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Abstract: This paper presents an analysis of research on Impulsive Genetic Regulatory 

Neural Networks (IGRNs). These networks represent a specialized type of biological 

regulatory systems, which are subject to disruptions in their activity or sudden changes in their 

dynamics. 

Various mathematical models are being considered and detailed techniques are used to 

analyze the impact of impulsivity on gene expression models. The analysis of these networks, 

examines how impulsive genetic regulatory networks change the dynamics of gene expression 

and what their impact is on regulatory processes in cells. 

The overview ends with summary of the obtained findings and conclusions, emphasizing the 

importance of impulsive genetic regulatory networks for interpreting complex mechanisms of 

gene regulation. This lays the foundation for future research and development in the field of 

gene regulation and cellular biology. 
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1. INTRODUCTION 

The study of genomic regulatory networks (GRNs) has been a significant topic of study in biology 

and neurobiology over the past few decades. How to build gene regulatory networks (GRNs) using gene 

expression data on the one hand, and what the dynamic properties of GRNs are on the other. In this paper, 

stability - one of the crucial dynamic properties of GRNs is analyzed [1]. 

Gene expression is a complex process regulated at multiple stages in protein synthesis. In addition to 

DNA transcriptional regulation, the best-studied form of regulation, gene expression can be controlled 

during RNA processing and transport (in eukaryotes), RNA translation, and post-translational modification 

of proteins. Protein degradation and turnover of intermediate RNA products can also be regulated within 

the cell. Proteins performing these regulatory functions are produced by other genes. This gives rise to 

genetic regulatory systems structured by networks of regulatory interactions between DNA, RNA, proteins, 

and small molecules [2]. 

Regulation of gene expression (or gene regulation) refers to the processes that cells use to create 

functional gene products (RNA, proteins) from the information stored in genes (DNA). These processes 

range from DNA-RNA transcription to post-translational modification of proteins. Gene regulation is 

crucial for life as it enhances the flexibility and adaptability of an organism by allowing it to express a 

protein when needed.  

There are two main models for genetic networks: 

1) Boolean or logical model; 

2) Differential equations or dynamical system model. 

A gene's state is determined by a Boolean function based on the states of other associated genes. In 

the Boolean model, each gene exhibits activity in either one of two states: ON or OFF. The concentrations 

of gene products, such as RNA and proteins, are described as continuous values in differential equations or 

the dynamic system model. This approach provides a more accurate representation and enables a 

comprehensive understanding of the nonlinear dynamic behavior exhibited by biological systems. 

However, compared to the Boolean model, simulations using this continuous model often require 

significantly more calculation time. Hybrid models that combine discrete and continuous system models 

have been developed to illustrate both switch-like and smooth fluctuations in genetic networks [3]. 
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In 2002, Chen [3] introduced the DDE model for GRNs: 

 

                                                                                  { 
�̇�(𝑡) = −𝐾𝑚𝑚(𝑡) + 𝑐(𝑝(𝑡, 𝜏𝑝))

�̇�(𝑡) = −𝐾𝑝𝑚(𝑡) + 𝑑(𝑝(𝑡, 𝜏𝑚))
                                                     (1) 

                                                                                                                                            

where ℝ𝑛 denotes the 𝑛-dimensional Euclidean space 𝑚 = (𝑚1, … ,𝑚𝑛)  ∈  ℝ
𝑛 и  𝑝 = (𝑝1, … , 𝑝𝑛)  ∈  𝑅

𝑛 

represent the concentrations of mRNAs and proteins, respectively. К𝑚 = 𝑑𝑖𝑎𝑔(𝐾𝑚1, … ,𝐾𝑚𝑛)  ∈ ℝ
𝑛×𝑛 and 

К𝑝 = 𝑑𝑖𝑎𝑔(𝐾п1, … , 𝐾п𝑛)  ∈  ℝ
𝑛×𝑛 are positive real diagonal matrices that represent the degradation rates 

for mRNAs and proteins, respectively. 𝜏𝑚 = (𝜏𝑚1, … , 𝜏𝑚𝑛)  ∈ ℝ
𝑛  and 𝜏𝑝 = (𝜏𝑝1, … , 𝜏𝑝𝑛)  ∈ ℝ

