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Abstract. We discuss several familiar dynamical systems induced by reaction networks used for the modeling and simulation of
epidemiological outbreaks. We are especially interested in dynamical systems that are generated by reaction networks including
specific basic reactions such as exponential radioactive decay, logistic or Gompertz growth, etc. We explain how reaction networks
are “translated” into systems of ODEs. We then formulate certain mathematical properties of the solutions to these dynamical
systems and visualize these solutions. We finally present a computational framework for estimating systems of ODEs induced
by reaction networks. The main purpose of our work is to demonstrate the practical use of reaction networks in construction of
mathematical models describing the time evolution of epidemiological processes.

INTRODUCTION

This work applies the tools of reaction network theory (RNT) to the study of epidemiological processes. We demon-
strate how various epidemiological models can be obtained through defining an appropriate reaction network. The
studied dynamical systems rely on elements of the Gompertzian and logistic type growth models [1, 2] as their con-
stituent components.

The RNT approach suggests that the classical susceptible-infected-removed (SIR) model, based on the logistic re-
action mechanism, describes well epidemic events related to diseases spreading via a “one-to-one” contact pattern
between individuals. On the other hand, the two-step exponential growth-decay (2SED) model can be used to sim-
ulate epidemic data coming from non-communicable diseases [3]. Our comparative analysis naturally suggests the
formulation of a SIR-type model which is situated between the classic SIR model and the 2SED model.

In this new model, referred to as G-SIR, the logistic “one-to-one” contact mechanism is replaced by a catalytic
(Gompertzian) one. The proposed G-SIR model can be considered as an intermediate step between the SIR and the
2SED models. We illustrate graphically the shapes of the solutions to the three discussed models and formulate a
hypothesis that relates the different model reaction mechanism to the contact patterns of the particular disease. We
also present a computational framework for estimating systems of ODEs induced by reaction networks and apply it in
a Monte Carlo simulation to estimate a particular version of the G-SIR model.

The paper is organized in the following way. The next section introduces briefly the main concepts of RNT and
presents several popular RNT models that can be used as building blocks in epidemiological models. We then formu-
late the epidemiological models themselves, including the G-SIR model, present their mathematical characterization
and visually illustrate the shape of their solutions. The penultimate section turns to estimation and develops the com-
putational framework needed to estimate reaction network models, along with an application to the G-SIR model. The
final section concludes.

PRELIMINARIES AND CLASSICAL RNT MODELS

Systems of reactions—chemical, biological or social—can be formalized as reaction networks and the study of re-
action networks is referred to as reaction network theory or, in keeping with established tradition, chemical reaction
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network theory. Reaction networks are symbolically presented as systems of elementary reactions and usually are
presented in the form

S+Q k−→ P+R.

The interpretation of this expression is that two or more species on the left side of the arrow, called reactants or
reagents (in this example species S and Q) react and as a result of the reaction one, two or more species, named prod-
ucts (here P and R) are produced. The considered reaction network involve one or more decaying species interpreted
as environmental resource [3, 4].

All species (reactants and products) partaking in a reaction are denoted by uppercase letters. A positive number
called “rate parameter” is written over the reaction arrow. It indicates the velocity of the reaction. The reactants on
the left side of the reaction arrow either decay or remain constant, whereas the product species on the right side of the
arrow are growing. In some cases species may appear two or more times at one side of the arrow, such as A+A, briefly
denoted as 2A. The sign “+” has different meaning when it is placed on the left or on the right side of the reaction
arrow. The concentrations (masses) of the species are taken as functions of time t and are denoted by corresponding
lowercase letters, such as s = s(t), p = p(t), . . . The species are assumed to be involved in a reaction network which
is governed by mass action kinetics. Therefore the reaction network induces an unique dynamical system of reaction
equations for the rates s′ = ds(t)/dt, p′ = d p(t)/dt, . . . of the concentrations.

Growth-decay Models and Their Applications

The Gompertz Growth-decay Model

The Gompertz growth-decay model is used in numerous applications. Various formulations of the Gompertz model
can be found in the literature. For this model the reaction network for species S,X , [2] has the following expression:

S ν−→ P S+X k−→ 2X +S.

The first reaction shows that species S decays exponentially, being consumed by an “outer” species P. The second

reaction suggests that species S serves as a catalyst in the growth process X ν−→ 2X .
The induced dynamical system (via mass action kinetics) for the concentrations s,x of the species S,X with the

initial conditions s(0) = s0 > 0, x(0) = x0 > 0 is given by s′ =−νs, x′ = ksx.
The Gompertz model is characterized by a conservation relation. It takes the form:

γs+ lnx = lnc, lnc = γs0 + lnx0, γ := k/ν .

