
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

A structure-activity relationship modelling of opioid
compounds by using machine learning
To cite this article: Fatima Sapundzhi et al 2023 J. Phys.: Conf. Ser. 2675 012032

 

View the article online for updates and enhancements.

You may also like
Investigation on -opioid receptor in Sera of
Iraqi Male addiction Tramadol or
Methamphetamine
Rulla Sabah, Fatin F. Al-Kazazz and
Salam A.H. Al-Ameri

-

Analysis and Optimization of Opioid Drug
Transmission Based on Spatial-time-
based Model
Mingjun Yin, Hua Yang, Xinyue Hu et al.

-

Detecting opioid metabolites in exhaled
breath condensate (EBC)
Eva Borras, Andy Cheng, Ted Wun et al.

-

This content was downloaded from IP address 149.62.205.210 on 01/01/2024 at 11:36

https://doi.org/10.1088/1742-6596/2675/1/012032
https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012009
https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012009
https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012009
https://iopscience.iop.org/article/10.1088/1757-899X/768/5/052119
https://iopscience.iop.org/article/10.1088/1757-899X/768/5/052119
https://iopscience.iop.org/article/10.1088/1757-899X/768/5/052119
https://iopscience.iop.org/article/10.1088/1752-7163/ab35fd
https://iopscience.iop.org/article/10.1088/1752-7163/ab35fd
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstHTNfER2ysFh89kqJv96DzjYZ7B-ZE3MS7mm4bnsX-_ecKYDdiYf2IB-1pY-4QFvLcVQ_XzVyazrLADKpPJ5gN3I5JnyCMWKmTMfq0-TgVTRO6_Ocl4ElFAKr-UDlHt9zjgg_2qurtDqcCmesUFltjbpa23GhGGPchb47uD8m2-1b3RAtximWM_a1uOdCFJjb12EY9LJt1dGMp5hloFzgfacw7XSBm38BN1ljdvfRfETDAoh94ghE-rLGW-h6OY9p0_-fXq-Nkuao5ufhlF7Y9r6KgICSpxNQzMmc21H7cnw-EFHdCzWtARe0jI277&sai=AMfl-YSFvjnO6yBdEvfLBmA62V7OVLNEXlchrNGrg_aEqR2Cg-a0VxgY7y0leUKvQPkr58NI9t6U3xu_Uqf1Xrg&sig=Cg0ArKJSzOX00DNl_uWZ&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://ecs.confex.com/ecs/prime2024/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3Dprime_abstract_submission


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AMiTaNS'23
Journal of Physics: Conference Series 2675 (2023) 012032

IOP Publishing
doi:10.1088/1742-6596/2675/1/012032

1

 

 

 

 

 

 

A structure-activity relationship modelling of opioid 

compounds by using machine learning 

Fatima Sapundzhi1, Meglena Lazarova2, Tatyana Dzimbova1,3, Slavi Georgiev4,5, 

Antonina Ivanova6 

1 Department of Communication and Computer Engineering, Faculty of Engineering, 

South-West University “Neofit Rilski”, 66 Ivan Myhailov Str., 2700 Blagoevgrad, 

Bulgaria 
2 Faculty of Applied Mathematics and Informatics, Technical University of Sofia,  8 

“St. Kliment Ohridski”, Blvd., 1000 Sofia, Bulgaria 
3 Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G.Bonchev 

Str, bl. 21, 1113 Sofia, Bulgaria, 
4 Department of Information Modeling, Institute of Mathematics and Informatics, 

Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 8, 1113 Sofia, 

Bulgaria 
5 Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and 

Education, University of Ruse, 8 Studentska Str., 7004 Ruse, Bulgaria 
6 Department of Computer Science, Faculty of International Economics and 

Administration, Varna Free University “Chernorizets Hrabar”, 84 Yanko Slavchev 

Str., Chaika Resort, 9007 Varna, Bulgaria 

sapundzhi@swu.bg 

Abstract. Opiates are among the oldest drugs that are used to treat many medical problems. 

They are analgesic and sedative drugs that contain opium. The morphine is its most active 

ingredient and it is a widely used pain reliever despite its side effects. The main objective of this 

study is to construct a model which gives the structure-activity relationship among a series of 

mu-opioid ligands and molecular docking results. For this purpose, a model of mu-opioid 

receptors using machine learning is introduced. By obtaining a relationship between the docking 

results and the in vivo test, we could predict the biological effect of the newly synthesized 

ligands. 