𝑛 are 

positive real vectors indicating the time delays for mRNAs and proteins respectively, and  𝑚(𝜏, 𝜏𝑚) =

(𝑚1(𝜏 − 𝜏𝑚1),… ,𝑚𝑛(𝜏 − 𝜏𝑚𝑛))  and 𝑝(𝜏, 𝜏𝑝) = (𝑝1(𝜏 − 𝜏𝑝1),… , 𝑝𝑛(𝜏 − 𝜏𝑝𝑛)), 𝑐(𝑝) =

(𝑐1(𝑝),… , 𝑐𝑛(𝑝))  ∈ ℝ
𝑛 and 𝑑(𝑝) = (𝑑1(𝑝),… , 𝑑𝑛(𝑝))  ∈  ℝ

𝑛  are generally nonlinear. 

This dynamic system model for time-delayed genetic regulatory networks using functional 

differential equations and analyzes the nonlinear properties of the model in terms of local stability and 

transitions from one steady state to another. 

The quantities of proteins and mRNA are represented nonlinearly in an ordinary differential equation 

(ODE) model for genetic regulatory networks, which also accounts for the time delays in transcription and 

translation. It then analyzes local stability and bifurcation to provide complex information for understanding 

gene expression patterns and regulatory pathways. The proposed model transforms the original interacting 

network into a few simple transcendental equations, which greatly reduces the complexity of the model and 

facilitates robustness and bifurcation analysis when analyzing nonlinear robustness properties, even for 

large systems. [4] 

To test the theory, a repressor model was used as a numerical example. The stability of the equilibrium 

state of the network with time delays is specifically analyzed. However, to understand the oscillatory 

behavior, it is necessary to study the nonlinear properties of periodic or chaotic solutions both analytically 

and numerically. [5] 

 

2. MATHEMATICAL MODEL 

We will use the next notations: ℝ𝑛 denotes the 𝑛 - dimensional Euclidean space, the norm of a vector 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 ∈  ℝ𝑛 s defined by: 

 

||𝑥|| =  √∑ 𝑥𝑖
2𝑛

𝑖=1  and let ℝ+ = [0,∞). 

 

We introduce the following (IGRNs) model given by: 

 

                                   

{
 
 

 
 

  

𝓂𝑖̇ =  −𝑎𝑖𝑚𝑖 (𝑡) + ∑ 𝑤𝑖𝑗(𝑡)𝑓𝑗
𝑛
𝑗=1 (𝑝𝑗(𝑡)) + 𝐵𝑖(𝑡), 𝑡 ≠ 𝑡𝑘  ,

𝑝𝑖 ̇ (𝑡) =  −𝑐𝑖𝑝𝑖(𝑡) + 𝑑𝑖(𝑡)𝑚𝑖(𝑡), 𝑡 ≠ 𝑡𝑘   ,
∆𝑚𝑖 (𝑡𝑘)  = ∝𝑖𝑘 𝑚𝑖(𝑡𝑘) + 𝜐𝑖𝑘  ,
∆𝑝𝑖  (𝑡𝑘)  = 𝛾𝑖𝑘𝑝𝑖(𝑡𝑘) + 𝑥𝑖𝑘 ,

                                            (2) 

 

that regulates the concentrations of mRNA𝑚𝑖 (𝑡)  and protein 𝑝𝑖  (𝑡)  at time 𝑡, where: 

 𝑖 = 1,2,…, 𝑛 е is the number of the node, the positive constants𝑎𝑖, 𝑐𝑖 represent the dilution rates, using the 

dimensionless transcriptional bounded rate 𝑞𝑖𝑗(𝑡) at time t of transcription factor 𝑗 до 𝑖, 𝑤𝑖𝑗(𝑡) are defined 

as 

𝑤𝑖𝑗(𝑡) = {  

𝑞𝑖𝑗(𝑡), when j is an activator of gene 𝑖 ,

−𝑞𝑖𝑗(𝑡), when j is a repressor of gene 𝑗 ,

  0, when there is no link from the node 𝑗 to gene 𝑖 ,

             



