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Abstract: This paper presents optimization problem with a linear objective function subject to constraint – fuzzy
linear system of equations or fuzzy linear system of inequalities, with max-product composition. Methods that
provide algorithm for computing the maximum solution and all minimal solutions, when the fuzzy linear system
is consistent, are developed for constraint resolution. A software is developed in MATLAB and Java.
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1 Introduction
The main problem that is solved here is to optimize
(minimize or maximize) the linear objective function

Z =
n∑

j=1

cjxj , cj ∈ R, 0 ≤ xj ≤ 1, 1 ≤ j ≤ n, (1)

with traditional addition and multiplication, subject to
fuzzy linear system of equations (inequalities, respec-
tively) as constraint

A�X = B (A�X ≥ B, respectively), (2)

where A = (aij)m×n stands for the matrix of coef-
ficients, X = (xj)n×1 stands for the matrix of un-
knowns, B = (bi)m×1 is the right-hand side of the
system and for each i, 1 ≤ i ≤ m, j, 1 ≤ j ≤ n, aij ,
bi, xj ∈ [ 0, 1 ]. The composition written as� is max-
product, c = (c1, ..., cn) is the weight (cost) vector.
The results for solving this optimization problem are
provided by the inverse problem resolution for fuzzy
linear systems as presented in [11], [14] for equations
and next developed here. Solving fuzzy linear systems
with max-product composition is subject of great sci-
entific interest. The main results are published in [1],
[2], [4],[10], [13], [14] for equations.

Since the feasible domain of the solution set is
non-convex, traditional linear programming methods,
such as simplex method, can not be applied. We pro-
pose to obtain complete solution set of the system,

using algebraic-logical approach. Then the optimiza-
tion problem is spitted into two sub-problems by sep-
arating the non-negative from negative coefficients of
the objective function, such that the optimal solution
is obtained by the maximum solution and one of the
minimal solutions of the system.

2 Basic Notions
A matrix A = (aij)m×n, with aij ∈ [ 0, 1 ] for each
i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, is called a membership
matrix [6]. In what follows “matrix” is used, instead
of “membership matrix”.

For X = (xj)n×1 and Y = (yj)n×1 the inequal-
ity X ≤ Y means xj ≤ yj for each j, 1 ≤ j ≤ n.

Partial order relation on a partially ordered set
(poset) P is denoted by the symbol ≤. Greatest el-
ement of a poset P is an element b ∈ P such that
x ≤ b for all x ∈ P . The least element of P is defined
dually.

Product algebra:

I� = 〈[ 0, 1 ], ∨, ∧, 0, 1, �〉 (3)

with operations:

a ∨ b = max{a, b} (4)

a ∧ b = min{a, b} (5)

and � – traditional multiplication, is used here. In I�
the operation � is defined as follows:



a � b =
{

1, if a ≤ b
b
a , if a > b

. (6)

Any fuzzy relation R ∈ F (X × Y ) over finite
supportX×Y is representable by a matrix [4], written
for convenience with the same letterR = (rij), where
rij = µR(xi, yj) for any (xi, yj) ∈ X × Y . In what
follows, the matrix R = (rij) is used instead of the
fuzzy relationR ∈ F (X×Y ) over finite supportX×
Y .

For each j, j = 1, · · · , n,

A∗(j) = (a∗ij)m×1 (7)

denotes the j−th column of A∗ and a∗ij denotes the
i−th element (1 ≤ i ≤ m) in A∗(j).

Definition 1 Let the matrices A = (aij)m×p and
B = (bij)p×n be given.

◦ The matrix C = (cij)m×n = A�B is calledmax−
product of A and B if

cij =
p

max
k=1

(aik.bkj), 1 ≤ i ≤ m, 1 ≤ j ≤ n. (8)

◦ The matrix C = (cij)m×n = A � B is calledmin−
� of A and B if

cij =
p

min
k=1

(aik � bkj), 1 ≤ i ≤ m, 1 ≤ j ≤ n. (9)

Theorem 2 Let A = (aij)m×p and C = (cij)m×n be
given matrices and let B� be the set of all matrices
such that A�B = C. Then:
◦ B� 6= ∅ iff At � C ∈ B�.

◦ If B� 6= ∅ then At � C is the greatest element in
B�. [3]

3 Solving Fuzzy Linear Systems
Let first consider the solution set of fuzzy linear sys-
tem of equations (FLSE) with max−product compo-
sition:

∣∣∣∣∣∣
(a11.x1) ∨ · · · ∨ (a1 n.xn) = b1
· · · · · · · · · · · · · · ·

(am 1.x1) ∨ · · · ∨ (am n.xn) = bm

, (10)

written in the following equivalent matrix form

A�X = B, (11)

or fuzzy linear systems of inequalities (FLSI) with the
same left-hand side as (10) written in the following
equivalent matrix form

A�X ≥ B. (12)

When the results or statements are valid for (11)
and (12) simply FLS is used instead of listing them.

