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Abstract. We study four-dimensional boundary value problems for the nonhomogenous wave equation, known as Protter prob-
lems. Here the boundary conditions are posed on a characteristic surface of the domain and on non-characteristic one. It is known
that the Protter problems are ill-posed in the frame of classical solvability and they have generalized solutions with strong singulari-
ties. The behavior of these singular solutions is not typical for hyperbolic equations: their singularities are isolated at one boundary
point and the order of singularity do not depend on the regularity of the right-hand side of the equation. In this paper we consider a
case with a third-type condition on the non-characteristic surface and we find an explicit integral representation of the generalized
solution. Further, we study the adjoint homogeneous problem. The reason for the ill-posedness of the Protter problems is that their
adjoint homogeneous problems have infinitely many nontrivial classical solutions. In the case of the first-type and the second-type
boundary value problems these solutions are well known. In this work we extend these results for the third-type boundary value
problem: we find the exact formulas of the classical solutions of the adjoint homogeneous problem.

INTRODUCTION

For α ∈ R we study the following boundary value problem:

ux1x1 +ux2x2 +ux3x3 −utt = f (x, t) in Ω, (1)

u|Σ1 = 0, [ut +αu]|Σ0 = 0, (2)

where Ω is the region bounded by the surfaces

Σ0 := {(x, t) : t = 0, |x|< 1}, Σ1 := {(x, t) : 0 < t < 1/2, |x|= 1− t} , Σ2 := {(x, t) : 0 < t < 1/2, |x|= t} .

Here for the points in R4 we use the usual notation (x, t) := (x1,x2,x3, t) and, correspondingly, |x| :=
√

x2
1 + x2

2 + x2
3.

Note that Σ1 and Σ2 are characteristic surfaces for equation (1).

This problem is one of the so called Protter problems, which M. Protter formulated while he investigated some
problems from supersonic fluid dynamics ( [1, 2]). Actually, his problems are multidimensional generalization of the
two-dimensional Darboux problems, where the boundary conditions are prescribed on a characteristic segment and
on non-characteristic one.

It is well known that in the general case the Protter problems are not classically solvable. Instead of this, they have
generalized solutions u(x, t) in properly defined space of functions with strong singularities at the origin O(0,0,0,0).
The behavior of the singular solutions u(x, t) is not typical for hyperbolic equations: their singularities are isolated at
the point O and the order of singularity does not depend on the regularity of the right-hand side function f (x, t). The
adjoint homogeneous problems of the Protter problems have infinitely many nontrivial classical solutions vk(x, t), k =
1,2, . . . ( [3, 4, 5]). Actually, a necessary condition for existence of a bounded (or even classical) solution u(x, t)
is the orthogonality of f (x, t) to all the functions vk(x, t). More detailed information on Protter problems for the
multidimensional (4-D or 3-D) wave equation can be found in [6, 7, 8, 9, 10].

Note that for α = 0 the boundary condition on Σ0 turns into a second-type condition. At all, according to the type
of the boundary condition on Σ0, we will use the following terminology: in the case when α 6= 0 we have a third-
type boundary value problem, otherwise we have a second-type boundary value problem. If instead of (2) we set the
Dirichlet boundary conditions u|Σ1 = 0, u|Σ0 = 0, we obtain a first-type boundary value problem.

The first and the second-type boundary value problems are much more well studied. For these problems explicit
representation formulas for the generalized solutions u(x, t), as well as for the nontrivial clasical solutions vk(x, t) of
the corresponding adjoint homogeneous problems, are known.

Applications of Mathematics in Engineering and Economics (AMEE’22)
AIP Conf. Proc. 2939, 040005-1–040005-6; https://doi.org/10.1063/5.0178745

Published by AIP Publishing. 978-0-7354-4763-9/$30.00

040005-1

 12 D
ecem

ber 2023 16:25:42



The third-type boundary value problem, or rather some its analogues and generalizations, are studied in [6, 11, 12,
13, 14]. At certain conditions for the right hand-side f (x, t) existence and uniqueness results are derived and a priori
estimates for the singular solutions are obtained. Nevertheless, these works do not give any explicit formulas for the
solutions of the third-type boundary value problem or its adjoint homogeneous problem. In this parer we give such
explicit formulas.

