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CNN MODELING OF A CLASS OF
INTEGRO-DIFFERENTIAL EQUATIONS

Angela Slavova, Zoya Zafirova, Pietro Zecca

In this paper we study a class of integro-differential equations. First we
present Cellular Nonlinear Networks (CNN) modeling of integro-differential
equations. We map the equation under consideration into CNN architecture
and study its dynamics. Applying harmonic balance method we obtain
periodic solutions of the model. We provide numerical simulations which
illustrate the obtained theoretical results.

1. Introduction

Recently the most important microprocessor manufactures realized that one of
the main challenges for the near future is to build efficient processors and in-
frastructure for the real time handling of images videos or for general time sig-
nals coming from space distributed sources. Because both of these tasks are
strictly related to spatio-temporal computing, a great effort is then performed to
devise supercomputers able to perform spatio-temporal calculations of integro-
differential equations in real time. From this perspective the possibility to exploit
the capabilities of analog computation on signal flows instead of traditional digital
computation on bits arises.

Integro-differential type of equations are widely used to describe phenom-
ena in different fields, as biology, neuroscience, population dynamics, propellant
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rocket motors and in networked control systems. In this paper we consider a class
of integro-differential equations (IDE) described by:

2u t ¢
(1) — = —bl/ e~ =5y (s)ds — bg/ e~ 2=5)y (s)ds

where a1, a9, b1, b are constants. In order to explain a possible scheme of
appearing of integro-differential equations in mathematical models let us consider
a simplified model for motion of a single mass point:

= f(t)+ Af(t),t € [0, +00),

where vector y(t) describes the motion, and A f(¢) is an unknown error in defining
the right-hand side f(¢) which could be estimated HA f(@®)|| < 6. We can consider

the error function to be in the form Af(t) Z / K, (t,s)y(s)ds, where the

kernels K, (t,s) = e~ ar(t=9) Br. This form of the kernels plays an important role
in the applications of integro-differential equations.

Without loss of generality we can reduce (1) into a system of first order
differential equations:

L1 = —T3 — T4
$2:x1

(2) /

Ty = blxg — a1x3

/
Ty = baxg — aswy,

t t
where x1 = u/(t), 2 = u(t), 3 = bl/ e~ 1=y (s)ds, x4 = bg/ e~ 2=5)y(5)ds.
0

System (2) is equivalent to (1) and v?ze shall use it later for our numerical sim-
ulations. In Section 2 we shall present Cellular Nonlinear Networks (CNN) and
how we can model partial differential equations by this approach. We consider
more general form of integro-differential equation (1) and obtain its CNN model.
In Section 3 we apply harmonic balance technique for studying the dynamics of
our CNN model. Computer simulations are provided as well.

2. Cellular Nonlinear Networks modeling

Meanwhile, the electronic industry has developed to a stage where billion transis-
tors, nanosecond time scale, nanometer scale size and millions of pixels, etc. are
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becoming possible, in laboratories and manufacturing alike. A few characteristic
directions are as follows.

— The essentially 2D structure of silicon and optical technology, as well as
the latest sub-100 nm feature size with its power dissipation and wire length
constraints push the architectures to an essentially parallel processor, 2 D cellular,
sparsely connected nature.

— The “sensory revolution”, a third wave in electronics industry, and its im-
pact on data provides for thousands and millions of analog sensory signals orga-
nized in arrays to be processed and embedded into sensory computing devices.
Typical data are becoming image flows of various kinds: multi-spectral visual,
auditory scene, tactile and somatosensory, etc. Multi-modal sensor fusion is be-
coming a natural task.

— Bionic array interfaces lead us to be interconnected to living organisms with
complexities far exceeding our man-made word. The wide use of cochlear pros-
theses, the first pioneering examples in muscle prosthesis and even an experiment
in constructing a retinal prosthesis, are now show the tip of the iceberg.

— So far we were able to build systems with high complexity in either space
or time, now the spatial-temporal arena is opening.

— Software systems around high performance processors and grids of them
have become feasible. Moreover, mobile communications with standardized in-
terfaces and huge centers developed successfully. However, thousands of dynami-
cally reprogramable tiny sensory processors, either in a fixed array or in a form of
ad-hoc mobile platforms, are emerging around us. Their spatial-temporal control
and processing software need a fresh look.