𝑑𝑖(𝑡)  ∈  ℝ denotes the translation rate, 𝑓𝑖 represents the regulatory (activation) of the protein function 

and is in the form: 

𝑓𝑖(𝑝𝑖) =  
(𝑝𝑗/𝛽𝑗)

𝐻𝑗

1+(𝑝𝑗/𝛽𝑗)
𝐻𝑗

 , 

 
where 𝐻𝑖 denotes the Hill coefficients and 𝛽𝑗  are positive scalars, 𝑞𝑖(𝑡) is defined as 𝑞𝑖(𝑡) = ∑𝜇 ∈

𝐼𝑖  𝑞𝑖𝑗(𝑡) , where 𝐼𝑖  is the set of all repressors of gene i; 

the moments  𝑡𝑘  ∈  ℝ+ 𝓀 = 1,2,…, are such that 𝑡1 < 𝑡2 < ⋯ <  𝑡𝑘 < ⋯  and lim
𝑘→∞

𝑡𝑘 = ∞, 

the scalars 𝑚𝑖 (𝑡𝑘 ) = 𝑚𝑖 (𝑡𝑘
−
 
) и 𝑝𝑖 (𝑡𝑘 ) =  𝑝𝑖 (𝑡𝑘

−
 
)  represent the concentration of mRNA  𝑚𝑖 (𝑡) and 

protein 𝑝𝑖 (𝑡) before an impulsive perturbation at time 𝑡𝑘 , respectively, 𝑚𝑖 (𝑡𝑘
+
 
) and 𝑝𝑖 (𝑡𝑘

+
 
) are the levels 

in the concentration of mRNA  𝑚𝑖 (𝑡) and protein 𝑝𝑖 (𝑡) after an impulsive perturbation at the moment 𝑡𝑘 , 
respectively, the constant sequences{𝛼𝑖𝑘}, {𝛾𝑖𝑘}, ∈ ℝ and the sequences{𝜈𝑖𝑘}, {𝜒𝑖𝑘}, ∈ ℝ describe the 
intensity of abrupt changes of 𝑚𝑖 (𝑡) и 𝑝𝑖 (𝑡) at the impulsive moments 𝑡𝑘  and can be applied as 
controls. We have: 

∆𝑚𝑖(𝑡𝑘)
=  𝑚𝑖 (𝑡𝑘

+) − 𝑚𝑖 (𝑡𝑘 )  =  𝛼𝑖𝑘𝑚𝑖 ( 𝑡𝑘 ) + 𝜈𝑖𝑘 , 

and 

∆𝑝𝑖(𝑡𝑘) = 𝑝𝑖 (𝑡𝑘
+) − 𝑝𝑖 (𝑡𝑘 )  =  𝛾𝑖𝑘𝑝𝑖 ( 𝑡𝑘 ) + 𝜒𝑖𝑘 , 

where 𝑖 =  1, 2, . . . , 𝑛, 𝑘 =  1, 2,… . 
      It is well know from the theory of discontinuous impulsive models, as well as from the results on 

impulsive GRNs, that any solution of model (2) 

(𝑚(𝑟), 𝑝(𝑡))𝑇 = (𝑚(𝑡; 𝑡0,𝑚0), (𝑝(𝑡; 𝑡0, 𝑝0))
𝑇 , 

where 
 

𝑚(𝑡; 𝑡0, 𝑚0) =  (𝑚1(𝑡; 𝑡0, 𝑚01), 𝑚2(𝑡; 𝑡0, 𝑚02),… ,𝑚𝑛(𝑡; 𝑡0,𝑚0𝑛)), 

𝑝(𝑡; 𝑡0, 𝑝0) =  (𝑝1(𝑡; 𝑡0, 𝑝01), 𝑝2(𝑡; 𝑡0, 𝑝02), … , 𝑝𝑛(𝑡; 𝑡0, 𝑝0𝑛)), 
 
with initial values(𝑚0, 𝑝0)

