]. PVA mats
served as an effective carrier for encapsulating adipose-derived stem cells, promoting
their homogeneous distribution within the nanofibrous membrane. Encapsulating cells
in PVA during in vitro cultivation enabled adherent growth on the membrane post PVA
degradation, continuing for a certain duration, with cells still enveloped by PVA after 24 h.
Remarkably, their vitality showed a significant improvement, reaching 133% after a 28-day
culture period.

Moradzadegan et al. successfully electrospun PVA nanofibers containing acetyl-
cholinesterase (AChE) and bovine serum albumin (BSA) as an enzyme-stabilizing compo-
nent [97]. It was reported that the resulting fibers were approximately 190 nm in diameter,
and by adding BSA and AChE, spread and more irregular fibers were obtained. In an-
other study, Fatahian et al. included tranexamic acid, a blood coagulation active agent,
of 10 and 20 mg/mL, and ceftriaxone, an antibacterial agent, of 0.1, 1, and 8 µg/mL into
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PVA nanofibers [98]. The average fiber diameter of the PVA nanofibers from 5% PVA was
250 ± 84 nm. The ceftriaxone, presented in powdered form, resulted in a viscosity rise, lead-
ing to an increase in the nanofiber diameter of up to 379 ± 84 nm. On the other hand, the
tranexamic acid addition caused a decrease in viscosity, which may have disrupted the chain
involvement of polymer chains that resulted in a lower fiber diameter (up to 110 ± 44 nm).
The final products showed acceptable antibacterial and anti-coagulative properties.

Koosha and Mirzadeh proposed PVA/CS nanofibers for biomedical applications [99].
The ideal product promoted L-929 fibroblast cell adhesion and growth without cytotoxic
effects. Kang et al. heat-treated PVA nanofibers to limit solubility and coated them with chi-
tosan, and demonstrated accelerated in vivo wound healing [199]. El-Attar et al. examined
wound healing and antibacterial activity of the silver/snail mucous PVA nanofibers [200].
With snail mucus and silver nanoparticles introduced into the structure, the mean fiber
diameter decreased from 170 nm to 126 nm and to 110 nm, respectively. In the first six
hours, there was a rapid release of silver nanoparticles of up to 80% and a continuous
release in the following 78 h.

Arun Karthick et al. were able to blend PVA with collagen using laboratory-extracted
fish scale and commercial chitosan for electrospinning [201]. Optimum round, electrospun
PVA fibers were obtained with 10 wt.% PVA with an average diameter of 142 nm. It is pos-
sible to add collagen in the 9:1 and 8:2 PVA:collagen ratios. This resulted in more flattened
fibers but with lower diameters of up to 56 nm. It was also possible to electrospin 9:1 and 8:2
PVA: chitosan ratios for the chitosan blends. The average diameter of the chitosan-blended
PVA nanofibers was less than the collagen-blended ones (47 nm). Both collagen- and
chitosan-blended electrospun surfaces showed higher tensile strengths than the pristine
PVA matrices because they had weaker moisture-absorbing properties. In addition, blend-
ing PVA with collagen and chitosan introduced antibacterial properties to nanofibrous
surfaces. Zou et al. prepared PVA/chitosan (PVA/CS) nanofibers with antimicrobial effects,
effectively promoting skin wound healing [202]. Gilotra et al. underlined the importance
of PVA in advancing silk sericin-based nanofibrous mats for chronic wounds [203]. PVA
facilitated the electrospinning of sericin in an 8:1 (w/w) ratio by optimizing solution prop-
erties for electrospinning. Employing PVA in silk sericin-based nanofibrous mats played a
pivotal role in enhancing their water absorbency and serving as a substrate for the effective
release of sericin. Sequeira et al. produced a nanofibrous membrane for dual purposes:
skin regeneration and antimicrobial action [204]. The membrane was composed of PVA
and Lysine, a protein that plays a key role in the formation of collagen. Additionally, it
incorporated both anti-inflammatory agents (ibuprofen doped in the polymer solution)
and antibacterial agents (lavender oil treatment). Polyethylene oxide solution was added
to the polymer solution to reduce viscosity, facilitating the electrospinnability by adjusting
the low viscosity, electrical conductivity, and decreasing surface tension. The incorporation
of ibuprofen resulted in a decrease in all physico-chemical values. Despite the addition of
ibuprofen, beadless nanofibers were produced, leading to a decrease in fiber diameter and
a minor reduction in mechanical properties. Lavender oil-treated nanofibers, responsible
for the main antibacterial action, exhibited a more irregular and rougher surface and a
significant decrease in mechanical properties, particularly in terms of Young’s modulus and
tensile strength. The electrospun mats of PVA-Lysine showed excellent biocompatibility
and proved to be suitable for drug delivery, promoting their potential effectiveness as
wound dressings. Mouro et al. incorporated Chelidonium majus L. extract, a medicinal
plant, into polycaprolactone/PVA/Pectin nanofibrous mats using needleless emulsion
electrospinning [205]. Following the incorporation of the extract, the nanofibers exhibited
insignificant decreases in mechanical behavior, along with antibacterial activity against
both S. aureus and P. aeruginosa. No cytotoxic effects were observed over a 7-day period.
Moreover, there was a sustained release (of ~66%) of C. majus extract throughout the entire
30-day testing period.
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4.6. Drug Delivery

