
Behavior, Equivalence, Reduction and

Minimization Software for Finite Intuitionistic

Fuzzy Machines

K. Peeva, Zl. Zahariev
Faculty of Applied Mathematics and Informatics

Technical University of Sofia, Bulgaria
Sofia 1000, P. O. Box 384

kgp@tu-sofia.bg, zlatko@tu-sofia.bg

Abstract

We investigate finite intuitionistic fuzzy machines with em-
phases on computing behavior, establishing equivalence of states
and solving reduction and minimization problems. We develop
functions for these problems in MATLAB environment. The com-
putational complexity of algorithm is discussed. Testing results
and examples are supplied.

Keywords: Finite intuitionistic fuzzy machine, behavior, equi-
valence of states, reduction, minimization.

1 Introduction

Finite max−min, min−max and max−product fuzzy machines are pro-
posed and first studied in [12] – [16]. An extensive bibliography for them
is given in [4], [5], [6], [8].

Santos set equivalence, reduction and minimization problems for fi-
nite max−min fuzzy machines [14] and for finite max−product fuzzy
machines [15]. Theoretical results, computational aspects and software
for obtaining behavior matrix, establishing equivalence of states, finding
redundant states, are studied in [6], [8].

Finite intuitionistic fuzzy machines (FIFM for short) as introduced in
[7] are a natural and reasonable extension of max−min and min−max
fuzzy machines.

1

In this paper we propose theory providing how to compute behav-
ior of FIFM, how to establish equivalence of its states, how to decide
whether an FIFM is in reduced or in minimal form. In Section 2 we give
preliminaries from intuitionistic fuzzy relational calculus. Computing
behavior of FIFM is subject of Sections 3, 4. In Section 5 we investi-
gate equivalence, reduction and minimization. We give algorithm how
to extract and compute a representative finite behavior matrix from the
complete behavior matrix. Section 6 describes software for computing
behavior matrix of FIFM and its implementation for equivalence, reduc-
tion and minimization. In Section 7 code snippets show some essential
parts of the source code.

2 Intuitionistic Fuzzy Relational Calculus–Basic
Notions

The terminology for intuitionistic fuzzy sets is according to [1].
Partial order relation on a partially ordered set (poset) P is denoted

by the symbol ≤. By a greatest element of a poset P we mean an element
b ∈ P such that x ≤ b for all x ∈ P . The least element of P is defined
dually.

Let I∗ = 〈[0, 1], ∨, ∧, 0, 1, 〉, where [0, 1] is the real closed unit
interval, and ∨, ∧ are respectively defined by

a ∨ b = max{a, b}, a ∧ b = min{a, b}.

I∗ is a complete lattice with universal bounds 0 and 1.
In I∗ the operations α and ε are used. For a, b ∈ [0, 1] they are

defined as follows:

aα b =
{

1 if a ≤ b
b a > b

, a ε b =
{

b if a < b
0 a ≥ b

.

Operation α is also called Gödel implication and denoted as →G in
Gödel algebra and 〈[0, 1], ∨, ∧, �, →G, 0, 1, 〉 is residuated lattice [3].

2.1 Matrix products

A matrix A =
〈
(µA

ij), (ν
A
ij)

〉
m×n

with µA
ij , ν

A
ij ∈ [0, 1] such that 0 ≤

µA
ij + νA

ij ≤ 1 for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, m,n ∈ N, is called
intuitionistic fuzzy matrix [7]. In what follows we write ‘matrix’ or IFM
instead of ‘intuitionistic fuzzy matrix’.

2

Two IFM Am×p and Bp×n are called conformable, if the number of
columns in A coincides with the number of rows in B.

Several matrix products with conformable matrices may be defined
on I∗.

Definition 1.

i) The matrix C = A ∗ B =
〈
(µC

ij), (ν
C
ij)

〉
m×n

is called intuitionistic

product of A =
〈
(µA

ij), (ν
A
ij)

〉
m×n

and B =
〈
(µB

ij), (ν
B
ij)

〉
m×n

if

µC
ij =

p
∨

k=1
(µA

ik ∧ µB
kj), νC

ij =
p
∧

k=1
(νA

ik ∨ νB
kj) when 1 ≤ i ≤ m, 1 ≤ j ≤ n.

ii) The matrix C = A�B =
〈
(µC

ij), (ν
C
ij)

〉
m×n

is called α−ε product

of A =
〈
(µA

ij), (ν
A
ij)

〉
m×n

and B =
〈
(µB

ij), (ν
B
ij)

〉
m×n

if

µC
ij =

p
∧

k=1
(µA

ikαµB
kj), νC

ij =
p
∨

k=1
(νA

ikεν
B
kj) when 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The α− ε product of A =
〈
(µA

ij), (ν
A
ij)

〉
m×n

and B =
〈
(µB

ij), (ν
B
ij)

〉
m×n

may not be intuitionistic fuzzy matrix.