𝑇 = (𝑚01, … ,𝑚0𝑛,𝑝01, … , 𝑝0𝑛)
𝑇, 𝑚0𝑖, 𝑝0𝑖  𝜖 ℝ  at some initial time 𝑡0 𝜖 ℝ, is a 

piecewise continuous function that has discontinuities at the moments 𝑡𝑘, 𝑘 = 1,2,… and 

𝑚𝑖(𝑡𝑘
+) = (1 + 𝛼𝑖𝑘)𝑚𝑖(𝑡𝑘) + 𝑣𝑖𝑘  

 

𝑝𝑖(𝑡𝑘
+) = (1 + 𝛾𝑖𝑘)𝑝𝑖(𝑡𝑘) + 𝜒𝑖𝑘  

 

for 𝑖 = 1,2,… 𝑛, 𝑘 = 1,2,… 
 

Let, for simplicity we use the next notation: 

 

                                 𝑢(𝑡) = (𝑚(𝑡), 𝑝(𝑡))𝑇, 𝑢(𝑡, 𝑡0,, 𝑢0) = (𝑚 (𝑡, 𝑡0,, 𝑚0), 𝑝 (𝑡, 𝑡0,, 𝑝0))
𝑇,                    (3) 

where 𝑢𝑜 = (𝑚0, 𝑝0)
𝑇. 

 

 
3. MAIN RESULTS 

 

According to [6], the model used is of the form: 

 



                                    

{
 
 

 
 

  

𝜕𝑥(𝑡,𝑧)

𝜕𝑡
= ∑

𝜕

𝜕𝑧𝑘
(𝐵𝑘

𝜕𝑥(𝑡,𝑧)

𝜕𝑧𝑘
− 𝐴𝑥(𝑡, 𝑧) +𝑊𝑓(𝑦(𝑡 − 𝜎(𝑡), 𝑧)),𝑚

𝑘=1

𝜕𝑦(𝑡,𝑧)

𝜕𝑡
= ∑

𝜕

𝜕𝑧𝑘
(𝐺𝑘

𝜕𝑦(𝑡,𝑧)

𝜕𝑧𝑘
− 𝐶𝑦(𝑡, 𝑧) + 𝐷𝑥(𝑦(𝑡 − 𝜏(𝑡), 𝑧))𝑚

𝑘=1 ,

𝑥(𝑠, 𝑧) =  𝜑(𝑠, 𝑧)   𝑦(𝑠, 𝑧) = 𝜑(𝑠, 𝑧), ∀ 𝑠 𝜖 [−𝜔, 0],

                         (4) 

 

where 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑚)
𝑇  𝜖 Ω ⊂ 𝑅𝑚 , Ω = {z| | 𝑧𝑘| ≤ 𝑙𝑘, k = 1,2,… ,m}  is the diffusion range of mRNAs 

and proteins, 𝑙𝑘 is a constant. 

 𝐵𝑘 = 𝑑𝑖𝑎𝑔(𝑏1𝑘 , 𝑏2𝑘 , … , 𝑏𝑛𝑘) > 0 and 𝐺𝑘 = 𝑑𝑖𝑎𝑔(𝑏1𝑘 , 𝑏2𝑘 , … , 𝑏𝑛𝑘) > 0 denote the transmission diffusion 

rate matrices of mRNA and protein, respectively. 𝑥(𝑡, 𝑧) =  𝑐𝑜𝑙{𝑥1(𝑡, 𝑧), 𝑥2(𝑡, 𝑧), . . . , 𝑥𝑛(𝑡, 𝑧)} ∈  𝑅
𝑛 ,

𝑦(𝑡, 𝑧)  = 𝑐𝑜𝑙{𝑦1(𝑡, 𝑧), 𝑦2(𝑡, 𝑧), . . . , 𝑦𝑛(𝑡, 𝑧)} ∈   𝑅
𝑛 . 

