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Abstract. In this paper Harmonic balance technique (HBT) is presented for studying Cellular Nonlinear Network (CNN) model
of Meinhardt-Gierer equation (CNN-MG). First, short survey on HBT and CNN is given. Then we prove existence of periodic
solutions of CNN-MG model. Computer simulations illustrate the obtained theoretical results.

INTRODUCTION

The harmonic balance technique is a very powerful method for predicting the dynamic behavior of periodic steady
state solution of system differential equations. It is very easy to implement in computer systems. Many aspects of
qualitative behavior have to be investigated numerically. For this purpose we apply the Cellular Nonlinear Networks
(CNN) approach for studying such models.

Harmonic balance technique for studying differential equations
The nonlinear system of differential equations can be presented as the system called Lur’e system /see fig 1/.
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FIGURE 1. Lur’e scheme.

The block L is presented by transfer function into frequency domain. The signal entering through the nonlinear
block of the Lur’e scheme [5] is approximated by means of a suitable sinusoidal term whose frequency and amplitude
are unknown. The higher-order harmonics in the output of the nonlinear block are neglected. We shall consider a
basic Lur’e scheme [5], with L - linear time - invariant dynamic system and N - nonlinear time-invariant static and
memoryless system.

This means that the output signal of the system is

y(t) = (−n(y(t)).L(s) (1)
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Which is equal to the so - called harmonic balance equation.

y(t) + (n(y(t)).L(s) = 0 (2)

We assume that nonlinearity is then represented by the Fourier series as n[y0(t)] = N0(A, B) + N1B cos(ωt) + ...., where

N0 =
1

2πA

∫ π

−π

n[y0(t)]dωt, (3)

N1 =
1

2B

∫ π

−π

n[y0(t)]dωt. (4)

Equilibrium points can be obtained through

n
′

(E j) =
dn(y)

dy
|y=E j . (5)

The prediction of boundary cycles is made by the conditions:

1 + N0(A, B)L(0) = 0 (6)

1 + N1(A, B)L( jω) = 0 (7)

which are described in a system as parameters A, B and ω.
The condition 1 + N1(A, B)L( jω) = 0 graphically corresponds to the intersection of the Nyquist plot L( jω) with the
function − 1

N1(A,B) .

Cellular Nonlinear Network
One of the key features of a CNN is that the individual cells are nonlinear dynamical systems, but that the coupling
between them is linear.

General CNN which cells are made of time-invariant circuit elements are arranged in arrays of cells (Fig.2).
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FIGURE 2. 3 × 3 neighborhood CNN.

Each cell C(i j) have CNN cell dynamics, CNN synaptic law which represents the interactions (spatial coupling)
within the neighbor cells; Mathematically cell dynamic is described with:

ẋi j = −g(xi j, ui j, I s
i j), (8)

where xi j ∈ Rm, ui j is usually a scalar. In most cases, the interactions (spatial coupling) with the neighbor cell
C(i + k, j + l) are specified by a CNN synaptic law:

I s
i j = Ai j,klxi+k, j+l + (9)

+ Ãi j,kl ∗ fkl(xi j, xi+k, j+l) +

+ B̃i j,kl ∗ ui+k, j+l(t).
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The first term Ai j,klxi+k, j+l of (9) is simply a linear feedback of the states of the neighboring nodes. The second
term provides an arbitrary nonlinear coupling, and the third term accounts for the contributions from the external
inputs of each neighbor cell that is located in the Nr neighborhood.

Algoritm for studying dynamic CNN via harmonic balance technique

Let us consider the following system:

ẋi(t) = −xi(t) + syi−1(t) + pyi(t) + syi+1(t)
yi = f (xi(t)),
1 ≤ i ≤ N,

(10)

where f (.) is piecewise linear function and s≥ p−1
2

We look for periodic solutions of the form:

xi = ξ(Ω0 j + ω0t) (11)

Where ξ : R→R and some 0 ≤ Ω0 ≤ 2π, ω0 = 2π
T0

Let’s apply continuous time discrete Fourier transform from continuous time t and discrete space j into discrete
space frequency Ω and discrete time frequency ω:

X̃Ω(ω) = X̃k(ω) =
∑n

j=1

∫ ∞
−∞

x j(t)e− j 2kπ
N +ωtdt (12)

When we apply this transformation to (10), we receive the transfer function

H(ω0,Ω0) =
X(ω0,Ω0)
Y(ω0,Ω0)

=
se− jΩ0 + p + se jΩ0

1 + jω0
(13)

After some transformation we get:

H(ω0,Ω0) =
p + 2ssinΩ0

1 + ω2
0

+ j
2ssinΩ0 − pω0

1 + ω2
0

(14)

For the real and imaginary part of the transfer function we obtain:

Re[H(ω0,Ω0)] =
p+2ssinΩ0

1+ω2
0

=
Xm0
Ym0

Im[H(ω0,Ω0)] =
2ssinΩ0−pω0

1+ω2
0

= 0
(15)

We suppose that the state variable and output variable have the form

x j(t) = Xm0 sin(ω0t + jΩ0)
y j(t) = Ym0 sin(ω0t + jΩ0), (16)

Where the amplitude Xmo ,temporal frequency ω0 and spatial frequency Ω0 are therefore the unknowns to be deter-
mined.