Cellular Nonlinear Networks (CNN) [1, 2] are simply an analogue dynamic
processor array, made of cells, which contain linear capacitors, linear resistors,
linear and nonlinear controlled sources. Many complex computational problems
can be formulated as well-defined tasks where the signal values are placed on a
regular geometric 2-D or 3-D grid, and the direct interactions between signal
values are limited within a finite local neighborhood [3]. CNN is an analog
dynamic processor array which reflects just this property: the processing elements
interact directly within a finite local neighborhood (see Fig. 1).

The concept of CNN is based on some aspects of neurobiology and adapted to
integrated circuits. For example, in the brain, the active medium is provided by a
sheet-like array of massively interconnected excitable neurons whose energy comes
from the burning of glucose with oxygen. In CNN the active medium is provided
by the local interconnections of active cells, whose building blocks include active
nonlinear devices (e.g., CMOS transistors) powered by dc batteries.
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Figure 1: 2-D CNN grid

2.1. CNN modelling

We shall present CNN modeling on the following example of integro-differential
equation. It is a more general form of the Hodgkin—Huxley model for the prop-
agation of the voltage pulse through a nerve axon which is referred to as the
FitzHugh-Nagumo equation [9, 10, 11]:

(3) Ut — Uy = u(u — O)(1 —u) — b/o u(s, x)ds,

0 <zt <1, 0< O < 1/2,b>0. The proposed equation (3) is nonlinear
parabolic integro-differential equation, in which wu; is the first partial derivative
of u(t,x) with respect to t, u,, is the second derivative of u with respect to z, u
is a membrane potential in a nerve axon, the steady state u = 0 represents the
resting state of the nerve.

Now if we map u(z,t) into a CNN layer such that the state voltage of a CNN
cell vk (t) at a grid point (k, 1) is associated with u(kh,t), h = Az and using the
one-dimensional discretized Laplacian template A; [9], it is easy to design the
CNN model of the proposed FitzHugh-Nagumo equation (3):

(1) CNN cell dynamics:

du; S =wi(u; — —u;) — tu-s s
@) -1 =y =€) =) = [ s

dt J
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(2) CNN synaptic law:

1
(5) I} = 55 (uj—1 — 2uj +ujt1).

Let us assume for simplicity that the grid size of our CNN model is A =1
and let us denote the nonlinearity n(u;) = uj(u; — ©)(1 — u;). Substituting (5)
into (4) we obtain:

(6) = ~ (W-1 = 2uj +uji) = nyy) -

Equation (6) is actually integro-differential equation which is identified as the
state equation of an autonomous CNN made of N x N cells [1,2].

In this section we shall consider more general form of (1) in which u is a
function of (¢, z):

?u  O*u t ¢
7 — =—-b / e~ a1(t=s)y, s,x)ds — b / ema2(t=9)y s, z)ds.
O 2 =gz Y, (s.2)ds =bz | (&)

Now we shall map the integro-differential equation (7) into CNN architecture
made of 2-d grid of L x L cells:

d .
é%:W@J:L“qn:LL
dvj

(8) = W1 = 2u + ) -

t t
—bl/o e_al(t_s)uj(s)ds—bg/o e_a2(t_5)uj(5)ds.

For analytical investigations, it is often necessary to assume an autonomous
CNN of infinite size, i.e. L — oo. In this case, the boundary conditions are
replaced by the prescribed behavior of the solution at infinity [9].

We simulate our CNN model (8) [3] and obtain the following figure:
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Figure 2: Simulation of the CNN model

3. Dynamics of the CNN model (8)

3.1. Application of harmonic balance technique for studying dynam-

ics of CNIN
We shall consider the following CNN system with N cells:
(9) $i(t) = —xi(t) — syi—1(t) + pyi(t) + syita(t)

yi(t) = [flai(t)),
where the nonlinearity f(.) is the piecewise-linear function f(z) = (|Jz +1| — |z —

1))/2 and s > 2=

so that the network operates in a global propagation mode.

In fact it has been shown in [4,5,6] that if the condition s > P

every trajectory converges to an equilibrium point, which excludes the existence
of any periodic solution. Moreover, let us consider a Continuous-Time Discrete-
Space Fourier Transform (CTDSFT) [8] G(w,Q) = F{gn(t)} from continuous
time ¢ and discrete space n to continuous temporal frequency w and continuous
spatial frequency 2, defined by

(10) Y e / gu(t)e I dt.

n=—oo

is not satisfied,

By taking the CTDSFT of both members of the first equation in (9), which is
linear, we obtain that the transfer function of the linear part of the system can
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be expressed by

X(wo,Q0) re 70 4 p 4 sedfo
11 H(wo, Q) = = -
( ) (WQ 0) Y(OJ(), Qo) 1+ Jwo

where X (wo, Q) = F{z;(t)} and Y (wo, ) = F{yi(t)}. Since we have a finite
array of N cells with periodic boundary conditions, the spatial frequency g
assumes only a finite set of values.