2.2 Direct and inverse problems

If the IFM Am×p and Bp×n are given, computing their product is called
direct problem resolution . Codes for direct problem resolution, avail-
able free under General Public License (GPL), are given in [8].

If Am×p and Cm×n are given, computing the unknown matrix Bp×n

such that A ∗ B = C is is called inverse problem resolution .
Theorem 1 Let Am×p and Cm×n be given IFM and let B∗ be the

set of all IFM such that A ∗B = C. Then B∗ 6= ∅ iff At � C ∈ B∗.
We develop suitable software based on Theorem 1 to compute be-

havior of FIFM.

3 Finite intuitionistic fuzzy machines

In this section we define finite intuitionistic fuzzy machine A over I∗ and
describe its complete behavior by suitable matrix TA. We give examples
for computing TA for words in fixed length. Computations are made in
two different ways: following the theoretical background and with the
functions developed by the authors.

3

For a finite set C we denote by |C| its cardinality.
Definition 2. [7] A finite intuitionistic fuzzy machine (FIFM) over

I∗ is a quadruple
A = (X, Q, Y, M),

where:

i) X, Q, Y are nonempty finite sets of input letters, states and
output letters, respectively.

ii) M is the set of transition-output intuitionistic fuzzy matrices of
A, that determines its stepwise behavior. Each matrix M(x|y) =〈
µqq′(x|y), νqq′(x|y)

〉
∈ M is a square matrix of order |Q| and

x ∈ X, y ∈ Y, q, q′ ∈ Q, µqq′(x|y), νqq′(x|y) ∈ [0, 1] with 0 ≤
µqq′(x|y) + νqq′(x|y) ≤ 1.

We regard µqq′(x|y) as the degree of membership and νqq′(x|y) as
the degree of non-membership that the FFM will enter state q′ ∈ Q and
produce output y ∈ Y given that the present state is q ∈ Q and the
input is x ∈ X.

3.1 Extended input-output behavior of FIFM

In this subsection we will be interested in operating of A for words, i.
e. for more than one consecutive steps.

The free monoid of the words over the set X is denoted by X∗ with
the empty word e as the identity element. If X 6= ∅ then X∗ is countably
infinite. The length of the word u is denoted by |u |. By definition
| e | = 0. Obviously |u | ∈ N for each u 6= e.

For u ∈ X∗ and v ∈ Y ∗, if |u | = | v |, we write (u|v) ∈ (X|Y)∗, to
distinguish it from the case (u, v) ∈ X∗×Y ∗. We denote by (X |Y)∗ the
set of all input-output pairs of words of the same length:

(X |Y)∗ = { (u|v) | u ∈ X∗, v ∈ Y ∗, |u | = | v | } .

Definition 3. Let A = (X, Q, Y, M) be FIFM over I∗. For any
(u|v) ∈ (X|Y)∗ the extended input-output behavior of A upon the law of
composition ∗ is determined by the square matrix M(u|v) of order |Q |:

M(u | v) =


M(x1 |y1) ∗ . . . ∗M(xk |yk),

if (u|v) = (x1 . . . xk|y1 . . . yk), k ≥ 1

U, if (u|v) = (e|e)

(1)

4

where U = (
〈
µU

ij , ν
U
ij

〉
) is the square matrix of order |Q| with elements:

〈
µU

ij , ν
U
ij

〉
=

{
〈1, 0〉 if i = j
〈0, 1〉 if i 6= j

.

We regard each
〈
µqq′(u|v), νqq′(u|v)

〉
in M(u|v) as degree of member-

ship, degree of non-membership pair that the FIFM A will enter state
q′ ∈ Q and produce output word v ∈ Y ∗ under the input word u ∈ X∗

beginning at state q ∈ Q, after |u| = |v| consecutive steps.

3.2 Complete input-output behavior

The complete input-output behavior of A is determined by column-
matrices T (u|v)|Q|×1 as follows.

