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Abstract— The theory of optimal control is concerned with 

operating a dynamical system at minimum cost. The situation 

where the system behavior is depicted by a set of linear 

differential equations and the cost is described by a quadratic 

function is considered to be the linear quadratic (LQ) problem. 

The discussed control problem can be implicitly accomplished 

by the solutions Q, Y of a system of linear matrix inequalities 

(LMIs). This paper is devoted to conditioning of the discrete-

time LMI based linear quadratic regulator problem for 

differential-algebraic (DAE) systems. To compute the local 

perturbation limits of the matrix inequalities we introduce an 

appropriate right hand side, which is slightly perturbed. Based 

on the perturbation analysis we obtain tight linear 

perturbation bounds for the LMIs' solutions to the linear 

quadratic regulator problem. The results are illustrated by 

numerical examples.   

Keywords — discrete differential-algebraic systems, local 

perturbation bounds, LQR problem, condition numbers, linear 

matrix inequalities synthesis  

I. INTRODUCTION  

     Recently LMIs have appeared as a powerful tool with 

applications across the major domains of systems and 

control. According to [1,2, 16] LMIs are straight byproduct 

of Lyapunov based criteria The LQR problem is a perfect 

representation in our considerations since it can be reduced 

to a convex problem that involve LMIs. 

     A very attractive feature of LMIs consists of the fact that 

many problems in systems and control can be easily reduced 

to LMI problems, which can be computed efficiently and 

numerically reliably Also LMI based design is a real 

technique with many theoretical and practical applications, 

thanks to the availability of efficient convex optimization 

algorithms [3] and software [4] in addition to the MATLAB 

package Yalmip and SeDuMi solver [5]. 

     Singular systems or differential-algebraic systems 

present a fundamental mathematical framework for the 

modeling, simulation and control of complex dynamical 

systems existing in many areas of electrical and mechanical 

engineering. For the analysis of structural properties of 

descriptor systems like controllability, observability, 

stability, minimality, model predictive control, linear 

quadratic optimal regulator, optimal state regulation, state 

feedback and observer design have already been considered 

in [6, 7, 8, 9, 10, 11, 17]. Numerically stable algorithms for 

the analysis of singular systems have been proposed in [12, 

13]. 

    In this note we propose an approach to perform full local 

sensitivity analysis of the LMI based LQR problem for 

differential-algebraic systems via incorporating an 

appropriate right hand part in the considered matrix 

inequalities. As far as we know this is the first study on 

sensitivity of discrete DAE systems. After the investigated 

problem is solved the achieved results can be applied in 

several directions. To begin with it is possible to asses the 

errors in the calculated solution of the LQR problem, which 

are based on rounding errors and structured disturbances in 

the studied data. Second it is possible to investigate the 

robust stability and performance of the closed loop system 

with uncertain elements in the plant and in the controller.  

     Throughout the paper, we adopt the following notation: 
m nR  - the set of real m n  matrices; 1n nR R  ; 

nI  - the 

identity n n   matrix; 
ne - the unity 1n vector; TN - the 

transpose of N ;  †N - the pseudo inverse of N ;

2 max|| || ( )N N  - the spectral norm of N , where 
max ( )N  

is the maximum singular value of N ; ( ) mnvec N R - the 

column-like vector appearance of m nN R  ; 

,

mn mn

m n R   - the vec-permutation matrix, such that 

,( ) ( )T

m nvec N vec N ; N Q - denotes the Kroneker 

product of the matrices M  and Q . The sign “:=” 

represents “equal by definition”.  
     The rest of the note is structured in as shown below.  The 
problem set up and objective is briefly studied in Section 2. 
In Section 3 local perturbation bounds of the discrete LMI 
based LQR problem for DAE systems are derived. Section 4 
reveals a numerical example where the effectiveness of the 
linear bounds is given before we end up in Section 5 with our 
ending considerations.  

II. PROBLEM SET AND OBJECTIVE 

     Linear discrete DAE systems are described by the set of 

equations: 
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here nRkx )( , mRku )(  and 
rRky )(  are the system 

DAE state, input and output, and CBA ,,  and E  are 

constant matrices of compatible size.  

Definition 1. (System equivalence) [6]. Two systems 

),,,( CBAE and )ˆ,ˆ,ˆ,ˆ( CBAE  are said to be (system) 

equivalent, denoted by ),,,( CBAE  )ˆ,ˆ,ˆ,ˆ( CBAE , if 

there exist nonsingular transformation matrices
nnRRL ,   

such that the equations  
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hold true. 

Definition 2. (Weierstrass normal form - WNF) [6]. For any 

regular system there exist two non-singular matrices 
nnRRL ,  such that by  

rnr RxRxxT
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the following decomposed representation can be obtained 
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Definition 3. (Index of nilpotence) [6]. The index of 

nilpotence  , i.e.  0|min:  qNq  is said to be index 

of a linear descriptor system. Systems with 2 are called 

high index singular systems. 
 