1.  Introduction  

Opioids are pain relievers that are extracted from the papaver somniferum plant [1]. They are widely 

used as analgesic drugs in the treatment of pain in humans. Opioids bind to three brain receptors: the 

mu-opioid receptor (MOR), the kappa-opioid receptor (KOR), and the delta-opioid receptor (DOR) in 

the central nervous system (CNS) and the peripheral organs [2,3]. In contrast to mu-opioid and kappa-

opioid agonists, delta-opioid agonists have limited antinociceptive properties which are measured by 

morphine-sensitive antinociceptive assays as a result of DOR activation. The DOR system may play an 

essential role in regulating mood and emotional states [4]. Although there are powerful clinically 

available analgesics (morphine, oxycodone, and fentanyl), they are highly addictive. It is important for 
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the treatment of pain to develop new opioid drugs that produce analgesia without causing dependence 

[5,6,7]. 

With the help of computer-aided drug design or CADD, the drug developers could create more drugs 

faster by using the state-of-the-art technology. Molecular docking is one of the fundamentals of CADD 

that analyzes the binding interaction between the target and the small molecules called ligands. These 

ligands are potential drug candidates for the development of phenotypic and therapeutic models targeted 

by the CADD proteins [8, 9,10]. 

In our previous work [11] we have investigated the relationship between the values of the biological 

activity of delta-opioid analogues that were previously synthesized and biologically tested and have 

made some investigations over the results of the in silico docking. Moreover, the calculation of the 

minimal energy conformation for each obtained ligand-receptor complex after the docking procedure 

was investigated. 

The main purpose of this study is to create a model for the structure-activity relationship of a series 

of delta-opioid ligands and molecular docking results by using machine learning where the Delta-opioid 

receptor (DOR) has a crystal structure (PDBid: 4ej4). This is a continuation of the recent study [12] 

where the relationship had been sought between the scores and it is obtained by another optimization 

algorithm where the biological activity of the studied compounds is used. The current paper briefly 

presents the data while the proposed fitting algorithm as well as the machine learning methods are 

explained in detail. The paper concludes with a result analysis and with an outline for future research. 

2.  Experimental remarks 

2.1.  Docking procedure 

The docking procedure was performed by using the software for molecular docking GOLD and the 

ChemScore algorithms, see [11, 13, 14]. The scoring results give information on how good the pose is. 

Precisely, the goodness of the pose is sketched by the scale of the score. 

2.2.  Receptor  

We use the delta-opioid receptor’s model with a crystal structure which is published in the RCSB Protein 

DataBase (PDBid: 4ej4), (http://www.rcsb.org).  

2.3.  Ligands 

The Delta-opioid ligands that were previously synthesized by our colleagues were also used in this study, 

see [11, 15, 16], Table 1. Ligand preparation was performed by the Molegro Molecular Viewer 2.5 

(MMV) program, (www.clcbio.com). The prepared structures were utilized for molecular docking by 

GOLD software. The total energies of the formed ligand–receptor complex after docking were computed 

by MMV 2.5 where the MolDock scoring algorithm is used, see [17]. 

3.  Results and discussions  

In order to establish a relationship between the biological activity of the studied delta-opioid compounds 

and the results from molecular docking (the values of the scoring functions) the Surface Curve Fitting 

Toolbox in MATLAB was applied [11].  

In our previous research, see [11, 18-20] the experimental data fitting for DOR was carried out by 

using a polynomial function 𝑧 =  𝑓 (𝑥, 𝑦) where the values (𝑧1, 𝑧2, . . . , 𝑧𝑛) of the dependent variable 𝑧 

represent the values of the biological activity of the mu-opioid ligands. The values (𝑥1, 𝑥2, . . . , 𝑥𝑛) of the 

independent variable 𝑥 represent the results from the docking – these are the values of ChemScore 

function (calculated by GOLD). The values (𝑦1, 𝑦2, . . . , 𝑦𝑛) of the independent variable 𝑦 represent the 

total energies for the ligand-receptor complex which are formed after the docking – the values of 

MolDock function (calculated by MMV).  
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Table 1. Data for the biological activity of ligands and docking studies, see [11]. 
 