CORRESPONDING 2-D PROBLEM

Let f ∈C1(Ω̄). In this case f (x, t) can be expanded into a Fourier series in terms of spherical functions:

f (x, t) =
∞

∑
m=0

2m+1

∑
p=1

f p
m(|x|, t)Y p

m (x/|x|), (3)

where Y p
m (x), m = 0,1,2, . . . , p = 1,2, . . . ,2m+ 1 are the three-dimensional spherical functions, defined on the unit

sphere |x|= 1. In this paper we study the solution u(x, t) only in the case when the right-hand side function f (x, t) is
a single term from the expansion (3), i.e. for some fixed n ∈N and s ∈N, s≤ 2n+1 the function f (x, t) has the form:

f (x, t) = g(|x|, t)Y s
n (x/|x|). (4)

Clearly, if the Fourier expansion (3) consists of finite number of terms, then the resulting solution can be obtained as
a sum of such “single-term” solutions. The case of an infinite series requires a deep study of the convergence of the
formally obtained solution, which is a difficult task and we do not do it here. Such a study has been carried out for the
first and the second-type problems ( [9, 10]).

It is known that if f (x, t) is of the form (4), then the generalized solution of (1)-(2) has the form:

u(x, t) =
1
|x|

w(|x|, t)Y s
n (x/|x|)

and, passing to the characteristic coordinates ξ = 1−|x|− t, η = 1−|x|+ t, the function

U(ξ ,η) := w
(

2−ξ −η

2
,

η−ξ

2

)
is a solution of the following 2-D problem:

Problem Pα . Find a function U(ξ ,η) solving the equation:

Uξ η −
n(n+1)

(2−ξ −η)2 U = G(ξ ,η) (5)

in D := {(ξ ,η) : 0 < ξ < η < 1}, satisfying the boundary conditions:

U(0,η) = 0,
(
Uξ −Uη

)
(ξ ,ξ ) = α U(ξ ,ξ ), (6)

where

G(ξ ,η) =
1
8
(2−ξ −η) g

(
2−ξ −η

2
,

η−ξ

2

)
.

Now, we will concentrate on Problem Pα and we will formulate our results only for this problem. After inverse
transformation, these results can be easily reformulated for problem (1)-(2).

It is known that for G ∈C1(D̄) Problem Pα has an unique generalized solution U ∈C1(D̄\{(1,1)}), Uξ η ∈C(D),
with a possible singularity at the point (ξ ,η) = (1,1). Here we claim that this result still holds under the weaker
condition G ∈ C(D̄), and we give an explicit formula for the solution. Actually, such results for the particular case
n = 1 have been achieved in our paper [15]. In this way, the results in this work may be considered as a continuation
and generalization of the partial result from [15].

Obviously, in the case of the second-type problem, the corresponding 2-D problem is Problem P0 (i.e. Problem Pα

with α = 0). In the case of the first-type problem, the corresponding 2-D problem is Problem Pd, with the Dirichlet
boundary conditions: U(0,η) = U(ξ ,ξ ) = 0 instead of (6). Problems P0 and Pd are completely studied and we will
comment below the connection between our new results on Problem Pα (α 6= 0) with the known results on P0 and Pd .
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EXPLICIT FORMULA FOR THE GENERALIZED SOLUTION

We construct the explicit formula for the solution U(ξ ,η) of Problem Pα via Riemann-Hadamard function.
For k = 0,1,2, . . . define the functions:

Ψk(ξ ,η ;ξ0,η0) := F3

(
n+1,n+1,−n,−n,k+1;

ξ0−η

2−ξ −η
,

η−ξ0

2−ξ0−η0

)
=

n

∑
i=0

n

∑
j=0

(n+1)i(n+1) j(−n)i(−n) j

(k+1)i+ j i! j!
(−1) j (ξ0−η)i+ j

(2−ξ −η)i(2−ξ0−η0) j ,

where

F3(a1,a2,b1,b2,c;x,y) =
∞

∑
i=0

∞

∑
j=0

(a1)i(a2) j(b1)i(b2) j

(c)i+ j i! j!
xiy j

is the Appell series (basic relations and properties of the Appell series are given for example in [16]). Note that
Ψk(ξ ,η ;ξ0,η0) are polynomials because n ∈ N∪{0}.

Next, let

R(ξ ,η ;ξ0,η0) = 2F1

(
n+1,−n,1;

−(ξ0−ξ )(η0−η)

(2−ξ −η)(2−ξ0−η0)

)
.

It is well known that R(ξ ,η ;ξ0,η0) is the Riemann function for equation (5).