The Gompertz growth function is often defined as a solution x = x(t) of the following differential equation:

x′ = νx(lnc− lnx),

where ν > 0 and c are parameters [11]. Figure 1 shows an example of the shape of the solution to the Gompertz
model.

For c = 1 (lnc = 0) the solution is given by s = s0e−νt , x = x0
e−νt

.

The logistic Growth-decay Model

For the logistic growth-decay model the reaction network for species S,X , [2] is given by

S+X k−→ 2X ,

where k > 0 is the reaction rate and 2X is an abbreviation of X +X .
The induced dynamical system (via mass action kinetics) for the concentrations s,x of the species S,X with initial

conditions s(0) = s0 > 0, x0 = x0 > 0 is given by s′ =−ksx, x′ =+ksx.
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FIGURE 1. The solution to the Gompertz growth-decay model for k = 1, ν = 0.9, s0 = 2.07, x0 = 0.1

FIGURE 2. The solution to the logistic growth-decay model for k = 1, s0 = 0.9, x0 = 0.1

The conservation relation for the model is

s′+ x′ = 0 ⇒ s+ x = c = const.

In addition, the dynamical system implies that

s′ =−ks(c− s), x′ = kx(c− x),c = s0 + x0.

Assuming c = 1 and s0 = x0 = 1/2, the solution is

s(t) = e−kt/(1+ e−kt), x = 1/(1+ e−kt).

Figure 2 shows the solution to the logistic growth-decay model.
Compared to the Gompertz model (for appropriate parameterization to ensure comparability), the logistic model

exhibits faster growth of the product species (Figure 3). This suggests that in epidemiological applications the logistic
model may be used in cases where transmission takes place as a result of direct contact. In contrast, the Gompertz
model may be more appropriate in situations where transmission happens indirectly and therefore the spreading of the
disease may be slower.
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FIGURE 3. Comparison of the solutions of the logistic and Gompertz models. Logistic model: solid lines, k = 1, s0 = 0.990, x0 =
0.01. Gompertz model: dashed lines, k = 1, ν = 0.2, s0 = 0.921, x0 = 0.01

One-step Exponential Growth-decay Model

The one-step exponential growth-decay model is defined by the reaction network

S k−→ P.

The dynamical system generated by this reaction network is s′ =−ks, p′ =+ks. This system is coupled with the initial
conditions s(0) = s0 > 0, p(0) = p0 ≥ 0 to obtain an initial value problem. The one-step exponential growth-decay
model is characterized by the conservation relation

s′+ p′ = 0 ⇒ s+ p = c = const, s0 + p0 = c.

The solution to the model is the following:

s(t) = s0e−kt , p(t) = c− s0e−kt , c = s0 + p0.

It is graphically illustrated in Figure 4.

EPIDEMIOLOGICAL MODELS AND APPLICATIONS

The classical RNT models presented in the previous section provide the required building blocks to move towards
modeling epidemiological phenomena. The basic paradigm for transitioning between different compartments or stages
of a disease is provided by the two-step exponential growth-decay model, a generalization of the one-step exponential
growth-decay model. The 2SED model thus represents the most direct, linear type of transition between stages where
interactions do not play a role.

The epidemiological SIR model constitutes a further generalization of the 2SED model with an interaction mech-
anism added. It embeds a logistic reaction in its formulation and is suitable for situations where a disease spreads
through a direct, one-to-one contact pattern.

The differences between the logistic and Gompertz models suggest that we can modify the epidemiological SIR
model by replacing the logistic reaction with a Gompertz one. This modification is presented at the end of the present
section.
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FIGURE 4. The solution to the one-step growth-decay model for k = 1, s0 = 1.0, p0 = 0.0

Two-step Exponential Growth-decay Model

The two-step exponential growth-decay model (see [3] for a modern presentation or [12] as a historical reference) is
defined by the following reaction network:

S
k1−→ P

k2−→ Q.

The dynamical system associated with the above network is s′ =−k1s, p′ = k1s−k2 p, q′ = k2 p. The initial condi-
tions required to construct an initial value problem are s(0) = s0 > 0, p(0) = p0 = 0, q(0) = q0 = 0. The conservation
relation

s′+ p′+q′ = 0 ⇒ s+ p+q = c = const, s0 + p0 +q0 = c.

is valid for the two-step exponential growth-decay model. The solutions are as follows:

s(t) = s0e−k1t

p(t) =

⎧⎨
⎩

s0k1
k2−k1

(e−k1t − e−k2t), k1 �= k2,

s0kte−kt , k1 = k2 = k.

q(t) =

⎧⎨
⎩

s0
k2−k1

(k2(1− e−k1t)− k1(1− e−k2t)), k1 �= k2

s0(1− (1+ kt)e−kt), k1 = k2 = k.