Definition 3 Let the FLS in n unknowns be given.

◦ X0 = (x0
j )n×1 with x0

j ∈ [0, 1], when 1 ≤ j ≤ n, is
called a solution of FLS if A�X0 = B (A�X0 ≥
B, respectively) holds.

◦ The set of all solutions X0 of FLS is called complete
solution set.

◦ A solution X0
low ∈ X0 is called a lower (minimal)

solution of FLS if for any X0 ∈ X0 the relation
X0 ≤ X0

low implies X0 = X0
low. Dually, a solu-

tion X0
u ∈ X0 is called an upper (maximal) solution

of FLS if for any X0 ∈ X the relation X0
u ≤ X0 im-

plies X0 = X0
u . When the upper solution is unique,

it is called greatest (or maximum) solution.

◦ If X0 6= ∅ then FLS is called consistent, otherwise it
is called inconsistent.

Any consistent system has unique maximum so-
lution

Xgr = At �B (13)

for (11) or
Xgr = (1, ..., 1)t (14)

for (12).
The solution set of FLS is determined by all min-

imal solutions and the maximum one.

3.1 Associated matrix

For the FLS any coefficient aij ≥ bi provides a way
to satisfy the i−th equation (inequality, respectively)
with aij . xj = bi, when xj = bi

aij
. A symbolic matrix

A∗ = (a∗ij) with elements a∗ij determined according
to the next expression:

a∗ij =


S, if aij < bi
E, if aij = bi
G if aij > bi

. (15)

is assigned to FLS in order to distinguish coefficients
that contribute for solving the system from these that
do not contribute.

The matrix A∗ is called associated matrix of the
FLS.



3.2 IND vector

The vector IND = INDm×1 is used to establish
consistency of the system. |Gi| is the number of el-
ements a∗ij = G and |Ei| is the number of elements
a∗ij = E in the i−th row of A∗, j = 1, ..., n. Then

IND(i) = |Gi|+ |Ei|. (16)

Lemma 4 Let the FLS be given. Then:
◦ If IND(i) = 0 for at least one i = 1, ...,m then the

system is inconsistent.

◦ If the system is consistent then the number of its po-
tential minimal solutions does not exceed

PN =
m∏

i=1

IND(i). (17)

The time complexity function for establishing the
IND vector is O(mn).

3.3 Main theoretical results
Theorem 5 Let the system (11) (12, respectively) be
given.
◦ If A∗(j) contains G−type coefficient(s) a∗ij = G

and

x̂j =
m

min
i=1
{ bi
aij
}(x̂j = 1, respectively),

when aij > bi, then xj = x̂j implies:

• aij . xj = bi in (11) (aij . xj ≥ bi in (12)) for
each i, 1 ≤ i ≤ m when bi

aij
= x̂j ( bi

aij
≤ 1,

respectively),
• aij . xj < bi for each i, 1 ≤ i ≤ m with bi

aij
6=

x̂j ( bi
aij

> 1, respectively).

◦ If A∗(j) does not contain any G−type coefficient,
but it contains E−type coefficient(s) a∗kj = E, then
x̂j = 1 and xj = x̂j = 1 implies aij . xj = bi for
each i, 1 ≤ i ≤ m with a∗ij = E,

◦ If A∗(j) contains neither G− nor E−type coeffi-
cient then x̂j = 1 and xj = x̂j = 1 implies
aij . xj < bi for each i, 1 ≤ i ≤ m.

The proof for Theorem 5 follow from the defini-
tion of the associated matrix and its relationship with
the corresponding FLS.

Corollary 6 For any consistent system (11) Xgr =
At � B = X̂ = (x̂j)n×1. For any consistent system
(12) Xgr = (1, ..., 1)t. Here x̂j , 1 ≤ j ≤ n, are
computed according to Theorem 5.

Corollary 7 If a∗ij = S for each i = 1, ...,m, then
x̌j = 0 in any minimal solution X̌ = (x̌j)n×1 of the
consistent FLS.

Corollary 8 If X̌ = (x̌j)n×1 is a minimal solution of
the consistent FLS, then for each j = 1, ..., n either
x̌j = 0 or x̌j = x̂j .

3.4 Selected elements
Definition 9 For FLS with associated matrix A∗ all
non-S elements in A∗ are called selected.

The following corollary is obtained from Theo-
rem 5.