We approximate the periodic output yi(t) = f (xi(t)) by the fundamental component of its Fourier series and
calculate Ym0 by formula:

Ym0 = 1
π

∫ π
−π

f (Xm0 sin(ψ))sin(ψ)dψ (17)

From equations (15) we obtain the unknowns

ω0 = 2s
p sinΩ0

Xm =
2p
π

[Xmarcsin 1
Xm

+

√
1 −

1
X2

m
]

(18)

System (10) with s > p−1
2 , possess at least n−1

2 different nontrivial periodic solutions, whose spatial frequencies are
Ω0 = 2πk

N ; 1 ≤ N ≤ n−1
2
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APPLICATION OF HARMONIC BALANCE METHOD
TO MEINHARDT-GIERER MODEL

In this section we shall apply the HBT to Meinhardt-Gierer equation. The described model is used to model the
regeneration of the head of hydra or of multicellular organisms composed of several cell types. Its dynamics is given
by the following nonlinear system of differential equations:

∂u(t,x,y)
∂t = au2(t, x, y) 1

v(t,x,y) − βu(t, x, y) + D1( ∂
2u
∂x2 + ∂2u

∂y2 )
∂v(t,x,y)

∂t = au2(t, x, y) − γv(t, x, y) + D2( ∂
2v
∂x2 + ∂v2

∂y2 )
(19)

First equation describes the change of activator concentration, where u(t,x,y) a is a short-range auto catalytic
substance, i.e., activator,
v(t,x,y) is its long-range antagonist, i.e., inhibitor.
∂u
∂t describes the change of activator concentration u(t,x,y) per time unit.
u2 describes the production rate of activator which depends in a non-linear way on it concentration .
1
v Shows the fact that the activator production is captured by the inhibitor.
β is a coefficient, indicating the degree of inhibition of the activator molecules. The exchange of molecules takes
place through diffusion,γ is is an inhibitor loading factor.

We map solutions u(t,x,y) and v(t,x,y) of equation (19) into a CNN layer such that a stage voltage of CNN cell
xkl(t) in a grid point (k,l) is associated with u(t, khx, lhy) hx = 4x, hy = 4y . We assume that hx = hy = h. Then the
expression of second derivative is

uxx+uyy ∼
1
h2 ((u(t, x+h, y)−u(t, x, y)−(u(t, x, y)−u(t, x−h, y))+(u(t, x, y+h)−u(t, x, y)−(u(t, x, y)−u(t, x, y−h))) (20)

it can be written such that

uxx + uyy ∼
1
h2 (uk+1,l − 4uk,l + uk,l−1 + uk−1,l + uk,l−1) (21)

Then we can write down cells dynamic of (19) as:

u̇i, j = α
u2

i, j

vi, j
− βui, j + D1(ui−1, j + ui, j+1 + ui, j+1 + ui, j−1 − 4ui, j)

v̇i, j = αu2
i, j − γvi, j + D2(vi−1, j + vi, j+1 + vi, j+1 + vi, j−1 − 4vi, j)

(22)

We apply the Fourier transform into (22):

F(s, z1, z2) =

k=∞∑
k=−∞

z−k
1

l=∞∑
l=−∞

z−l
2

∫ ∞
−∞

fkl(t)e−stdt (23)

Then for Meinhardt - Gierer model we obtain:

sU = αU2

V − βU + D1(z−1
1 + z−1

2 + z1
1 + z1

2 − 4)U
sV = αU2 − γV + D2(z−1

1 + z−1
2 + z1

1 + z1
2 − 4)U

(24)

After some transformations we get:

U = 1
(s+β−D1T ) N1(U,V)

V = 1
(s+γ−D2T ) N2(U,V)

(25)