The fundamental assumptions made in applying the harmonic balance tech-
nique are the following:

1) One supposes that (9) has a periodic solution in the form

(12) x;(t) = X, sin(Qoi + wot)

which amounts to specify an ansatz for £(.) in the general form of the system
solution, which is {(¢) = X,,, sint. The amplitude, the temporal frequency wy,
and the spatial frequency €2y are therefore the unknowns to be determined.

2) The periodic output y;(t) = f(x;(t)) of the nonlinear block corresponding
to the sinusoidal input is approximated only by the fundamental component of
its Fourier series expansion

yi(t) = Y, sin(Qoi + wot)

where

(13) Y, = % " (X sin ) sin o dip.

By considering the Lur’e representation [8] of (9), one can easily determine
from (11) that the unknown parameters in (12) have to satisfy the following
equations:

P+ 2swosinQy X,
14 RIH(wy, ) = —— = —
( ) { ( 05 0)} 1 (2) Y.’

25 sin wg — pwg

=0.
1+w(2)

(15) S{H (wo, )} =

The second constraint (15) links the spatial and temporal frequencies by

2
(16) wo = — sin Qg
P
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whereas using (13) and (14), one obtains that the amplitude X, of the oscillations
is given by the root of the following implicit equation:

2 1 1
(17) Xm:?p [XmarcsinX—m+ 1—X—%] .

The conclusion is summarized in the following proposition [6, 8].

Proposition 1. A CNN (9) with periodic boundary conditions, made of N

cells with s > pT’ possesses at least (N — 1)/2 different nontrivial periodic

2rk
solutions, whose spatial frequencies are Qg = %, 1<k<(N-1)/2.

In order to validate the accuracy of the achieved result we present numerical
simulations for N = 20, p = 2, and s = 3. According to the previous proposition,
the network possesses at least nine periodic solutions, moreover the corresponding
values of the minimal period Ty and €y, that can be computed are reported in
Table 1.

Table 1: Comparison between the predicted
and the simulated values of Ty and g

Simulation Prediction (Prop.1)
To | Qo To | Q
7.354 | 0.314 | 6.778 | w/10
3.883 | 0.628 | 3.563 | 7/5
2.837 | 0.943 | 2.589 | 37/10
2.418 | 1.257 | 2.202 | 27 /5
2.300 | 1.571 | 2.094 | /2
2.418 | 1.884 | 2.202 | 37/5
2.837 | 2.119 | 2.589 | 77w /10
3.883 | 2.514 | 3.563 | 47 /5
7.353 | 2.827 | 6.778 | 97 /10

3.2. Periodic solutions of our CNN model
In this section we shall apply an approximative method, based on a special Fourier
transform in order to obtain periodic solutions of our CNN model (8). The idea of
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using Fourier expansion for finding the solution of a partial differential equation
is well known in physics. It is used to predict what spatial frequences or modes
will dominate in nonlinear PDEs. In CNN literature this approach has been
developed for analyzing the dynamics of CNNs with symmetric templates [1, 2].

It is known that in the frequency domain, the transformation of the spatial
index 7 into a continuous spatial frequency () defines the discrete space Fourier
transform (DSFT) [7] by:

(18) za(t) = Z zi(t)e ¥,

j = v/—1, if the array of cells in CNN has an infinite length. Whereas its
transformation into a discrete spatial frequency Q = 27K/N, 0 < K < N — 1,
(N -number of cells), defines a discrete Fourier transform (DFT), if the array of
cells is circular and made of a finite number N of cells.

We can define the dual continuous time Fourier transform (CTFT) [7] from
continuous time ¢ to a continuous temporal frequency w by

o
(19) Xi(w) = / zi(t)e Tt dt.