In this subsection, we explore the diverse scope of drug delivery strategies using PVA
electrospinning. Our review covers technologies, formulations, and approaches that opti-
mize the administration and absorption of therapeutic agents, ranging from nanocarriers to
targeted delivery systems, within the broader spectrum of electrospun PVA drug delivery.

The flexibility of electrospinning technology enables the creation of composite nanofi-
brous mats with improved properties for drug delivery. Electrospun PVA mats have been
utilized as drug delivery reservoirs for the controlled and localized release of drugs, en-
suring sustained and targeted delivery to specific sites, which is essential for enhancing
therapeutic outcomes [206–208]. Ghalei et al. developed an innovative nanofibrous material
by incorporating diclofenac-loaded zein nanoparticles into PVA. This novel dressing was
designed to release diclofenac and offer an anti-inflammatory effect at the wound site. In-
corporating zein nanoparticles into PVA nanofibers significantly reduced Young’s modulus.
Release studies indicated that the embedded nanocontainer efficiently minimized the burst
effect of diclofenac from zein nanoparticles, prolonging the release period to 5 days. In cell
culture experiments, the dressing proved biocompatible, and the addition of nanoparticles
to PVA nanofibers enhanced cellular proliferation and spreading. The hierarchical nanos-
tructure synergistically combined the beneficial properties of zein NPs and PVA nanofibers,
enhancing the dressing’s functionality by transferring the advantageous attributes of the en-
capsulated drug from the nanoparticles to the fibers [209]. Jannesari et al. blended PVA and
poly(vinyl acetate) and demonstrated a useful and convenient method for electrospinning
in order to control the rate and period of drug release in wound healing applications [207].
Yang fabricated nanofibrous surfaces comprising chitosan, PVA, and graphene oxide (GO),
loaded with antibiotic drugs, including Ciprofloxacin (Cip) and Ciprofloxacin hydrochlo-
ride (CipHCl) [210]. The effective loading of antibiotic drugs into the nanofibers, with a
portion absorbed into GO nanosheets, was achieved. Interestingly, the release of drugs
absorbed in the GO nanosheets regulated the profile, preventing the initial burst release,
and the addition of GO slightly improved the release ratio. The nanofibrous membranes
exhibited significantly enhanced antibacterial activity against Escherichia coli, Staphylococcus
aureus, and Bacillus subtilis with excellent cytocompatibility for Melanoma cells.