In notation (2), the first relation is a forward recurrent 

equation which state is obtained only by initial state )0(1x  

and Lku ,...,1,0)(  . The second expression is a backward 

recurrence which state is only computed by final state 

)(2 Lx  and Lku ,...,1,0)(  . 

For the system, described in WNF, the state evolution 

can be described according to [6]: 
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Equation (3) for state )(2 kx  proposes that index one 

descriptor systems 1 and 0N will have no infinite 

poles. In such situation the system (1) is called causal and 

index one. 

  Further we study the linear discrete DAE system (1), and 

assume no direct relation between the input and the output 

signal. Throughout the paper we admit that the DAE system 

(1) is an index one system. 

The equivalent system 
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is given in WNF where 
rr

r RA ˆ  is a stable matrix. The 

equivalent system is as follows 
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The system (4) in WNF exists after applying the expression 

(3b) for state )(2 kx .  

In line ar quadratic regulator task for a given initial state 

(0)x  we have to to find a control law, which minimizes the 

cost function  1 1 1 1

0

( ) ( ) ( ) ( )T T

p p

k

x k Q x k u k R u k




 . In 

addition to it has to be obtained a quadratic Lyapunov 

function 
1 1 1 1 1 1( ) , 0,TV x x Px P  such that  

1 1 1 1 1 1 1 1 1 1[ ( 1)] [ ( )] ( ) ( )T T

p pV x k V x k x k Q K R K x k       . 

We consider the linear quadratic regulator problem, it is 

necessary to ensure closed-loop stability and desired 

performance thus we design a state-feedback control 

u(k)=K1x1(k).  

We apply a linear matrix inequality method to solve the 

LQR  problem, as considered in [1]. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1
ˆ ˆˆ ˆ( ) ( ) , 0.T T T T

r r p px A B K P P A B K x x Q K R K x P           
 (5) 

Apply the Schur technique [14] then the above expression is 

transformed  to: 
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We pre- and post- multiply expression (6) by 
1

1[ , , , ]diag P I I I and invoke new variables 

1

1 1 1, 0Q P Q  and 1

1 1 1Y K P to obtain the following 

system of LMIs: 
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with respect to the variables Q1 and Y1. 

     This paper aims at obtaining local perturbation bounds of 

the linear matrix inequality system (7) needed to solve the 

LQR task. Throughout the paper we adopt the following 

notation: 
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Further we assume that the matrices
pipir QRBA 111 ,,ˆ,ˆ  are 

subject to perturbations 
pipir QRBA 111 ,,ˆ,ˆ   and accept 

that they do not alter the sign of the linear matrix inequality 

system (7). In the perturbation investigation of the discrete 

LMI based LQR problem for DAE systems it is necessary to 

determine local perturbation limits of the LMIs (7) as 

dependence of the perturbations in the data 

pipir QRBA 111 ,,ˆ,ˆ  . 

III. LOCAL PERTURBATION BOUNDS DETERMINATION 

In this section we do sensitivity analysis of the linear matrix 

inequality (7) for the discrete DAE system (4) in WNF 
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where 

1 1 1 1 1 1 1 1 1
ˆ ˆ ˆˆ ˆ ˆ( )( ) ( ) ( )T T T T

r r rA BQY Q Q A A Y Y B B       

1 1 1 1 1 1 1 1 1
ˆ ˆ ˆˆ ˆ ˆ( )( ) ( )( )r r rA BQY A A Q Q B B Y Y      . 

Further we investigate the impact of the perturbations 

pipir QRBA 111 ,,ˆ,ˆ  on the perturbed linear matrix 

inequality solutions 
1 1*Q Q  and 

1 1*Y Y , where 

1 1*, *Q Y  and ,Q Y   are the nominal solution of the 

expression (8) and the perturbations. The most significant 

part of the method we propose is connected with performing 

perturbation analysis of the expression (7) in a closely way 

as for a proper matrix equation after introducing an 

appropriate right hand part, which is a little bit perturbed. In 

this way for the linear matrix inequality (8) we obtain: 
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here 

1 1 1 1 1 1 1 1 1
ˆ ˆ ˆˆ ˆ ˆ* ( * )( ) ( * ) ( )T T T T

r r rA BQ Y Q Q A A Y Y B B      , 

1 1 1 1 1 1 1 1 1
ˆ ˆ ˆˆ ˆ ˆ* ( )( * ) ( )( * )r r rA B Q Y A A Q Q B B Y Y       

and N * is determined from the nominal LMI  
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The matrix 1N  is introduced to represent the impact of  

the data and closed-loop performance perturbations, the 

rounding errors and the sensitivity of the interior point 

method that is used to solve the considered LMIs. 

With the expression (10) the perturbed relation (9) can be 

represented as 
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The nonlinear terms are annihilated since we perform linear 

sensitivity analysis. In this way we obtain the vectorized 

type of the expression (11)  
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The mathematical manipulations that we carried out above 

allow us to obtain the following relation 



                                                                       

1 1 1 2 1 3 1

4 1 5 1 1

ˆ ˆ1 ( ) 1 ( ) 1 ( )

          1 ( ) 1 ( ) ( )

t r t t

t i p t i p

S q S vec A S vec Y S vec B

S vec R S vec Q vec N

       

     
      (13) 

Like this the relative first order perturbation bound for the 

solution 
1 *Q  of the LMI (7) can be obtained 
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where 
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can be denoted as the individual relative conditioning of the 

LMI (7) with respect to the perturbations 

pipir QRBA 111 ,,ˆ,ˆ   and 
1Y . 