Figure 5 presents the solution to the two-step growth-decay model for particular parameter values. As visualized
on the figure, function p = p(t) can be used for the simulation of an epidemic outbreak [3].

Epidemiological SIR Model

The epidemiological SIR model can be viewed as an appropriate generalization of the two-step growth-decay model.
Its reaction network is

S+ I k−→ 2I, I a−→ R.

020001-5



FIGURE 5. The solution to the two-step growth-decay model for k1 = k2 = 1, s0 = 1.0, p0 = 0.0, q0 = 0.0

FIGURE 6. The solution to the SIR model in the case of an epidemic outbreak for k = 3.0, a = 0.5, s0 = 0.8, i0 = 0.2, r0 = 0.0

This reaction network results in the dynamical system s′ =−ksi, i′ = ksi−ai, r′ = ai. The usual initial conditions for
the SIR model are s(0) = s0 > 0, i(0) = i0 > 0, r(0) = r0 = 0. The model is characterized by the conservation relation

s′+ i′+ r′ = 0 ⇒ s+ i+ r = s0 + i0 = c = const.

The interpretation of this reaction network is as follows. There are three classes of species – susceptibles S, infectives
I and removed R. The parameters k,a > 0 are construed as “infection” and “removal” rate, respectively. An epidemic
outbreak occurs when s0 > ρ := a/k. The same condition can be equivalently formulated in terms of the basic
reproduction number Rsir

0 := s0/ρ . Thus, an epidemic outbreak occurs when Rsir
0 > 1. The two situations are illustrated

in Figures 6 and 7.

G-SIR Model

The comparison between the properties of the logistic and Gompertz models suggests that we can alternatively embed
the respective reaction in epidemiological model formulations. One example of this strategy is a SIR-type epidemio-
logical model where the logistic reaction from the SIR model is replaced by a Gompertzian one. We refer to this new
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FIGURE 7. The solution to the SIR model in the case of no epidemic outbreak for k = 3.0, a = 3.0, s0 = 0.8, i0 = 0.2, r0 = 0.0

FIGURE 8. The solution to the G-SIR model in the case of an epidemic outbreak for ν = 1.93, k = 3.0, a = 0.5, s0 = 3.3, i0 =
0.01, r0 = 0.0

model as the G-SIR model [3]. The G-SIR model takes an intermediate position between the SIR and the two-step
exponential growth-decay model. The G-SIR model provides an approach to simulate epidemic outbreaks for diseases
that are not necessarily communicable according to one-to-one contact spread pattern.

The reaction network for the G-SIR model is

S ν−→ /0, S+ I k−→ 2I +S, I a−→ R.

This reaction is associated with the dynamical system s′ = −νs, i′ = ksi− ai, r′ = ai. Coupling with the initial
conditions s(0) = s0 > 0, i(0) = i0 > 0, r(0) = r0 = 0, we obtain an initial value problem for the G-SIR model.
Solving the initial value problem yields the following expressions:

s = s0e−νt , i = i0 exp(γs0(1− e−νt)−at), γ := k/ν .

Similar to the SIR model, the G-SIR model can lead to situations where epidemics break out or die out. The first case
is illustrated in Figure 8, while Figure 9 shows the case where no outbreak occurs.
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FIGURE 9. The solution to the G-SIR model in the case of no epidemic outbreak for ν = 0.3, k = 3.0, a = 3.0, s0 = 0.965, i0 =
0.25, r0 = 0.0

RNT MODEL ESTIMATION

The computational results reported in this paper were implemented using the Julia language [5] and various packages
from the Julia ecosystem. This allowed us to leverage the language’s syntactic expressiveness and speed of execution,
while making use of the rich and growing variety of packages available for Julia. All computations were done in the
infrastructure provided by the Jupyter Notebook [6].

Here we present an example of how this ecosystem can be employed to automate the process of formulating a
reaction network, deriving the associated ODE system, estimating the parameters of the system on data and producing
simulations using the estimated model. Our goal is to develop the computational infrastructure for model estimation
and testing. To this end, we start by building an estimation pipeline and testing its performance in a Monte Carlo
experiment on an artificially generated toy dataset.

Our implementation of the estimation pipeline relies on the Julia packages Catalyst [7], DifferentialEquations
[8], DiffEqBayes [9] and Turing [10]. These cater respectively for translating a symbolic representation of a reac-
tion network to an ODE system, solving the ODE system, estimation of an ODE system using Bayesian methods and
providing the underlying simulation engine for the Bayesian computations.