Cui et al. used PVA/chitosan nanofibers for transdermal drug delivery [211]. A
glutaraldehyde-crosslinked electrospun surface presented an ideal surface for ampicillin
sodium with a lower drug release rate and smaller burst release than uncrosslinked samples.
Yadav et al. investigated the potential of CS/PVA-blended fibers loaded with curcumin
(CUR) and zinc oxide (ZnO) for healing diabetic foot ulcers [212]. Crosslinked CUR-ZnO-
CS/PVA fiber mats exhibited controlled drug release for 72 h, and were confirmed as
non-toxic against HaCat cells via cytotoxicity analysis. The optimized nanofiber membrane
displayed antimicrobial activity against S. aureus and P. aeruginosa. In vivo wound heal-
ing analyses demonstrated superior anti-inflammatory effects and an enhanced wound
contraction ability, indicating its treatment potential. Rahmani et al. investigated the
pH-responsive release of CUR from the PVA-graphene oxide (GO)-silver (Ag) nanofibers
containing CUR nanofiber mats [213]. They observed a fine porous morphology with potent
antibacterial activity against E. coli and S. aureus. The incorporation of Ag nanoparticles
into the nanofibers increased loading and encapsulation efficiencies. The pH sensitivity of
PVA/GO-Ag-CUR nanofibers was confirmed, showing an inhibited CUR release at pH 7.4
and enhanced release at pH 5.4. In vitro wound healing tests on NIH 3T3 fibroblast cells
demonstrated accelerated growth and proliferation on PVA/GO-Ag-CUR nanofibers.

Hussein et al. investigated a wound healing drug delivery system utilizing Punica
granatum L. extract [214]. The extract, combined with chitosan–gold nanoparticles, was
loaded into PVA fibers (at 0.1–0.9% w/v). The glutaraldehyde crosslinking of PVA fibers
enhanced mechanical strength, preserved porosity, and improved drug release. The drug
release pattern followed a Fickian diffusion mechanism. The formulation, incorporating
0.9% nanoparticles, exhibited long-term stability, the highest antibacterial activity, excellent
biocompatibility, and robust cell adhesion and proliferation.
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4.7. Cancer Therapy

Focusing specifically on cancer therapy, this section provides a comprehensive review
of the current state of therapeutic interventions for cancer using PVA electrospinning. We
discuss the latest breakthroughs in targeted therapies, immunotherapies, and precision
medicine tailored to combat the complexities of cancer.

Electrospun PVA mats are drawing interest in other biomedical research, particularly
in cancer therapy. These nanofibers serve as effective substrates for cancer drugs, showing
potential for targeted drug delivery to tumors. Chee et al. incorporated doxorubicin
hydrochloride (DOX), a chemotherapy drug, into PVA mats, and annealed them thermally
with a polyacrylic acid electrospun layer that carried clarithromycin, an antibiotic. When
using DOX, pure PVA demonstrated a notably slow release rate (~2%) in 24 h, which
was further reduced with annealing (~1%) [215]. This suggests the controlled and non-
toxic release of DOX, which is important for targeted applications. PVA mats with DOX
demonstrated promising inhibition of osteosarcoma cancer cells, achieving up to 60%
inhibition. Cao et al. employed DOX in core-shell PVA/silk fibroin nanoparticles produced
through electrospraying [216]. The drug reached over a 90% encapsulation efficiency, and
controllable release profiles were achieved by modifying the polymer ratio, minimizing the
initial burst release through fibroin coating. Sustained DOX release yielded an apoptosis
rate of up to 35% in tumor cells.

Electrospinning assisted in producing gold nanorods embedded in PVA/CS hybrid
nanofibers. The gold nanorods and DOX-infused fibers effectively inhibit ovarian cancer
cell growth and proliferation. Additionally, their unique optical properties make them
suitable as cell imaging agents [217]. In another study, 2D molybdenum disulfide (MoS2), a
photothermal transforming agent, and DOX were co-loaded into PVA/CS nanofibers to
inhibit postoperative tumor reoccurrence [218]. These nanofibers exhibited an exceptional
photothermal conversion capability, achieving a conversion efficiency of 23.2% and com-
plete inhibition of postoperative tumor reoccurrence. Additionally, PVA was introduced
into the core solution to facilitate the co-axial electrospinning of 5-Fluorouracil with PCL,
enhancing the electrospinnability compared to the tendency of the drug solution alone
to spray. Incorporating PVA in the core led to a lower encapsulation efficiency (52.71%)
with nanocrystals outside the sheath. Removing PVA in the core and using a lower voltage
(1.4 kV/cm) improved drug encapsulation to 77.5% [219].