Ligand ChemScore Total energy Ligand efficacy 

[Cys(Bzl)2-Leu5]-enk 38.91 -170.657 9.3 

[Cys(Bzl)2-Met5]-enk 35.19 -125.108 3.5 

[Cys(O2NH2)2-Leu5]-enk 28.48 -118.805 29.2 

[Cys(O2NH2)2-Met5]-enk 25.82 -87.343 7.3 

[DCys(O2NH2)2-Leu5]-enk 31.84 -136.187 7.4 

[DCys(O2NH2)2-Met5]-enk 31.55 -139.449 7.1 

[HCys(O2NH2)2-Leu5]-enk 32.75 -100.702 30.2 

[HCys(O2NH2)2-Met5]-enk 26.55 -112.164 3.4 

[D-Pen2,5]- enkephalin (DPDPE) 29.23  896.877 4.5 

[Leu5]-enkephalin 31.62 -119.009 5.8 

[Met5]-enkephalin 32.22 -106.792 3.6 

 

The obtained polynomial model of 3rd degree [11] could be interpreted as a surface-fitting function 

and it analyses the experimental data using a least squares method.  

The Surface Fitting Toolbox of MATLAB (http://www.mathworks.com/products/matlab) was 

applied for analysing the behaviour of one variable that depends on multiple independent variables. 

 To assess the goodness of fit the following statistical measures were employed:  𝑆𝑆𝐸 (Sum of 

squares due to error), 𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 (𝑅2), 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2, 𝑅𝑀𝑆𝐸 (Root Mean Squared Error).  

The results are as follows: 

 

Table 2. Goodness of fit for the polynomial models obtained by the least squares method. 

 

Models Poly (x,y) Degree of x Degree of y SSE R2 Adj R2 RMSE 

Poly11 1 1 6988 0.7369 0.6784 27.86 

Poly22 2 2 5456 0.7946 0.6234 30.15 

Poly33 3 3 0.6290 1.000 0.9999 0.5608 

 

The obtained model shows good fitting properties and significant predictive ability.  and was suitable 

for determining the structure-biological activity relationship: 𝑅2 = 1.0 𝑆𝑆𝐸 = 0.6290,  𝑎𝑑𝑗 𝑅2 =
0.9999,  𝑅𝑀𝑆𝐸 = 0.5608. Similar studies have been conducted with other compounds, see [11, 18-21]. 

In this research our aim is to identify a relationship of the from 𝑧 = 𝑓(𝑥, 𝑦) where 𝑧 represents the 

values of the biological activity of the delta-opioid ligands. The function 𝑧 is a function of two variables 

where the independent variables 𝑥 and 𝑦 are the values of the GoldScore function and the MolDock 

function, respectively. Our objective is to discover a nonlinear correlation that utilizes machine learning 

methodologies, see [22]. 

The regression models that are employed encompass the k-Nearest Neighbors, Gradient Boosting, 

Random Forest, and Extra Trees. The latter trio is classified as an ensemble method and is expected to 

outperform the former, the traditional method which is incorporated primarily for comparison purposes, 

see [23, 24]. 

The k-Nearest Neighbors (k-NN) algorithm is a multifunctional and easily understood approach 

that is used across various machine learning applications like regression or classification tasks. In 

particular, k-NN regression, a derivative of the method, serves as a beneficial instrument for predicting 

continuous data points. 

The core concept of the k-NN regression is founded on the presumption that the data points in the 

dataset are close in the feature space and they are likely to show analogous outcome values. This 

algorithm functions by pinpointing ‘k’ data points in the training dataset that are closest to a new, 

http://www.mathworks.com/products/matlab
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unobserved data point employing a certain distance metric, generally the Euclidean distance in the multi-

dimensional feature space.  

Once the ‘k’ nearest data points are ascertained, the algorithm creates a forecast for the new data 

point. For the regression tasks, this prediction is typically the mean of the dependent variable for the ‘k’ 

closest data points. This basically suggests that the outcome for an unobserved data point is the average 

of the outcomes of its neighboring points. A chief benefit of the k-NN regression is its 

straightforwardness and logical nature. It does not make any explicit suppositions about the underlying 

functional form of the data, categorizing it as a non-parametric approach. This adaptability allows the 

k-NN adequately to fit a sophisticated and non-linear data. Nevertheless, the k-NN regression also 

presents its own set of difficulties. Selecting an ideal ‘k’ can be a complicated task – a smaller ‘k’ may 

result in a model that is excessively sensitive to noise, whereas a larger ‘k’ may overgeneralize the 

model, disregarding crucial trends in the data. In addition, the k-NN regression can find its challenging 

to deal with high-dimensional datasets which is a problem that is frequently referred to as the “curse of 

dimensionality”. 