Corollary 10 Let a FLS be given.
◦ If it is consistent, then for each i, 1 ≤ i ≤ m, there

exists at least one selected coefficient a∗ij .

◦ If the system is consistent then Xgr = At � B is the
unique maximal (i.e. greatest, or maximum) solu-
tion of (11) and Xgr = (1, ..., 1)t is the unique
maximal (i.e. greatest, or maximum) solution of
(12).

◦ The time complexity function for establishing the
consistency of the FLS and for computing Xgr is
O(m2n).

3.5 Finding minimal solutions
For a consistent FLS all equations (inequalities) with
bi = 0 are removed.

3.5.1 Algebraic properties
If the element a∗ij 6= S, then m∗ij = bi

aij
and this is

symbolized this with
〈

m∗
ij

j

〉
.

For each i, 1 ≤ i ≤ m, the elements m∗ij 6= 0
mark the potential lower bounds of different ways to
satisfy the i-th equation (inequality) of the FLS, writ-
ten Ei and symbolized by the sign

∑
:

Ei =
∑

1≤j≤n

〈
m∗ij
j

〉
. (18)

Equations are considered simultaneously. The
concatenation W of all ways is symbolized by the
sign

∏
:

W =
∏

1≤i≤m

 ∑
1≤j≤n

〈
m∗ij
j

〉 . (19)

Concatenation is distributive with respect to addi-
tion, i.e.



〈
m∗i1j

j1

〉 (〈
m∗i2j

j2

〉
+
〈
m∗i2j

j3

〉)
=

=
〈
m∗i1j

j1

〉 〈
m∗i2j

j2

〉
+
〈
m∗i1j

j1

〉 〈
m∗i2j

j3

〉
. (20)

Concatenation is commutative:

〈
m∗i1j

j1

〉 〈
m∗i2j

j2

〉
=
〈
m∗i2j

j2

〉 〈
m∗i1j

j1

〉
. (21)

The next property is called absorption for multi-
plication: 〈

m∗i1j

j1

〉 〈
m∗i2j

j1

〉
=
〈
m∗i1j

j1

〉
(22)

Applying (20), (21), (22) the parentheses in (19)
can be expanded. The set of ways follows, from which
the minimal solutions are obtained:

W =
∑

(j1,···,jm)

〈
m∗i1j

j1

〉〈
m∗i2j

j2

〉
...

〈
m∗imj

jm

〉
. (23)

Let simplify (23) according to the next described
absorption for addition (missing

〈
mij

j

〉
are supposed

to be
〈

0
j

〉
):

〈
m∗i1j

j1

〉
· · ·
〈
m∗imj

jm

〉
+
〈
m∗s1j

j1

〉
· · ·
〈
m∗smj

jm

〉
=

=


〈

m∗
i1j

j1

〉
· · ·
〈

m∗
imj

jm

〉
,

if m∗itj ≤ m
∗
stj

for t = 1, · · · ,m

unchanged, otherwise

. (24)

A property called combined absorption follows
from (22), (23) and (24):〈

m∗i1j

j1

〉 [〈
m∗i2j

j1

〉
+
〈
m∗i2j

j2

〉]
=

=
〈
m∗i1j

j1

〉 〈
m∗i2j

j1

〉
+
〈
m∗i1j

j1

〉〈
m∗i2j

j2

〉
=

=
〈
m∗i1j

j1

〉
. (25)

After simplifying (23) according to (24) any term〈
m∗

i1j

j1

〉 〈
m∗

i2j

j2

〉
· · ·
〈

m∗
imj

jm

〉
determines a minimal

solution X̌ = (x̌j), with components (obtained after
expanding brackets in (19) by rules (20) – (25)), see
also Corollary 8:

x̌jt =
{
mitj = x̂jt if in (23) mitj 6= 0

0 otherwise
(26)

4 Algorithm for finding optimal solu-
tion

The linear objective function Z = (c1, c2, ..., cn) is
decomposed in two functions Z ′ = (c′1, c

′
2, ..., c

′
n) and

Z ′′ = (c′′1, c
′′
2, ..., c

′′
n) by separating the non-negative

and non-positive coefficients (as it is proposed in [5],
[7], [8], [9]). The components of Z ′ arenon-negative,
the components of Z ′′ are non-positive.

The original problem: to minimize (maximize,
respectively) Z subject of constraint (2) splits into
two problems, namely to minimize (maximize, re-
spectively) both

Z ′ =
n∑

j=1

c′jxj (27)

and

Z ′′ =
n∑

j=1

c′′jxj (28)

with constraint (2), i.e. for the problem (1) Z takes its
minimum Zmin (maximum Zmax, respectively) when
both Z ′ and Z ′′ take minimum (maximum, respec-
tively).