T (u|v)|Q |×1 = (tq(u|v)) =
{

M(u|v) ∗ E, if (u|v) 6= (e|e);
E, if (u|v) = (e|e) , (2)

where E is the |Q | × 1 column-matrix with all elements equal to 〈1, 0〉.
Each element tq(u|v) of T (u|v) in (2) determines the operation of A

under the input word u beginning at state q and producing the output
word v after |u| = |v| consecutive steps.

The complete behavior matrix TA of A is semi-infinite matrix with
|Q| rows and with columns T (u|v), (u|v) ∈ (X|Y)∗, computed with (2)
and ordered according to the lexicographical order in (X|Y)∗, see Table
1 (if X 6= ∅ and Y 6= ∅ then X∗ and Y ∗ are countably infinite and
(X|Y)∗ is lexicographically ordered).

Table 1: TA – initial fragment

T (e|e) T (x1|y1) T (u|v)

q1 〈1, 0〉 tq1(x1|y1) tq1(u|v)
q2 〈1, 0〉 tq2(x1|y1) tq2(u|v)
.
qn 〈1, 0〉 tqn(x1|y1) tqn(u|v)

length l l = 0 l = 1 . . . l = |u | . . .

Example 1 Compute initial fragment from TA if the FIFM A =
(X, Q, Y, M) is given with the following data:

X = {x1, x2 } , Y = { y1, y2 } , Q = { q1, q2, q3 } ,

5

m1 = M(x1|y1) =

 〈0.6, 0.4〉 〈0.2, 0.8〉 〈0.5, 0.5〉
〈0.1, 0.9〉 〈0.6, 0.4〉 〈0.5, 0.5〉
〈0.2, 0.8〉 〈0, 1〉 〈0.1, 0.9〉

 , (3)

m2 = M(x1|y2) =

 〈0, 0.9〉 〈0, 0.8〉 〈0, 1〉
〈0, 0.8〉 〈0, 0.9〉 〈0, 1〉
〈0.15, 0.8〉 〈0.2, 0.8〉 〈0.1, 0.8〉

 , (4)

m3 = M(x2|y1) =

 〈0.2, 0.8〉 〈0.4, 0.5〉 〈0.1, 0.9〉
〈0.4, 0.5〉 〈0.3, 0.7〉 〈0.1, 0.9〉
〈0, 1〉 〈0, 1〉 〈0, 1〉

 , (5)

m4 = M(x2|y2) =

 〈0.3, 0.7〉 〈0, 0.9〉 〈0.1, 0.9〉
〈0.3, 0.7〉 〈0.2, 0.8〉 〈0.1, 0.9〉
〈0.1, 0.8〉 〈0.1, 0.8〉 〈0, 1〉

 . (6)

I way. Let

T1 = T (x1|y1), T2 = T (x1|y2), T3 = T (x2|y1), T4 = T (x2|y2).

We implement the above theory and obtain:

T1 =

 〈0.6, 0.4〉
〈0.6, 0.4〉
〈0.2, 0.8〉

 , T2 =

 〈0, 0.8〉
〈0, 0.8〉
〈0.2, 0.8〉

 ,

T3 =

 〈0.4, 0.5〉
〈0.4, 0.5〉
〈0, 1〉

 , T4 =

 〈0.3, 0.7〉
〈0.3, 0.7〉
〈0.1, 0.8〉

 .

Multiplying (3) – (6) by two’s and applying (2), we obtain:

m11 = M(x1x1|y1y1) = M(x1|y1) ∗M(x1|y1) = 〈0.6, 0.4〉 〈0.2, 0.5〉 〈0.5, 0.5〉
〈0.2, 0.8〉 〈0.6, 0.4〉 〈0.5, 0.5〉
〈0.2, 0.8〉 〈0.2, 0.8〉 〈0.2, 0.8〉

 ,

6

Table 2: An initial fragment from TA for Example 2

T0 T1 T2 T3 T4 T11 . . .
q1 〈1, 0〉 〈0.6, 0.4〉 〈0, 0.8〉 〈0.4, 0.5〉 〈0.3, 0.7〉 〈0.6, 0.4〉 . . .
q2 〈1, 0〉 〈0.6, 0.4〉 〈0, 0.8〉 〈0.4, 0.5〉 〈0.3, 0.7〉 〈0.6, 0.4〉 . . .
q3 〈1, 0〉 〈0.2, 0.8〉 〈0.2, 0.8〉 〈0, 1〉 〈0.1, 0.8〉 〈0.2, 0.8〉 . . .