 

Gradient Boosting is an influential machine learning method utilized in an array of regression and 

classification applications. Basically the gradient boosting regression is an ensemble algorithm that 

constructs a predictive model by sequentially adjusting a collection of weak learners to the data, each 

striving to correct the errors committed by the one before it. The weak learners are generally - decision 

trees, although different base models may be employed. The fundamental concept is to amalgamate the 

outputs of numerous simple models to generate a single very precise forecast. This idea of “boosting” 

arises from the proposition that a combination of weak learners when they are aptly merged, could 

evolve into a strong learner. 

In gradient boosting, the sequential inclusion of weak learners effectively operates as a method of 

steepest descent, therefore the term “gradient”. The method estimates the gradient of the loss function 

(the measure that gauges the accuracy of the model’s forecasts, compared to the actual values) relative 

to the model parameters, and incorporates new models that orient in the direction that reduces the loss. 

For regression purposes, the objective is to predict a continuous outcome variable. In the context of 

Gradient Boosting Regression, the ensemble of trees is trained to forecast the residuals or errors of the 

preceding trees. Thus, each subsequent tree is effectively drawing nearer to the true, unidentified 

function that we are aiming to approximate. 

In general, Gradient Boosting has its advantages and disadvantages. It is an exceptionally potent 

method, capable of fitting complex, non-linear data, and it often performs well even on datasets 

composed of a mix of categorical and numerical features. Nevertheless, gradient-boosting models can 

be susceptible to overtraining, particularly if the data is riddled with noise. They could also be 

computationally challenging and necessitate meticulous tuning of various hyperparameters. For example 

the number of estimators, the depth of the trees, and the learning rate. 

 

Random Forest is a renowned machine learning technique, regularly employed in an array of 

regression and classification tasks. As indicated by its name, the Random Forest model consists of an 

assembly of individual decision trees. These trees are structured in a way that ensures variety and thus 

resilience in the collective predictive strength. 

In the terms of regression, the Random Forest Regressor operates by producing numerous individual 

decision trees during training, each tree trained on a random data subset and making its distinct 

prediction. When a new prediction is necessitated, each tree in the forest generates its prediction and the 

final output is the mean of these individual forecasts. This procedure enables the Random Forest 

Regressor effectively to capture the intricate, non-linear associations in data. 

The core principle of the Random Forest is the notion that an assembly of “weak learners” could 

amalgamate to compose a “strong learner”. Each decision tree in the forest is a weak learner, trained on 

a random data subset using a random feature subset at each split. This technique is known as bootstrap 

aggregating or “bagging” coupled with feature randomness. The strength of the Random Forest lies in 
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its straightforwardness and adaptability. It is relatively unsusceptible to overtraining, due to the 

randomness incorporated in its construction. It effectively handles both numerical and categorical data 

and manages missing data efficiently. Moreover, it offers an inherent method for feature importance 

estimation which can be advantageous for comprehending the model. However, in regard to all models, 

the Random Forest has its limitations. It can be computationally demanding and slower in both training 

and forecasting, especially when the tree count gets large. Additionally, it might not perform as well 

with very high-dimensional sparse data, such as text data and could be less interpretable compared to 

single decision trees. 

Extra Trees Regressor, abbreviated from “Extremely Randomized Trees” is another machine 

learning method used for regression tasks that belongs to the ensemble learning category. Like the 

Random Forest the Extra Trees constructs multiple decision trees during the training stage. It introduces 

an extra degree of randomness, rendering it more resilient and less susceptible to overfitting. In a regular 

decision tree the optimal split amongst a random subset of features in the node is chosen during the tree 

growth process. However, in Extra Trees, for each feature being considered, a random value is chosen 

as the split point, as opposed to the optimal split. Therefore, the Extra Trees Regressor brings in 

randomness not just at the sample level but also at the level of each decision tree’s individual split. 

The forecasting process for regression tasks is identical to that of the Random Forest Regressor. 

Every tree in the ensemble generates a forecast and the final result is the average of these individual 

forecasts. The randomness in the Extra Trees Regressor aids in capturing complex, non-linear 

relationships making it an extremely effective tool for regression. 

Nevertheless, it is crucial to highlight the distinctions between the Extra Trees and the Random Forest 

techniques. While they both are using bagging and random feature subsets, the main difference resides 

in how they split the nodes. The Extra Trees technique is faster due to its randomness at each split, which 

leads to a quicker training process. However, this could sometimes result in a minor performance 

decline, thus presenting a trade-off to consider. 