The initial functions  𝜑(𝑠, 𝑧), 𝜑(𝑠, 𝑧)  ∈  𝐶1([−𝜔, 0]  ×  Ω , 𝑅𝑛),𝜔 =  𝑚𝑎𝑥{𝜏2,  𝜎2}. 
      In this model, the finite-time stability analysis for the GRN unbounded Dirichlet conditions are given 

in Theorem 3.1 of [4]. 

      This result focuses on the finite-time stability issues for GRNs, without considering exogenous inputs 

or network outputs. The feasibility of the proposed methods is elucidated through a numerical simulation 

example. Future research will build upon achieving improved stability conditions with fewer variables and 

investigating the state estimation problem or control problem for GRNs. 

 

According to [7], the model used is of the form: 

 

                                                                

{
 
 

 
 

  

�̇�(𝑡) =  −𝐾𝑚𝑥(𝑡) + 𝐸�̃�(𝑦(𝑡 − 𝜏𝑝(𝑡)),         𝑡 ≠ 𝑡𝑘,

�̇�(𝑡) =  −𝐾𝑝𝑥(𝑡) + 𝐷𝑥(𝑦(𝑡 − 𝜏𝑚(𝑡)),         𝑡 ≠ 𝑡𝑘 ,

∆𝑥(𝑡) =  𝐽𝑘(𝑥(𝑡𝑘
−)),                                          𝑡 = 𝑡𝑘,  

∆𝑦(𝑡) =  𝐻𝑘(𝑦(𝑡𝑘
−)),                                        𝑡 = 𝑡𝑘, 

 

                                                   (5) 

 

where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡))
𝑇
  , 𝑦(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡),… , 𝑦𝑛(𝑡))

𝑇
, 

 𝐾𝑚 = 𝑑𝑖𝑎𝑔(𝑘𝑚1, 𝑘𝑚2, … , 𝑘𝑚𝑛),  𝐾𝑝 = 𝑑𝑖𝑎𝑔(𝑘𝑝1, 𝑘𝑝2, … , 𝑘𝑝𝑛), 𝐸 = ∑ 𝑓𝑖𝑗
𝑛
𝑗=1 , … , ∑ 𝑓𝑛𝑗

𝑛
𝑗=1 ),  

�̃�(. ) = [�̃�1(. ), �̃�2(. ),… , �̃�𝑛(. )]
𝑇, the time sequence 𝑡𝑘  satisfies 0 < 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡к < 𝑡𝑘+1 <

⋯ , and lim
𝑘→∞

𝑡𝑘 = ∞, 𝐽𝑘 , 𝐻𝑘 ∈   𝑅
𝑛 . These sequences 𝐽𝑘  and 𝐻𝑘  are the effect of sudden change in the state 

of system. Assume that ∆𝑥 = 𝑥(𝑡𝑘
+
 
) + 𝑥(𝑡𝑘

−
 
) at fixed points sequence 𝑡𝑘 , where 𝑥(𝑡𝑘

+
 
) = lim

ℎ→0
𝑥 (𝜏𝑘 + ℎ) 

and 𝑥(𝑡𝑘
−
 
) = lim

ℎ→0
𝑥 (𝜏𝑘 − ℎ). 

The quadratic from||𝑥(𝑡)||𝑄
2  is definite as ||𝑥(𝑡)||𝑄

2 = 𝑥𝑇(𝑡)𝑄(𝑡)𝑥(𝑡) for any state vector x(𝑡), и 𝑄(𝑡) is 

the non-negative definite matrix. 

The initial value for system (4) е 𝑥(𝑡0) =  𝜑(𝑡), 𝑦(𝑡0) =  𝜓(𝑡) . 
 

       By considering the finite-time stability problem for GRNs with impulsive effects in (5), it is observed 

that sufficient conditions are established for the system to be stable for a finite time based on the functional 

method using Lyapunov-based techniques. A numerical example is presented to illustrate the numerical 

results obtained. In future analizyles, the finite- time stability will be further explored for genetic regulation 

with noise perturbations and the dynamics of stochastic GRNs with mixed time delays. 