T11 = T (x1x1|y1y1) =

 〈0.6, 0.4〉
〈0.6, 0.4〉
〈0.2, 0.8〉

 , etc.

It is obvious that this method of computation is tremendous even
for words in small length. This motivated us to develop functions for
computing TA, as explained in II way.

II way. We develop function in MATLAB workspace and software
for computing the initial fragment Tk of the matrix TA for words in
fixed length ≤ k for finite intuitionistic fuzzy machines. The function
(described in Section 6) is:

find t int(m, word length) where

• m is a cell array with the initial data intuitionistic matrices from
the set M of the FIFM.

• word length is the desired word length k. It also gives the num-
ber of executive steps for finding Tk.

For Example 1 the function find t int(m,2) results (compare next
columns 1 – 6 with these in Table 2):

>> find_t_int(m,2)
step=1; time=0.085189; t=

b =
Columns 1 through 4
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.20, 0.80> <0.20, 0.80> <0.00, 1.00>

Column 5
<0.30, 0.70>

7

<0.30, 0.70>
<0.10, 0.80>

step=2; time=0.074356; t=
b =
Columns 1 through 4
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.20, 0.80> <0.20, 0.80> <0.00, 1.00>

Columns 5 through 8
<0.30, 0.70> <0.60, 0.40> <0.20, 0.80> <0.40, 0.50>
<0.30, 0.70> <0.60, 0.40> <0.20, 0.80> <0.40, 0.50>
<0.10, 0.80> <0.20, 0.80> <0.10, 0.80> <0.20, 0.80>

Columns 9 through 12
<0.30, 0.70> <0.00, 0.80> <0.00, 0.80> <0.00, 0.80>
<0.30, 0.70> <0.00, 0.80> <0.00, 0.80> <0.00, 0.80>
<0.20, 0.80> <0.20, 0.80> <0.10, 0.80> <0.20, 0.80>

Columns 13 through 16
<0.00, 0.80> <0.40, 0.50> <0.10, 0.80> <0.40, 0.50>
<0.00, 0.80> <0.40, 0.50> <0.10, 0.80> <0.40, 0.50>
<0.20, 0.80> <0.00, 1.00> <0.00, 1.00> <0.00, 1.00>

Columns 17 through 20
<0.30, 0.70> <0.30, 0.70> <0.10, 0.80> <0.30, 0.70>
<0.30, 0.70> <0.30, 0.70> <0.10, 0.80> <0.30, 0.70>
<0.00, 1.00> <0.10, 0.80> <0.00, 0.80> <0.10, 0.80>

Column 21
<0.30, 0.70>
<0.30, 0.70>
<0.10, 0.80>

The function find t (m, word length) is based on the notions and
theoretical results for finite intuitionistic fuzzy machines. It automatizes
all operations described in the I way of Example 1.

8

4 Behavior Matrix

The complete input-output behavior matrix TA of any FIFM A is semi-
infinite – it has finite number of rows (equal to the number of states in
Q) and infinite number of columns. Many conventional problems require
to extract from TA a finite submatrix BA (called behavior matrix) that
provides solving these problems.

In this section we propose algorithm for extracting a finite behavior
matrix BA from the complete behavior matrix TA. BA is expected to
have sufficiently good properties for solving equivalence, reduction and
minimization problems.

In order to explain computing BA we provide supplementary infor-
mation – what is intuitionistic linear combination, how to establish that
a vector is intuitionistic linear combination of a set of vectors and how
do we implement this for obtaining BA.

4.1 Intuitionistic Linear Combination

Let A(1) =
(〈

µA(1), νA(1)
〉)

n×1
, . . . , A(k) =

(〈
µA(k), νA(k)

〉)
n×1

be in-
tuitionistic fuzzy column-vectors.

Definition 4. We say that a column-vector Cn×1 is intuitionistic
linear combination of the vectors A(i)n×1, 1 ≤ i ≤ k, with coefficients
〈xi, yi〉 ∈ [0, 1]× [0, 1], with 0 ≤ xi + yi ≤ 1, 1 ≤ i ≤ k, if

C =
〈(

µA(1) ∧ x1

)
∨ · · · ∨

(
µA(k) ∧ xk

)
,
(
νA(1) ∨ y1

)
∧ · · · ∧

(
µA(k) ∨ yk

)〉
.

