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Abstract— In this paper analytical results are derived for 
nanoscale memristor CNN (NM-CNN) in which neurons operate 
in a regime called edge of chaos. The system describing the 
model consists of highly nonlinear differential equations. We 
propose new algorithm based on the generalized local activity 
scheme for the determination of the edge of chaos regime in 
nanoscale memristor CNN model under consideration. 
MATLAB implementation of algorithms based on a numerical 
integration of the NM-CNN state equations allowing a reliable 
and accurate determination of the edge of chaos param eter 
regime is proposed. Application of the obtained results for 
pattern formation is presented.

Keywords—nanoscale memristor, CNN, edge of chaos, 
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I. In trodu ction

Realized nanoscale CNN have been recently considered in 
a fast growing number of investigations dealing with image 
processing problems and pattern formation. Computer 
experiments conclude that the variable memristor synapses 
bestow more behavioral degrees of freedom to the networks, 
allowing them to outperform the comparative synapse types. 
Nanoscale CNN have so far been studied via numerical 
integrations [7, 9].

It is known [4, 10] that CNN (Fig. 1) operating in the edge 
of chaos regime can exhibit computational complexity and 
can have applications in future computational systems.

Fig. 1. Illustration of the CNN coupling structure for r = 1.

Since the cell size cannot be decreased considerably in 
conventional CMOS technology, nano-elements will play an 
important role in future CNN-UM chip realizations. 
Especially, memristors [2] which are considered for synaptic 
connections in first realizations [11], will play an important 
role for the realization of future CNN-UM sensor-processor 
systems by taking their rich dynamical behavior into account.

However, a deep mathematical treatment of CNN with 
memristors, briefly called memristor CNN in the following, 
hasn’t been provided so far. Especially, the derivation of 
methods allowing the determination of the parameter space 
of a memristor CNN showing emergent complex behavior, is 
being essentially important in the development of CNN based 
computational methods [3,4,5].

In [9] niobium dioxide ( N b0 2 ) Mott meristors are 
incorporated into a relaxation oscillator which leads to 
periodic and chaotic self-oscillations. The quasi-static 
memristors current-voltage plot exhibited a region of current- 
controlled negative differential resonance (NDR) at low 
currents and then a reproducible box-like hysteresis at higher 
currents. N b0 2 Mott memristors could be useful in some 
neural-inspired computations when a pseudo-random signal 
is introduced in order to prevent global synchronization. In 
[9] dynamic behavior of such memristors is obtained 
experimentally by building a relaxation oscillator, and the 
resulting plots demonstrate excellent agreement between the 
quasi-static and dynamic measurement. Moreover, it is 
shown that incorporating such memristors into the hardware 
of a Hopfield computing network can improve the efficiency 
and accuracy of converging to a solution for computationally 
difficult problems.

In this paper we consider Nb02 Mott meristors and 
incorporate them into hysteresis CNN working in relaxation 
oscillator mode. In particular, for hysteresis CNN [5, 8], one 
can determine the domain of the cell parameters of locally 
active cells, and thus potentially capable of exhibiting 
complexity. We study the dynamics of the obtained model via 
local activity theory. We determine the edge of chaos domain 
in which complex behavior emerges. We propose numerical 
integration of the obtained algorithm and provide its 
application for spatial pattern formation.

II. T he M odel

We consider hysteresis CNN made of first-order cells with 
hysteresis switches (see Fig.2). Our model will operate in 
relaxation oscillator mode and in this way it can have many 
applications. When CNN operates the relaxation oscillator 
mode then various patterns and nonlinear waves can be 
generated. Moreover, associative (static) and dynamic 
memories functions can be derived from the hysteresis CNN 
[8].
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Fig.2. Circuit implementation of hysteresis CNN [8].

NDR has been modelled using a highly nonlinear transport 
relationship with temperature as the state variable o f the 
memristor quasi-static conduction equation [6]. The 
memristor dynamical equation for the state variable x  for 
N b 0 2 Mott meristors is Newton’s law o f cooling:

d x    im v m  X—T g m b  ,, .

dt  C(h Cth^thCx)

Time ((is)

Fig.3. Simulated NM-CNN in relaxation oscillator mode.

We shall consider relaxation oscillator for system (2) given 
on the Figure 4 below:

where Tamb =  300 K  is the ambient temperature, Cth =  
10~16W s K ~ 1 is the thermal capacitance, Rth is the 
temperature-dependent effective thermal resistance o f the 
device. The basic requirements for chaotic oscillations in a 
constant-voltage-based electronic circuit are an element that 
displays local activity along with three dynamic state 
variables or two state variables and coupling to an oscillator 
[ 10].