Theorem 1. Let G ∈C(D̄). Then Problem Pα has an unique generalized solution. This solution has the following
integral representation at any point (ξ0,η0) ∈ D:

U(ξ0,η0) =
∫

ξ0

0

∫
η0

ξ

Φ(ξ ,η ;ξ0,η0)G(ξ ,η)dηdξ , (7)

where:

Φ(ξ ,η ;ξ0,η0) :=

{
R(ξ ,η ;ξ0,η0), η > ξ0,

Q(ξ ,η ;ξ0,η0), η < ξ0,

with

Q(ξ ,η ;ξ0,η0) := R(ξ ,η ;ξ0,η0)+R(ξ ,η ;η0,ξ0)+2
∞

∑
k=1

αk(ξ0−η)k

k!
Ψk(ξ ,η ;ξ0,η0).

A direct computation of the derivatives shows that the function defined by (7) indeed solves Problem Pα .
Further, the uniqueness of this solution can be justified if we multiply the both sides of equation (5) by Φ(ξ ,η ;ξ0,η0)

and integrate over the region {(ξ ,η) : 0 < ξ < ξ0, ξ < η < η0}. Using integration by parts, after some transforma-
tions, we come to the equality (7), which means that (7) gives the only possible solution of the problem.

From formula (7) it follows that U(ξ ,η) may have singularity of n-th order at the point (ξ ,η) = (1,1). In the
general case this singularity really exists and it can be reduced only if G(ξ ,η) satisfies special conditions.

Remark 1. It is easy to check that in the case n = 1 the function Φ(ξ ,η ;ξ0,η0) coincides with the function
Φ(ξ ,η ;ξ0,η0) from Theorem 1 in [15].

Remark 2. In the case n = 0 the function Φ(ξ ,η ;ξ0,η0) becomes very simple. Then R(ξ ,η ;ξ0,η0)≡ 1, and

Q(ξ ,η ;ξ0,η0) = 2eα(ξ0−η).

Remark 3. Obviously, for α = 0

Q(ξ ,η ;ξ0,η0) := R(ξ ,η ;ξ0,η0)+R(ξ ,η ;η0,ξ0).
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Then the function Φ(ξ ,η ;ξ0,η0) coincides, as expected, with the known Riemann-Hadamard function for Problem P0
(see for example [17]).

Also, we may rewrite the function Q(ξ ,η ;ξ0,η0) as:

Q(ξ ,η ;ξ0,η0) = R(ξ ,η ;ξ0,η0)−R(ξ ,η ;η0,ξ0)+2
∞

∑
k=0

αk(ξ0−η)k

k!
Ψk(ξ ,η ;ξ0,η0),

because Ψ0(ξ ,η ;ξ0,η0) = R(ξ ,η ;η0,ξ0), which follows from the known relation

F3(a,c−a,b,c−b,c;x,y) = (1− y)a+b−c
2F1(a,b,c;x+ y− xy).

From here we may note that

Q(ξ ,η ;ξ0,η0)→ R(ξ ,η ;ξ0,η0)−R(ξ ,η ;η0,ξ0) as α →−∞.

In this case Φ(ξ ,η ;ξ0,η0) tends to the known Riemann-Hadamard function for the Dirichlet problem Pd . It turns out,
that the Dirichlet problem Pd may be considered as the limit case of Problem Pα when α →−∞.

NONTRIVIAL CLASSICAL SOLUTIONS OF THE ADJOINT HOMOGENEOUS
PROBLEM

Consider the adjoint homogeneous problem of Problem Pα :

Vξ η −
n(n+1)

(2−ξ −η)2 V = 0 in D, (8)

V (ξ ,1) = 0,
(
Vξ −Vη

)
(ξ ,ξ ) = α V (ξ ,ξ ). (9)

For n ∈ N this problem has nontrivial classical solutions.
For p = 1,2, . . . ,n define the functions:

V n
p (ξ ,η) :=

n

∑
i=0

(n+1)i(−n)i

i!(2−ξ −η)i

∞

∑
k=δ

αk(1−η)k+p+i

(k+ p+ i)!

=
∞

∑
k=δ

αk (1−ξ )p+k(1−η)p+k

(2−ξ −η)p+k 2F1

(
p+ k+n+1, p+ k−n, p+ k+1;

1−η

2−ξ −η

)
, (10)

where δ = 1 if n− p is an odd number, and δ = 0 otherwise. Let these functions be continuously extended at the point
(ξ ,η) = (1,1):

V n
p (1,1) := lim

(ξ ,η)→(1,1)
V n

p (ξ ,η) = 0.