Checking whether Cn×1 is intuitionistic linear combination of A(1),
. . . , A(k) requires to solve the system

A ∗X = C

for the unknown X, if A and C are given. When the system is consistent
(inconsistent, respectively) then the right-hand side vector is (is not,
respectively) intuitionistic linear combination of the vectors forming the
matrix of coefficients.

The finite behavior matrix BA contains only linearly independent
columns from TA. Hence, when computing BA from TA, each column
from TA that is a linear combination of the previous columns should be
removed. For checking whether a column is intuitionistic linear combina-
tion we develop software that implements functions from [8] for solving
fuzzy linear system of equations (inverse problem resolution).

9

4.2 Algorithm for computing behavior matrix BA

We denote by T (i) the finite submatrix of TA containing the columns
T (u|v) for the words of length not greater than i, i ∈ N. Let B(i) be a
submatrix of T (i) obtained by omitting all columns from T (i) that are
linear combination of the previous columns.

For arbitrary matrices C and D we write C ⊆ D, if each column of
C is a column of D. If each column in D is a linear combination of the
columns from C, we write C ∼= D. Obviously for each i ∈ N, we have
[6]:

1. T (i) ⊆ T (i + 1) ⊆ . . . ⊆ T ;

2. B(i) ⊆ B(i + 1) ⊆ . . . ⊆ B;

3. B(i) ⊆ T (i).

For any FIFM A we can obtain the matrix B(i) from T (i) – it suf-
fers to remove the columns from T (i) that are linear combination of the
previous columns. This is possible because we have method and soft-
ware to solve max−min and min−max fuzzy linear system of equations
[8] we develop functions for establishing max−min and min−max lin-
ear dependence or linear independence [9], [10] and finally we develop
functions for computing B(i), see next section.

Definition 5. The matrix BA obtained by omitting all columns from
TA that are intuitionistic linear combination of the previous columns is
called behavior matrix for A.

Theorem 3. For any FIFM A the following statements hold:

1. There exists an integer k, such that T (k) = T (k + 1) and B(k) =
BA .

2. If T (k) ∼= T (k + 1), then:

• T (k) ∼= T (k + p) ∼= . . . TA for each p = 1, . . .;
• B(k) = B(k + p) = . . . BA for each p = 1, . . .;

3. BA ∼= TA.

The proof is based on the validity of the results for max−min FFM
[6], their validity for min−max FFM follows by dualization principle
– (∨, ∧, ¬) is a dual triple [2] and product of two intuitionistic fuzzy
matrices is intuitionistic fuzzy matrix also.

Algorithm for computing the behavior matrix BA for FIFM A =
(X, Q, Y, M).

10

1. Enter the set of matrices M.

2. Find k, such that T (k) ∼= T (k + 1).

3. Obtain B(k) = BA excluding all linear combinations from T (k).

4. End.

It is established in [6] that the behavior matrix BA is finite for
max−min finite fuzzy machine A = (X, Q, Y, M) and the time com-
plexity function for computing BA is exponential. The same is valid for
min−max finite fuzzy machine. This provides that the behavior matrix
BA is finite for FIFM. The algorithm for finding behavior matrix BA
has exponential time complexity.

Example 1 – continued. Compute the behavior matrix for the
max-min FIFM given in Example 2. The function find b int(m) results
that T (1) = T (2) and hence B = T (1):

>> find_b_int(m)
step=1; time=0.69697; t=

b =
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.20, 0.80> <0.20, 0.80> <0.00, 1.00>

step=2; time=0.014771; t=

b =
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.20, 0.80> <0.20, 0.80> <0.00, 1.00>

ans =
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.20, 0.80> <0.20, 0.80> <0.00, 1.00>

11

5 Equivalence of States, Reduction, Minimiza-
tion

We demonstrate in this section how the software for finding TA and BA
can be implemented for solving equivalence problems.

Definition 6. The states qi ∈ Q and qj ∈ Q in FIFM A =
(X, Q, Y, M) are called equivalent if the input-output behavior of A
when begin with state qi is the same as its input-output behavior when
begin with state qj .

It means that the i−th and j−th rows are identical in TA and in
BA. Since TA is semi-infinite, we can not derive from it equivalence of
states. In order to solve the problem we have to extract BA from TA
and to check BA for identical rows.