The Extra Trees is less likely to overtrain. It handles numerical and categorical data well and could 

effectively manage missing data. Like Random Forest, it offers an inherent method for feature 

importance assessment like the Random Forest. The drawback is similar to the other tree-based methods. 

It might not perform optimally with extremely high-dimensional sparse data such as text data. Its 

ensemble nature makes it less interpretable compared to the single decision trees. 

We have applied the four machine learning methods to build a multivariate regression. The metrics 

for each model were computed using 10-fold cross-validation and a hyperparameter tuning process was 

employed to find the optimal parameters. The best hyperparameters can be found in Table 3. Fig. 1 

provides the flowchart of the algorithm. 

Cross-validation is a tool used to measure how a machine learning model would perform on a novel 

data set, i. e. data has not been seen during the training. It helps to mitigate the overtraining - a scenario 

where the model overly memorizes the training data, which usually leads to a poor performance on the 

unseen data. The most frequently used form of the cross-validation is the k-fold cross-validation where 

the initial data set is randomly divided into k equally sized subsets. One of these k subsets is set aside 

for the model validation and the remaining k-1 subsets are utilized for training. This cross-validation 

procedure is iterated k times ensuring that each subset serves as validation data once. The results from 

the k folds can then be combined (typically by averaging) to provide a unified measure of the model 

performance. 
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Fig. 1. Flowchart of the regression algorithm (https://app.diagrams.net/). 
 

However, hyperparameter optimization refers to the process of finding the best set of 

hyperparameters for a machine learning model. Hyperparameters, unlike model parameters, are preset 

before training and do not change during the learning process. For example, in a Random Forest model, 

hyperparameters might include the number of trees in the forest or the number of features that each tree 

evaluates when splitting a node. Hyperparameters significantly affect model performance, making their 

appropriate selection vital. For the hyperparameter optimization, we apply a ‘grid search’ strategy, 

where we define a range of potential values for each hyperparameter and then assess the performance 

of every possible combination. 

 

Table 3: Modeling by using machine learning regressors. 

 

Regressor Best hyperparameters SSE R-square RMSE 

k-Nearest Neighbors {'n_neighbors': 5, 

'weights': 'uniform'} 

1223.4328 -0.2559 10.5461 

Gradient Boosting {'max_depth': 2, 

'n_estimators': 50} 

6.6080 0.9932 0.7751 

Random Forest {'max_depth': 4, 

'n_estimators': 200} 

228.5116 0.7654 4.5578 

Extra Trees {'max_depth': 2, 

'n_estimators': 200} 

763.3891 0.2163 8.3306 
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The optimal hyperparameter combination is presented in the second column of Table 3. The other 

columns contain the measures, see [14] which establish the comparison between the both approaches. 

Apparently from the results, the Gradient Boosting method indicates an optimal performance. The 

coefficient of determination reaches one, while the error metrics are almost negligible. In comparison 

to Table 2, the Gradient Boosting rates as the third-order polynomial approximation Poly33. These 

findings will agree with the results in [12]. 

The method can be employed to predict the biological activity of some new ligands via the 

optimization function ChemScore. The forecast surface is given in Fig. 2, where the white dots are the 

given data in Table 1. The result could be compared with Fig. 3 in [11]. 

4.  Conclusions 

 

We conducted some docking studies in order to understand the interactions between delta-opioid ligands 

and the delta-opioid receptor (DOR). These studies allowed us to anticipate the biological activity of 

newly engineered analogs, which manifested a significantly higher activity compared to the other 

compounds in the series tested, by creating a correlation between the docking outcomes and in vitro 

tests.  

From this evaluation, we have improved our comprehension of how the biological impacts of 

compounds correspond to in silico experiments. Further, this research opens the avenue to determine if 

the biological macromolecule models (DOR) are in harmony with the actual three-dimensional 

structures of the molecules.  

 

Fig. 2. Forecast surface. 
 

The insights derived from these studies could be instrumental in predicting the potential effectiveness 

of compounds with known docking scores and total energy calculations. We aim to apply these findings 

to future research and compound analysis, thereby advancing our understanding of molecular docking 
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and its implications for drug design and development. In essence, our work provides a powerful 

analytical tool that bridges the gap between in silico predictions and biological effects, accelerating the 

process of identifying promising compounds for further investigation. 
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