In this paper we propose the following memristor CNN 
model:

dx  * *

I T  =  ~ xu +  M(xtj.yij, Uy, t) -  2 h(xtJ),

yij(t) =  G(Xy,tiy)Uy
where x tj  is the state variable, yi;- =  im , Uij =  vm, h {x i j ) is 
dynamic hysteresis function defined by [8]:

h { x ( t ) )
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At (x i j )  =  <J0e  2kbxijA , k b =  8 .617  x  10“5eF  is the 
Boltzmann constant, A is the lateral device area, 6 , ( f  y ) =
/ĉ  X' ‘
— 00 and <70 are material constants and d  is the thickness

CO
o f N b 0 2 [8]. Model (2), which we shall call nanoscale 
memristor CNN (NM-CNN), is a system of highly nonlinear 
differential and algebraic equations. Simulations o f this 
model show chaotic oscillations (see Fig.3).

Fig.4. Relaxation oscillator.

It is known that hysteresis CNN [8] working in relaxation 
oscillator mode may generate some interesting patterns 
shown below:

Fig.5. Patterns’ generation o f relaxation oscillator.

In the next section we shall apply local activity theory in 
order to determine edge o f chaos regime in which our model 
(2) will exhibit complex behavior.

III. E d g e  o f  c h a o s

The theory o f local activity which will be applied in this 
paper offers a constructive analytical method. In particular, 
for hysteresis CNN [5], one can determine the domain of the 
cell parameters o f  locally active cells, and thus potentially 
capable o f exhibiting complexity. The physical basis o f the 
concept o f local activity is instructive. We shall associate the 
variables with the voltage and current o f a 2-D terminal



electronic circuit cell described by the same equations (see 
Fig.6).

Fig.6. 2-D terminal device.
From this perspective, each cell is assumed to be operating 

near an equilibrium point. If there is at least one equilibrium 
point for which the circuit model of the cell acts like a source 
of small signal power, in a precise sense defined in [10], i.e. 
if the cell is capable of injecting a net small-signal average 
into the passive resistive grids, then the cell is said to be 
locally active. The central theme of the local activity theory 
is that emergence and complexity can be rigorously explained 
by explicit mathematical criteria given to identify a relatively 
small subset of the local-active parameter region, called the 
edge of chaos. A locally-active cell kinetic equation can 
exhibit complex dynamics such as limit cycles or chaos, even 
it the cells are uncoupled from each other (by setting all 
diffusion coefficients to zero). It is not surprising that 
coupling such cells could give rise to complex spatio- 
temporal phenomena, such as scroll waves, and spatio- 
temporal chaos.

We shall present here an algorithm for determination of 
edge of chaos for our NM-CNN model (2):

1. Find the equilibrium points — the corresponding 
discrete system can have one, two, or m- real 
equilibrium points. They can be found numerically, 
or by explicit mathematical formulas. In general, the 
equilibrium points are functions of the cell 
parameters;

2. Calculate the cell coefficients of the Jacobian matrix 
about each equilibrium point;

3. Calculate the trace Tr and the determinant - A of the 
Jacobian matrix about each equilibrium point;

4. Determine stable and locally active region at each 
equilibrium point;

5. Determine the region called edge of chaos (EC).

We apply this algorithm to our NM-CNN model (2). It is 
known [10] that the equilibrium points should satisfy the 
system:

0 = - x ij+ M(.xtJ, y tJ, u tj, t) -  2 h{xu),
0 = G{xij,u ij)uij W

This system may have three real roots as functions of the cell 
parameters. Then we calculate the cell coefficients 
«n  (£ r),a i2 (£).), a21 (£r) ,a 22 (£r ) , r  = 1,2,3 of the 
Jacobian matrix at each equilibrium point.

We shall apply in our study the following definition of 
Local Activity [4]: Discrete system of equations are called 
locally active if, and only if, its associated cells are locally 
active at some cell equilibrium point. Otherwise, they are said 
to be locally passive.

We define stable and locally active region for the NM- 
CNN model (2).

Definition 1. We say that the cell is both stable and locally 
active region at the equilibrium point Er for NM-CNN model 
(2) if

a2 2 > 0 or 4a11a22 <  (<Zi2 + cz2i ) 2 and 
Tr{Ek) < 0 and A(Ek) > 0.

This region in the parameter space is called SLAR(Er).

Until now the definition of edge of chaos (EC) is known 
only via empirical examples. Below we give more precise 
mathematical definition for EC.

Definition 2. NM-CNN model (2) operates in edge o f chaos 
regime if and only if  at least one equilibrium point which is 
both locally active and stable exists.

Based on the above algorithm the main theorem in this paper 
holds: ^

• iNivi-i_jvyv moaet uy^,uicz m euge oj cnaos ij 
and only if the following conditions are satisfied: CthRth < 1

3nd ~CthRth < + 2- ~ ) 2- This means that there is at least
one equilibrium point Er,r  = 1,2,3 which is both locally 
active and stable.

Proof.