Since the components c′j , 1 ≤ j ≤ n, in Z ′

are non-negative, Z ′ takes its minimum (maximum,
respectively) among the minimal solutions (for the
greatest solution, respectively) of (2). Hence for the
problem (27) the optimal solution X̆ = (x̆1, ..., x̆n)
is among the minimal solutions (for the greatest solu-
tion, respectively) of the system (2).

Since the components c′′j , 1 ≤ j ≤ n, in Z ′′

are non-positive, Z ′′ takes its minimum (maximum,
respectively) for the greatest solution (among minimal
solutions, respectively) of (2). Hence for the problem
(28) the optimal solution is for the greatest solution
(among minimal solutions, respectively) of the system
(2).

The optimal solution of the problem (1) with con-
straint (2) is X∗ = (x∗1, ..., x

∗
n), where

x∗i =
{
x̂i, if ci < 0
x̆i, if ci ≥ 0

(29)



when computing Zmin and the minimal value is

Z∗ =
n∑

j=1

cjx
∗
j =

n∑
j=1

c′′j x̂j + c′j x̆j . (30)

When computing Zmax the maximal value is

Z∗ =
n∑

j=1

cjx
∗
j =

n∑
j=1

c′j x̂j + c′′j x̆j (31)

with

x∗j =
{
x̆j , if cj < 0
x̂j , if cj ≥ 0

. (32)

5 Software
Software is developed, based on the described algo-
rithm. This software is divided into two independent
programs, one written in Java and one written in MAT-
LAB. Both have their advantages. Java program has
its own GIU, which make it stand alone application
for optimization. In addition it is faster than the MAT-
LAB program. Of course because it is open source
everybody can extend it or just use it in other Java
applications. MATLAB program on the other hand
doesn’t have GIU, but can be run easy from the com-
mand line interpreter (CLI) of MATLAB. In this way
the program can be used separately as well as in com-
bination of any of the MATLAB packages for rapid
producing of feature rich programs. In the next sec-
tion some examples are given. All of them are tested
in both Java and MATLAB application. The results
are given like a snapshot of a MATLAB session but,
of course, they are identical in the Java program.

6 Experimental results
Example: Minimize

Z = 5x1 − 4x2 + 8x3 + 2x4 − 3x5 + 7x6 (33)

subject to

A�X ≥ B, 0 ≤ xj ≤ 1, 1 ≤ j ≤ 6 (34)

where

A =



0.00 0.20 0.05 0.00 0.40 0.00
0.10 0.60 0.30 0.00 0.20 0.20
0.80 0.48 0.24 0.48 0.00 0.00
0.30 0.00 0.00 0.40 0.80 0.15
0.00 0.00 0.12 0.20 0.48 0.10
0.50 0.30 0.00 0.10 0.60 0.00

 , (35)

B′ =
(

0.10 0.30 0.24 0.20 0.12 0.15
)
, (36)

In MATLAB:

>>sol=fuzzy_maximize_mp(A,B,C)
sol =

exists: 1
low: [6x3 double]

sol_numb: 3
Ind: [5x1 double]
hlp: [6x6 double]

A: [6x6 double]
B: [6x1 double]
d: [5x6 double]

gr: [1 1 1 1 1]
final_x: [6x1 double]
final_z: -7

z: [2 -7 1]

The system of constraints has one greatest and 3 min-
imal solutions. They are listed below:

>>sol.gr
ans =
1.0000
1.0000
1.0000
1.0000
1.0000

>>sol.low
ans =

0 0 0
0.5000 0.5000 0
1.0000 0 1.0000
0.5000 0 0

0 0.2500 0.2500
0 0 0

Z ′ = −4x2 − 3x5 (37)

Z ′′ = 5x1 + 8x3 + 2x4 + 7x6 (38)

The second and the fifth component in the opti-
mal solution are taken from the greatest solution. The
other components must be chosen from one of the
minimal solutions.

Values of objective function for all minimal solu-
tions:

>> sol.z
ans =
2 -7 1

Minimum of the objective function is gained for
the second minimal solution, hence

>> sol.final_z
ans =
-7

>> sol.final_x



ans =
0
1
0
0
1
0

The execution time for this example is 0.060 sec-
onds tested on computer with Pentium 4 processor on
1.8GHz, with 512MB RAM and MATLAB R2006b.
The same example tested on computer with Intel Core
2 Duo processor on 1.86GHz, with 2GB RAM and
Java 6.0 has execution time of 0.015 seconds.
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