Where T = z−1
1 + z1 + z−1

2 + z2 − 4 = 2 cos Ω1 + 2 cos Ω2 − 4, N1(U,V) = αU2

V , N2(U,V) = αU2

U
V

=
s + γ − D2T
s + β − D1T

N (26)

when N =
N1(U,V)
N2(U,V) .
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This mean, that Meinhardt - Gierer system differential equations can be represented in the Lure scheme with

transfer function H(s, z1, z2) =
s + γ − D2T
s + β − D1T

. We want to find solutions in the form :

ui j(ω0,Ω1,Ω2) = Um0 sin (ω0t + kΩ1 + lΩ2) = Um0 sin (ψ)
vi j(ω0,Ω1,Ω2) = Vm0 sin (ω0t + kΩ1 + lΩ2) = Vm0 sin (ψ) (27)

where ψ = ω0t + kΩ1 + lΩ2 , ω0 = 2π
T0

, where T0 > 0 is the minimal period. We take periodic boundary conditions for
our CNN model (22) and we suppose that s = jω0, z2 = e jΩ2 and z1 = e jΩ1 , where ω0 is a temporal frequency, Ω1,Ω2
are the spatial frequencies, and Ω1 + Ω2 = 2kπ

n ,where0 < k ≤ n − 1. We replace s, z1 an z2 in (26)
Then we obtain:

H(ω0,Ω1,Ω2) =
−ω2

0 − (γ − D2T )(β − D1T )

−ω2
0 − (β − D1T )2

+ j
(γ − D2T ) − (β − D1T ))
−ω2

0 − (β − D1T )2
ω0 (28)

Transfer function is real function. Then

Re(H(ω0,Ω1,Ω2) =
−ω2

0−(γ−D2T )(β−D1T )
−ω2

0−(β−D1T )2 =
Um0
Vm0

Im(H(ω0,Ω1,Ω2)) =
(γ−D2T )−(β−D1T ))
−ω2

0−(β−D1T )2 ω0 = 0
(29)

According to harmonic balance technique we assume that corresponding nonlinearity Ni j is expanded in Fourier series
as:

Ni j = N0(Um0 )Um0 + N1(Um0 )Um0 sinψ + .....

Coefficients are calculating as follow:

N0(Um0 ) = 1
2πUm0

∫ π
−π

N(Um0 sinψ)dψ = 0

N1(Um0 ) = 1
πUm0

∫ π
−π

N(Um0 sinψ) sinψdψ = 2
Um0 Vm0

(30)

Then according with [2] and harmonic balance technique existence of periodic solution of (22) hold for the next
equations:

Um0 [1 + N0(Um0 )H(0,Ω1,Ω2)] = 0
1 + N1(Um0 )H(iω0) = 0 (31)

Then we obtain:
γ − D2T − (β − D1T ) = 0 (32)

Then:
T =

γ−β
D2−D1

T = e− jΩ1 + e jΩ1 + e− jΩ2 + e jΩ2 − 4

T = 2 cos Ω1 + 2 cos Ω2 − 4

2 cos Ω1 + 2 cos Ω2 − 4 =
γ−β

D2−D1

2 cos kπ
n cos ( 2Ω1−

2kπ
n

2 ) =
γ−β

D2−D1

cos (Ω1 −
kπ
n ) =

γ−β+8(D2−D1)
4 cos kπ

n (D2−D1)

Ω1 = kπ
n + arccos γ−β+8(D2−D1)

4 cos kπ
n (D2−D1)

Ω2 = kπ
n − arccos γ−β+8(D2−D1)

4 cos kπ
n (D2−D1)

(33)
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We can approximate output U
V of the Lure system with

U
V
∼

Um0

Vm0

sin (ω0t + kΩ1 + lΩ2) (34)

Um0

Vm0

=
1
π

∫ π

−π

f (Um0 sinψ) sinψdψ =
2

Vm0

(35)

where f (x) = 1
2 (|x − 1|−|x + 1|). When we calculate (35) we obtain that Um0 = 2

According the harmonic balance technique we obtain

Re(H(ω0,Ω1,Ω2) =
−ω2

0−(γ−D2T )(β−D1T )
−ω2

0−(β−D1T )2 =
Um0

(Vm0 ) = 2
Vm0

Vm0 =
(ω2

0+(γ−D2(2 cos Ω1+2 cos Ω2−4))2)
2(ω2

0+(γ−D2(2 cos Ω1+2 cos Ω2−4))(β−D1(2 cos Ω1+2 cos Ω2−4)))

Um0 = 2

(36)

By using the harmonique balance method we’ve proven this theorem:

Theorem 1 Meinhardt - Gierer model (22) with circular array with n = M × M cells has periodic solution u j(t)
and v j(t) with period T0 = 2π

ω0
and amplitude Um0 for all Ω0 + Ω2 = 2πk

n , 0 ≤ k ≤ n − 1

RESULTS AND CONCLUSION

MathLab program was developed to analyze the dynamic behavior of the solution of the equations (19) of the Mein-
hardt - Gierer model which makes it easy to visualize the graphical results obtained.

FIGURE 3. simulation of function v of meinhardt-gierer model
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