 

 

 

 

 

 



According to [8], the model used is of the form: 

 

                                          

{
 
 

 
 

𝜕�̃�𝑖(𝑡,𝑥)

𝜕𝜏
= ∑

𝜕

𝜕𝑥𝑘

𝑙
𝑘=1 (𝐷𝑖𝑘

𝜕�̃�𝑖(𝑡,𝑥)

𝜕𝑥𝑘
)

−𝑎𝑖�̃�𝑖(𝑡, 𝑥) + ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 𝑔𝑗 (�̃�𝑗(𝜏 − 𝜎(𝑡), 𝑥)) + 𝑞𝑖,

𝜕�̃�𝑖(𝑡,𝑥)

𝜕𝜏
= ∑

𝜕

𝜕𝑥𝑘

𝑙
𝑘=1 (𝐷∗𝑖𝑘

𝜕�̃�𝑖(𝑡,𝑥)

𝜕𝑥𝑘
)

−𝑐𝑖�̃�𝑖(𝑡, 𝑥) + 𝑏𝑖�̃�𝑖(𝜏 − 𝜏(𝑡), 𝑥),   𝑖 = 1,2, … . , 𝑛,

                                       (6) 

 

where 𝑥(𝑡) = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇  ∈   𝑅1, Ω = {𝑥| | 𝑥𝑘| ≤ 𝐿𝑘},  𝐿𝑘 is constant, k = 1,2,… , 𝑙;   𝐷𝑖𝑘(𝑡, 𝑥) > 0  

and 𝐷𝑖𝑘(𝑡, 𝑥) > 0 denote the transmission diffusion operator along the ith gene of mRNA and protein, 

respectively.  

The initial conditions are given by 

 

�̃�𝑖(𝑠, 𝑥) = 𝜑𝑖(𝑠, 𝑥) , 𝑠 ∈ (−∞, 0], 𝑖 = 1,2,… , 𝑛, 
�̃�𝑖(𝑠, 𝑥) = 𝜑𝑖

∗(𝑠, 𝑥) , 𝑠 ∈ (−∞, 0], 𝑖 = 1,2,… , 𝑛, 
 

where 𝜑𝑖(𝑠, 𝑥) и 𝜑𝑖
∗(𝑠, 𝑥) are bounded and continuous on(−∞, 0]  ×  Ω . 

 

    This study analyses the stability problem for delay genetic regulatory networks (DGRNs) with reaction- 

diffusion conditions (RDTs). DGRNs are mathematical models used to study regulatory processes in 

organisms genomes. They represent complex systems of genetic components, such as genes and proteins, 

that interact with each other and regulate gene expression. 

    The temporal dependence of gene regulation is considered in DGRNs. This means that the regulation of 

gene expression can be activated or deactivated after a certain period of time following a specific event or 

stimulus. In that case, the model can represent the dynamics of regulatory processes as the reason for the 

time delay in the flow of information in the genetic network. 

    The work is on the type of different boundary conditions, delay-dependent criteria with respect to LMI 

are obtained. Numerical examples of the effectiveness of the results proposed in this paper are presented. 

 

According to [9], the model used is of the form: 

 

                              {  

𝜕�̃�(𝑡,𝑥)

𝜕𝜏
= ∑

𝜕

𝜕𝑥𝑘

𝑙
𝑘=1 (𝐷𝑘

𝜕�̃�𝑖(𝑡,𝑥)

𝜕𝑥𝑘
) − �̃�𝑚(𝑡, 𝑥) +𝑊𝑓(�̃�(𝑡 − 𝜎(𝑡)), 𝑥)),

𝜕�̃�(𝑡,𝑥)

𝜕𝜏
= ∑

𝜕

𝜕𝑥𝑘

𝑙
𝑘=1 (𝐷𝑘

∗ 𝜕�̃�(𝑡,𝑥)