—o0
Finally, we can combine both transforms to define a continuous time, discrete
space Fourier transform (CTDSFT) from discrete space ¢ and continuous time ¢
to continuous spatial frequency €2 and continuous temporal frequency w by

(20) Xo(w) = Z /_ h zi(t)e I BTt gy

If the array of cells is circular, this transform can still be applied at the finite set
of spatial frequencies:

B 2K

(21) Q N

0<KSN-1

It then becomes a continuous time discrete Fourier transform (CTDFT) from
finite discrete space ¢ and continuous time ¢ to discrete spatial frequency {2 and
continuous frequency w:

N o0
(22) Xow) = Xg(w) = Z/ xi(t)efj((ZnKi/N)ert)dt.
i=1Y 7>
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In our case we shall apply double Fourier transform F'(s, z) of functions con-
tinuous in time and discrete in space [9]:

k=00 0o
(23) Fs,2)= 3 o / Fo(t) exp(—st)dt.

k=—o00

This is Continuous-Time Discrete-Space Fourier Transform (CTDSFT) from
continuous time t and discrete space k to continuous temporal frequency w, and
continuous spatial frequency €2, such that z = exp(i€2), s = iw, i is the imaginary
identity. The method is based on the fact that all cells in CNN are identical, and
therefore by introducing a suitable double transform (23), the network can be
reduced to a Lur’e system [8] to which the harmonic balance technique is applied
for discovering the existence and characteristics of periodic solutions.

We develop the following algorithm based on harmonic balance technique
described above:

1. Apply transform (23) to the CNN model (8), so we obtain:

sU=V
(24) sV = (271 =224+ 2)U — b1s 'G1(U) — bys ' Go(U)
=(z71 =224 2) - F(U(s,2)),

where G1(U) and G2(U) are the Fourier transforms of e*‘“(t*s)uj(s) and
eiQQ(t*S)uj(s).
2. Calculate the transfer function H (s, z):
1
s(z7l =22+ 2 —s?)

(25) H(s,z) =

According to the harmonic balance technique [7,8], the transfer function can
be expressed in terms of temporal frequency w and spatial frequency §2:

(26) Ho(w) = iw(2 — 2 clos Q+w?)’

3. We are looking for possible periodic solutions of our CNN model (8) in the
form:

(27) ui(t) = E(jQ+wt),1 <j<n=LL

for some function £ : R — R and for some spatial frequency 0 < Q < 27 and

2
temporal frequency w = %, where T > 0 is the minimal period of (27).
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5. Now according to (27) we shall suppose that u; has the form:
(28) uj(t) = Upsin(wt + j2),1 < j <mn,

which amounts to specify an ansatz for (28) £(¢) = Uy, sin.
6. We shall approximate the output of our CNN model (8) by the fundamental
component of its Fourier expansion:

(29) y(u;(t)) = y;(t) = Y sin(wt + jQ2).
7. The ratio of the CTDSFT of these periodic solutions is:

(30) Ho(w) = =2,

8. According to the harmonic balance technique [8] the following constraints
hold:

Un
T(Ho(w)) = 0.

10. Thus (28), (29) and (31) give us necessary set of equations for finding the
unknowns U,,,  and w. As we mentioned before we are looking for a periodic
wave solution of (8), therefore U, will determine approximate amplitude of the

wave, an T = il will determine the wave speed. Now according to the harmonic
balance techni((idue, if for a given value of Q we can find the unknowns (U,,,w),
then we can predict the existence of a periodic solution of our CNN model (8)
with an amplitude U,, and period of approximately T = T The following
theorem hold: “

Theorem 1. CNN model (8) of the integro-differential equation (7) with cir-

cular array of n = L x L cells has periodic solutions u;(t) with a finite set of

2 2
spatial frequencies 2 = L, 0<k<n-—1and a period T = il
n w

Proof. We shall consider circular array of cells for our CNN model (8) [9],
for which the possible values of €2 can be easily obtained. As u;(t) is assumed to
be periodic with minimal period T, one has

(32) E(Q+ wt) = £ + wt + kwT),
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for any £ € N. On the other hand, the periodic boundary conditions impose that
(33) E(wt) = &(Qn + wt).
Combining (32) with j = 0 and (33), we get

(34) Q:%wTZQZ—k,OSkSn—I,
where the range of k is determined by the condition 0 < Q < 27.

From (29), (31) and (34) we obtain a system of algebraic equations for the
unknowns U,,, 2 and w. We solve this system and obtain the unknowns (U,,,w)
for a given value of Q. Therefore according to harmonic balance technique [8] we
have proved the existence of periodic solution u;(t) of our CNN model (8) with

™
an amplitude U,, and minimal period T'= —. Thus the theorem is proved. O
w

Based on the above algorithm extensive computations were made [3] and we
obtain the following periodic solutions of CNN model (8):

Figure 3: Periodic solution of CNN model (8)
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