Theorem 2. Let n ∈ N. For p = 1,2, . . . ,n the functions V n
p (ξ ,η) are classical solutions of problem (8)-(9),

belonging to C2(D)∩C(D̄).

Remark 4. The function V 1
1 (ξ ,η) was announced in our paper [15].

ASYMPTOTIC EXPANSION OF THE SINGULAR SOLUTIONS

For p = 1, . . . ,n define the coefficients:

β
n
p :=

∫
D

V n
p (ξ ,η)G(ξ ,η)dξ dη ,
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as well as the functions:

Hn
p(ξ ,η) := 2F1

(
p+n+1, p−n, p+1;

1−η

2−ξ −η

)
.

The functions Hn
p(ξ ,η) are bounded in D̄.

Analogously to the known results for Problems P0 and Pd , it is expected for the coefficients β n
p to be responsible

for the behavior of the singularities of the generalized solution U(ξ ,η) of Problem Pα . In the next theorem we give
an asymptotic formula for the singular solutions U(ξ ,η). The singular terms in this asymptotic expansion indeed are
controlled by the coefficients β n

p .

Theorem 3. Let F ∈C(D̄). Then the generalized solution of Problem Pα has the following asymptotic representa-
tion in D:

U(ξ ,η) =
n

∑
p=1

cn
pβ

n
p Hn

p(ξ ,η)(2−ξ −η)−p +H(ξ ,η), (11)

where cn
p are nonzero constants and the function H(ξ ,η) is bounded in D̄.

It is essential to note that Hn
p(ξ ,1) = 1 for 0≤ ξ < 1 and hence Hn

p(ξ ,1)→ 1 6= 0 as ξ → 1. This means that if for
some fixed index p = p0 in the expansion (11) the corresponding coefficient β n

p0
is different from zero, then the order

of singularity of the solution U(ξ ,η) is at least of p0-th order. Bounded solution is possible only if all the coefficients
β n

p , p = 1, . . . ,n, are equal to zero, i.e. only if the right-hand side function G(ξ ,η) is orthogonal in L2(D) to all the
functions V n

p (ξ ,η).

Remark 5. The result in Theorem 3 corresponds to the known results for the asymptotic behavior of the solutions
of Problems P0 and Pd .

For p = 1, . . . ,n define the functions:

En
p(ξ ,η) :=

(1−ξ )p(1−η)p

(2−ξ −η)p Hn
p(ξ ,η).

Now, let p be a fixed number and examine two cases for p:
• Let n− p be an even number. For α = 0, according to (10), V n

p (ξ ,η)≡ En
p(ξ ,η), which means that En

p(ξ ,η) is a
nontrivial classical solutions of Problem P0. In this case the function En

p(ξ ,η) can be transformed into the following
form:

En
p(ξ ,η) = kn

p 2F1

(
p+n+1

2
,

p−n
2

,
1
2

;
(η−ξ )2

(2−ξ −η)2

)
,

where kn
p = const 6= 0. At the same time, V n

p (ξ ,η)→ 0 as α →−∞.
• Let n− p be an odd number. Then V n

p (ξ ,η)→−En
p(ξ ,η) as α →−∞, as well as the function En

p(ξ ,η) solves
equation (8) and satisfies the Dirichlet boundary conditions V (ξ ,1) =V (ξ ,ξ ) = 0. In this case the function En

p(ξ ,η)
can be also presented as:

En
p(ξ ,η) = hn

p
η−ξ

2−ξ −η
2F1

(
p+n+2

2
,

p−n+1
2

,
3
2

;
(η−ξ )2

(2−ξ −η)2

)
,

where hn
p = const 6= 0. At the same time, V n

p (ξ ,η)≡ 0 for α = 0.

In view of all this, the asymptotic formula for the solution of Problem P0 becomes:

U(ξ ,η) =
[(n−1)/2]

∑
k=0

an
kβ

n
n−2k 2F1

(
n− k+

1
2
,−k,

1
2

;
(η−ξ )2

(2−ξ −η)2

)
(2−ξ −η)2k−n +H(ξ ,η),

and the asymptotic formula for the solution of Problem Pd becomes:

U(ξ ,η) =
[n/2]−1

∑
k=0

bn
kβ

n
n−2k−1

η−ξ

2−ξ −η
2F1

(
n− k+

1
2
,−k,

3
2

;
(η−ξ )2

(2−ξ −η)2

)
(2−ξ −η)2k+1−n +H(ξ ,η),

where an
k ,b

n
k = const 6= 0.
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