Applying a similar procedure approach the relative 

perturbation limits for the solution 
1*Y  of the LMI (7) can 

be determined using the following equality 
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The nonlinear elements are neglected due to the reason that 

we perform linear sensitivity analysis. Thus the vectorized 

form of the relation (15) is presented below 

1 1 2( ) ( ) ( ),Y Yvec vec vec N                (16) 

where 

1 1 1 1

1 1

ˆ ˆ( ) [0, ( ) , ,0, ( ),0,0,0, ,0,0,0,0,0,0,0 ] ( )

             ,

T

Y n m m mvec B I I B I vec Y

V y

       

 

 

2 2

1

* *

1 1

1 1

0 0 0 0

ˆ( ) ( ) ( ) 0 0

0 0 0 0 0

0 0 0 0

ˆ 0 0( ) ( ) ( )

0 00 0

0 00 0 0

0 00 0 0
( )

0 00 0 0

0 00 0 0

00 0 0

0 00 0 0

0 00 0

0 00 0 0

0 00 0 0

00 0 0

        

T

rn m

r

Y

I

I Q A I I Y

I

Q I I A Y I

I

vec

I

I

I

 

 
 

     
 
 
 
 

   
 
 
 
 

   
 
 
 

 
 
 
 
 
 
 
 

  

 
1

1 1 2 3 4 5

1

1

ˆ( )

( )

ˆ( )  = 1 , 1 , 1 , 1 , 1 1 .

( )

( )

r

t t t t t AYBRQ t AYBRQ

i p

i p

vec A

vec Q

vec B V V V V V V

vec R

vec Q

 
 

 
 

    
 
 
 

  
 



Thus we obtain the relation below 
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After the mathematical transformations we derive the 

relative perturbation limit for the solution 
1*Y  of the linear 

matrix inequality (7)  
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are the individual relative conditioning of the LMI (7) 

towards the perturbations 
pipir QRBA 111 ,,ˆ,ˆ   and 

1Q . 

  

IV. ILLUSTRATIVE EXAMPLE [10] 

Pay attention to the discrete index one DAE system (1) 

given in WNF, i.e. 
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In the note we determine local bounds, that is why 

perturbations in the system matrices are taken in a way as to 

get rid of the nonlinear terms in the mathematical 

transformations, delivered above, i.e.: 
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The perturbed solutions 
1 1*Q Q and 

1 1*Y Y are 

made using the approach presented in [15] and applying the 

code [4]. With the help of the worked out method we derive 

the relative local perturbation bounds (14) and (18), 

respectively, for the solutions 
1 *Q and 

1 *Y  of the LMIs 

(7).  

For the considered amount of perturbations we state the 

local bounds and present the delivered results in the table 

given below 

Table 1 

i 
1 2

1 2

|| ||

|| ( ) ||

q

vec Q 

  Bound 

(14) 

1 2

1 2

|| ||

|| ( ) ||

y

vec Y 

  Bound 

(18) 

8 6.25 *10-8 1.01 *10-7 7.93 *10-8 0.98 *10-7 

7 6.25 *10-7 1.01 *10-6 7.93 *10-7 0.98 *10-6 

6 6.25 *10-6 1.01 *10-5 7.93 *10-6 0.98 *10-5 

5 6.25 *10-5 1.01 *10-4 7.93 *10-5 0.98 *10-4 

4 6.25 *10-4 1.01 *10-3 7.93 *10-4 0.98 *10-3 

 

To carry out the perturbation analysis the discrete linear 

matrix inequality based LQR problem for DAE systems we 

apply the derived solution methodology, which gives 

opportunity to end up with the perturbation bounds (14) and 

(18). The obtained local limits are narrow and similar to the 



real relative perturbation bounds

21

21

||*)(||

||||

Qvec

q
  and 

21

21

||*)(||

||||

Yvec

y
. Based on the presented trial results we can 

come to a conclusion that the studied method is appropriate 

for delivering the local perturbation bounds of the discrete 

linear matrix inequality based LQR problem for DAE 

systems. 

 

V. CONCLUSION 

This note is devoted to conditioning of the local 
perturbation bounds of the discrete LMI based LQR problem 
for DAE systems. At the same moment we reveal how the 
estimates of the individual conditioning of the considered 
LMIs can be obtained. We achieve tight local perturbation 
bounds for the matrix inequalities representing the problem 
solution. Using condition numbers we are able to estimate 
the degree of uncertainty in the solution in presence of errors 
(measurement, round off, modeling) in the data.  Afterwards 
an illustrative example is demonstrated aiming at to depict 
the applicability and performance of the obtained results. 
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