More specifically, we go through the following steps:

1. Generate test data from an instance of the G-SIR model.

2. Chain together a set of functions that take a symbolic representation of a reaction network, produce the associ-
ated ODE system and estimate the rate parameters using Bayesian methods.

3. Apply the above pipeline to the test data and visually check the fit.

To generate the test dataset for the simulation we use an instance of the G-SIR model and perturb it with iid
Gaussian noise with mean 0 and standard deviation 0.03. The G-SIR model is characterized with the following
parameters: ν = 1.93, k = 3.0, a = 0.5. The initial conditions for the simulation are s0 = 3.3, i0 = 0.01, r0 = 0.0 and
the simulation is run over the time interval t ∈ [0,10]. We sample 50 observations at equally spaced steps over this
time interval.

In order to estimate the model in a Bayesian framework, we impose uniform priors over the interval [0,5] on the
three rate parameters (ν , k, a). These priors are informative – they guarantee the correct sign of the parameter
and, additionally, they impose upper bounds on the admissible parameter values. Thus, a choice similar to ours is
appropriate in situations where the researcher has adopted a certain theoretical framework and employs estimation
procedures that are guaranteed to be consistent with this framework. The upper bounds imposed by the priors can be
made sufficiently high, so as to rule out implausible values without biasing the results of the estimation. At the same
time, the chosen priors entail an agnostic attitude on what the likely values inside the support of the distribution are.
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FIGURE 10. Posterior distributions of the main model parameters (theta[1]=ν , theta[2]=k, theta[3]=a)

Parameter True value Estimated value

ν 1.93 1.9003
k 3.0 2.9657
a 0.5 0.5101

TABLE I. True and estimated values of the G-SIR model parameters.

To obtain the posterior distributions of the model parameters, we simulate three chains of 3000 observations each
from the model. The resulting simulations and distributions are shown in Figure 10. The results indicate adequate
convergence and the distributions obtained from the three chains are tightly grouped and similar in shape. Overall,
the spread of the posteriors is relatively small, indicating that the available sample is informative enough to obtain
estimates of the model parameters.

To get point estimates from the posterior distributions, we use the means of the respective distributions. Table I
reports the estimated values and compares them to the true parameter values. The estimates are close to the true
values, reflecting an adequate combination of prior specification and sample size to obtain a good approximation to
the underlying data generating process.

Finally, we use the estimated model parameters to solve the respective ODE system and check how well the solution
fits the data. The results are illustrated in Figure 11. They visually confirm that the estimated model fits the data well.
It should be noted, however, that the test case presented here is a relatively simple one in the sense that the data
generating process is a well-behaved one with a small amount of noise and the initial conditions for the problem are
known. More testing is required to bridge the gap to modeling real-world data.

CONCLUSION

Our work tries to substantiate the claim that the RNT approach provides an intuitive way to specify epidemiological
models. Thus, classical epidemiological models can be obtained through the application of RNT tools. Moreover,
the RNT approach provide a natural route to modifying the standard epidemiological models in order to obtain new
epidemiological specifications. The different versions of the models can be applied to study both diseases with a one-
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FIGURE 11. Data vs. fitted G-SIR curves

to-one contact pattern and non-communicable diseases. The availability of a rich variety of numerical tools facilitates
the construction of estimation and simulation pipelines in a flexible and modular manner.
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DISCUSSION

Question. The Covid-19 pandemic raised the issue of whether the SIR-type models or models based on branching
processes are better. Thus, it would be interesting to know if the authors have tried mixtures of cumulative distribution
functions as an approach to modeling epidemic phenomena. This approach would permit the modeling of dynamics
where multiple local maxima (epidemic waves) arise.
Answer. In the chosen approach the stochastic element is added as a perturbation to the initial differential equation
structure. This means that the shapes of the solutions are governed by the properties of the dynamical system and not
by the model disturbances. Other approaches are possible but so far the authors have not implemented or tested them.
Question. The work relies on Bayesian analysis in estimating the model parameters. Have the authors tried estimation
in a classical framework without imposing specific priors such as the uniform distribution and, if so, which approach
leads to shorter confidence intervals?
Answer. Tests were done, again in a Bayesian framework, with alternative prior distributions. Specifically, truncated
normal distributions were tested as the alternative to the uniform priors. The posterior distributions obtained were
very close to the ones from the simulation using uniform priors. This suggests that the data is informative enough and
the likelihood dominates the prior. Thus, the particular choice of prior does not affect the results substantially.

While classical estimation was not done as part of this research, it is certainly a viable option for future work. It
should also be noted that the chosen data generating model is relatively well-behaved and does not induce too much
noise, which facilitates the discovery of the true parameters.
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