𝜕𝑥𝑘
) − �̃�𝑚(𝑡, 𝑥) + 𝐵�̃�(𝑡 − 𝜎(𝑡)), 𝑥)

                       (7) 

 

where 

𝐴 = 𝑑𝑖𝑎𝑔(а1, а2, … , а𝑛), 𝐵 = 𝑑𝑖𝑎𝑔(𝑏1, 𝑏2, … , 𝑏𝑛), 𝐶 = 𝑑𝑖𝑎𝑔(𝑐1, 𝑐2, … , 𝑐𝑛),   
𝐷𝑘 =  𝑑𝑖𝑎𝑔(𝐷1𝑘 , 𝐷2𝑘 , … ,𝐷𝑛𝑘), 𝐷𝐾

∗ = 𝑑𝑖𝑎𝑔(𝐷1𝑘
∗ , 𝐷2𝑘

∗ , … ,𝐷𝑛𝑘
∗ ), 

�̃�(𝑡, 𝑥) =  𝑐𝑜𝑙(�̃�1(𝑡, 𝑥), �̃�2(𝑡, 𝑥), . . . , �̃�𝑛(𝑡, 𝑥)), �̃�(𝑡, 𝑥) =  𝑐𝑜𝑙(�̃�1(𝑡, 𝑥), �̃�2(𝑡, 𝑥), . . . , �̃�𝑛(𝑡, 𝑥)),  

𝑓 (�̃�(𝑡 −  𝜎(𝑡), 𝑥))  =  𝑐𝑜𝑙( 𝑓1(�̃�1(𝑡 −  𝜎 (𝑡), 𝑥)), . . . , ( 𝑓𝑛(�̃�𝑛(𝑡 −  𝜎 (𝑡), 𝑥)) 

𝑓𝑖  (�̃�𝑖(𝑡 −  𝜎(𝑡), 𝑥)) = 𝑔𝑖(�̃�𝑖(𝑡 −  𝜎 (𝑡), 𝑥) + 𝑝𝑖
∗) − 𝑔𝑖(𝑝𝑖

∗)   𝑖 𝜖 {𝑛} 
 

      The work focuses on the state estimation problem of DGRNs with RDT. A state observer is designed 

to estimate the concentrations of mRNA and proteins based on available network outputs, ensuring that the 

system error is asymptotically stable. A pair of numerical examples is presented to validate the theoretical 

results. It is believed that extending the results to H∞ is feasible but not applicable to other conditions. 

 

 



4. CONCLUSION 

Based on the achieved results in the field of differential equations, the following conclusion can be 

drawn: the condition for investigating the stability of sets has been satisfied. 

The conclusion of this scientific work, based on the provided information, focuses on various aspects 

of stability and state estimation for delayed genetic regulatory networks (DGRNs) with reaction-diffusion 

conditions (RDTs). The following aspects have been examined: 

1. Time stability for GRNs: The focus is on the finite-time stability issues for GRNs without considering 

exogenous inputs or network outputs. Functional Lyapunov-based methods and numerical simulations 

have been used to clarify the feasibility of the proposed stability methods. 

2. Reaction-diffusion conditions in DGRNs: The focus is on the stability problems for DGRNs with RDTs. 

These are mathematical models used to investigate the regulatory processes in the genomes of 

organisms, taking into account the temporal dependence of gene regulation. Various boundary 

conditions and numerical examples have been considered to evaluate the effectiveness of the proposed 

results. 

3. State estimation of DGRNs with RDTs: The focus is on the problem of state estimation for DGRNs 

with RDTs. A state observer has been designed to estimate the concentrations of mRNA and proteins 

based on network outputs. This observer ensures asymptotic stability of the system error. 

Numerical examples have been presented to validate the theoretical results. 

In the future, it is expected that this work will be expanded to investigate additional aspects of stability, 

such as stochastic dynamics and noise disturbances in GRNs with RDTs. Furthermore, the problem of 

control for GRNs will be examined, aiming to achieve better stability conditions with fewer variables. 
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