We find the three equilibrium points from the system (4):

Ei — (^i (Tamb, Ct/;, Rtb, d, kb, to), 0,0),
E2 — (K2 (Tamb, Ctfll Rth, d, kb, oi), 0,0),

E3 ~ (E3(Tamb> Cfhj Rth'd, kb, of), 0,0).
Then we find cell coefficients of the Jacobian matrix of 
system (4) - akl at each equilibrium point Er, r = 1,2,3.

Following Definition 1 we find SLAR(Er) : CthRch < 1 and

cthRtn a) '  ’ r  = 1,2,3. According to Definition
2 there is at least one equilibrium point which is both locally 
active and stable. *

The simulation on Figure 7 below presents the EC resjion of 
our NM-CNN model (2).

Fig.7. Edge of chaos region in the cell parameters’ set.

IV. Simulations and Application

In this section we shall present numerical simulations 
based on the above algorithm for determination of edge of



chaos. All numerical results are analyzed on software 
MATLAB in the case of the two typical applications under 
consideration. In this paper a forward Euler algorithm with a 
time step size At = 0.01 is applied to all computer 
simulations. The dynamic hysteresis function h(x) (3) is 
programmed as follows:

r

h(x{tn)=<

V

1, f o r  x (tn) > — 1, 
-1 , f o r  x( tn) = -1 , 
-1 , f o r  x(tn) < 1,

1, f o r  x (tn) = 1,

=  1

/l(x(t„_i)) = - 1

where tn = nAt, n = 1,2,...

Validation of the obtained theoretical results is provided 
on Figure 8:
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Fig.8. Validation of EC region for NM-CNN.

Through extensive numerical simulations we obtain that 
non uniform spatial patterns are generated in our NM-CNN 
model depending on initial conditions (see Fig. 9).

Fig.9. Spatial pattern formation in NM-CNN model.

periodic, like Turing patterns, and they reached equilibrium 
at around 2 x 104 s.

V. C o n c l u s io n s

In this paper we propose analytical results for nanoscale 
memristor CNN model Our model incorporates Nb02 Mott 
meristors [9] into hysteresis CNN working in relaxation 
oscillator mode. In this way we can obtain different 
applications of the model under consideration. Strong 
mathematical inequalities are obtained for determination of 
edge of chaos regime in which complex behavior and spatial 
patterns can occur.

We propose constructive procedure which is applicable to 
any system whose cells and couplings are described by 
deterministic mathematical models. The crux of the problem 
is to derive testable necessary and sufficient conditions which 
guarantee that the system has a unique steady state solution 
at t — 0°. This is done in section 3 of the paper.

Non-uniform spatial patterns are generated depending on 
the initial condition of the model. This due to the fact that 
homogeneous non conservative medium cannot exhibit 
complexity unless the cells, or the coupling network is locally 
active.

A c k n o w l e d g m e n t

The proposed results in the paper are obtained in the 
frames of DFG project TE 257/25-1.

R e f e r e n c e s

[1] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, "Memristor model 
comparison", Circ. Syst. Magazine, pp. 89-105, 2013.

[2] L. O. Chua, "Memristor: the missing circuit element", IEEE Trans. On 
Circuit Theory, vol. 18, no. 5, pp. 507-519, 1971.

[3] L.O. Chua, L. Yang, “Cellular Neural Network: Theory and 
Applications”, IEEE Trans. CAS, vol. 35, p.1257, 1988.

[4] L.O.Chua, “Local Activity is the origin of complexity”, Int.J.Bifurcation
and Chaos,vol. 15,No. 11, pp. 3435-3456, 2005.

[5] L.Chua, “Memristor, Flodgkin-Huxley, and edge of chaos”, 
Nanotechnology, vol.24* 383001, 2013.

[6] J.P. Crutchfield, “Between order and chaos”, Nat.Phys., vol.8, pp. 17- 
24, 2012.

[7] G.Gibson, S. Musunuru, J.Zhang, K. Vandenberghe, J.Lee, Ch.Hsieh,
W.Jackson, Y.Jeon, D.Henze, Z.Li, S.Williams, “An accurate locally 
active memristor model for S-type negative resistance in NbOx”, Appl. 
Phys. Lett., vol. 108, 023505, 2016.

[8] M.Itoh, L.O.Chua, “Star cellular neural networks for associative and 
dynamical memories”, Int.J.Bifurcation and Chaos, 14, pp.1725-1772, 
2004

[9] S.Kumar, J.P.Strachan, S.Williams, “Chaotic dynamic in nanoscale 
NbOz Mott memristors for analog computing”, Nature, vol.548,23307, 
2017.

[10] K. Mainzer, L. Chua, Local Activity Principle, Imperial College Press, 
2013.

[11] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The 
missing memristor found", Nature Letters, vol. 453, 1 May 2008, DOI: 
10.1038/nature06932

Figure 9 shows the spatial (non-uniform) patterns 
developed over time. Surprisingly, the developed patterns are
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