5. Conclusions

This article focuses on using PVA to develop electrospun structures with potential
applications in the biomedical field. PVA is a versatile polymer used as a base for various
electrified structures. Recent papers have highlighted the process modifications required to
achieve controlled morphologies and the encapsulation of active ingredients. The control
of morphologies depends on process parameters such as flow rate, applied voltage, needle
size, and distance between the needle and collector and formulation parameters such as the
molecular weight of the polymer and drug, solution viscosity/volatility, surface tension,
and viscosity while taking into account the problem of the degree of hydrolysis of PVA,
which plays a significant role in the physico-chemical properties of solutions.

This polymer has been widely used for filtration, gas sensors, wound dressings, tissue
engineering and scaffolding, drug delivery, and, more marginally, cancer therapy, thanks to
its hydrophilicity, biocompatibility, non-toxicity, and mechanical strength. Its mechanical
and structural properties can also be tailored to specific applications by blending it with
other polymers, such as chitosan, or introducing nano-objects.

In recent years, the versatility of the electrospinning process has enabled the mod-
ification of resulting structures’ morphology to align with desired properties, such as
promoting cell proliferation on surfaces or controlling the release of active substances. The
development of new processes associated with new morphologies or new surface states
represents the most innovative research opportunities. Nevertheless, the development of
new processes based on electrospinning requires systematic studies on the process and
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formulation parameters, including rheological studies on polymers in solution for polymer
blends or polymer-active ingredient blends to control interactions between compounds
during the process.

Anticipated advancements in electrospinning technology point toward several promis-
ing avenues for enhancing the functional properties of PVA-based electrospun structures.
The exploration of co-axial or tri-axial systems holds potential for creating innovative
morphologies, while an alternative path involves the formation of microfibers at a scale of
a few micrometers. This microfiber approach, once entangled, could pave the way for the
development of smart coatings with an expanded specific contact surface.

Moreover, a distinct strategy focuses on scaling up electrospinning processes to in-
dustrial levels, achieved by enhancing the production capacity through the application of
diverse spinneret designs. This industrial-scale production not only addresses quantity but
also opens doors for efficient and large-scale manufacturing.

Looking ahead, the evolution of electrospinning technology may usher in a new era of
personalized wound care. Tailoring electrospun structures to meet individual patient needs
could become a reality, presenting an exciting frontier in the development of advanced and
patient-specific biomedical products.
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Abbreviations

PVA Poly(vinyl alcohol)
TCD Tip to Collector Distance
C* Critical concentration
Ce Entanglement concentration
C** Second critical concentration
Mw Molecular Weight
DH Degree of Hydrolysis
SDBS Sodium DodecylBenzene Sulfonate
DMSO Dimethyl Sulfoxide
EG Ethylene Glycol
NMP N-methyl pyrrolidone
DMF Dimethylformamide
RH Relative Humidity
CUR Curcumin
ZnO Zinc Oxide
CS Chitosan
GO Graphene Oxide
Ag Silver
EPS Extracellular Polymeric Substances
PLA Polylactic acid
HAC Acetic acid
Be Berry number
TiO2 Titanium dioxide
PPE Personal Protective Equipment
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Hal-NH2 Amino group grafted halloysite nanotubes
Cd(II) Divalent cadmium
Pb(II) Divalent lead
GA Glutaraldehyde
HCl Hydrochloric acid
PBS Phosphate Buffered Saline
AChE Acetylcholinesterase
BSA Bovine Serum Albumin
DOX Doxorubicin Hydrochloride
MoS2 2D Molybdenum Disulfide
PEI Polyethyleneimine
AuCl4 Tetrachloroaurate ion
AuNPs Gold nanoparticles
PCL Polycaprolactone
PLGA Poly(lactid-co-glycolic acid)
Cip Ciprofloxacin
CipHCl Ciprofloxacin hydrochloride
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