Definition 7. FIFM A = (X, Q, Y, M) is in reduced form if
there does not exist equivalent states.

Function find b int(m, cond) establishes equivalence of states and
whether the FIFM is in reduced form, if cond = ’reduce’.

Example 1 continued. The machine with data in Example 1 is
not in reduced form:

>> find_b_int(m, ’reduce’)
step=1; time=0.0040656; t=

b =
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.20, 0.80> <0.20, 0.80> <0.00, 1.00>
step=2; time=0.014863; t=

b =
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.20, 0.80> <0.20, 0.80> <0.00, 1.00>

Since the first and the second row in BA are identical, the states q1

and q2 are equivalent and A = (X, Q, Y, M) is not in reduced form.
The behavior matrix of the reduced form FIFM follows:

ans =
<1.00, 0.00> <0.60, 0.40> <0.00, 0.80> <0.40, 0.50>
<1.00, 0.00> <0.20, 0.80> <0.20, 0.80> <0.00, 1.00>

12

An FIFM A = (X, Q, Y, M) is in minimal form if the input-
output behavior of A when begin with initial state qi is the same as
its input-output behavior when begin with so called isolating initial
distribution of membership degrees over Q – it means that the i−th
row of TA is a linear combination of the other rows. For any FIFM
A = (X, Q, Y, M) with known behavior matrix BA, it is algorithmi-
cally solvable whether A is in minimal form (for max−min finite fuzzy
machines see [6], take into account dualization principle and stability of
intuitionistic multiplication).

Function find b int(m, cond) establishes whether the FIFM is in
minimal form, if cond = ’minimize’.

6 Software Description

As mentioned, the main functionality of this software is concentrated in
find t int() and find b int() functions. The substantial difference be-
tween them is that find t int() computes complete behavior matrix for
a given fuzzy machine and therefore it does not remove the columns that
are linear combination of the other columns, while find b int() removes
these columns. Function find b int() can also reduce or minimize the
computed behavior matrix, while find t int() does not do this due a
theoretical reasons. Their parameters are described below.

For find t int() these are:

• m - a cell array with all matrices from M representing FIFM be-
havior for words in length 1. All matrices are instances from class
’im’. It have not default value, but if this parameter is omitted a
dialogue with the user will be done to receive the matrices.

• word length - the maximum word length for which we compute
the complete behavior matrix. This parameter is mandatory.

The function find t int() returns the complete behavior matrix Tk,
where k is the desired word length.

The parameters for find b int are:

• m - as above

• cond - this parameter can be one of ’none’, ’minimize’ or ’reduce’.
It defines do we want to make minimization (’minimize’) or re-
duction (’reduce’) to the final behavior matrix or leave it as it is
(’none’). Default value is ’none’.

13

• word length - in this function this parameter is optional. The
default value is ’-1’ which is used for ’unlimited’. In this case the
function returns the behavior matrix for the given fuzzy machine
for word with any length.

This algorithm has exponential time complexity and exponential
memory complexity. If we have |X| input letters and |Y | output let-
ters, we produce (|X|.|Y |)k matrices, where k is the length of the word.

7 Code Snippets

All configuration data are organized in separated arrays:

compositions = {’maxmin’};
compositions_int = {’minmax’};
norms = {’max’, ’min’};
conds = {’none’, ’reduce’, ’minimize’};

Presented below function obtains all matrices for words in length
k + 1. All matrices are saved in the same cell array which we first
expand to the new size and then fill backwards. We make this to save
memory (in this manner we do not keep in to memory matrices for the
kth step and matrices for the (k + 1)th step, but just the matrices for
the (k + 1)th step).

function b=next_stage(m,b)
global composition_key;
global compositions;
global compositions_int;

length_m=numel(m);
length_b=size(b,2);
k=length_m*length_b;
for i=length_m:-1:1

for j=length_b:-1:1
function_name1 = [’fuzzy_’...

... compositions{composition_key}];
function_name2 = [’fuzzy_’...

... compositions_int{composition_key}]’;
bj = b(:,j);
mi = m{i};

14

bm = feval(function_name1, mi.m, bj.m);
bn = feval(function_name2, mi.n, bj.n);
b(:,k) = im(bm,bn);
k=k-1;

end;
end;

Next function is actually building the behavior matrix in function
find b int(). It takes all vectors T (i|j) for the current step, checks any
single one of them if it is linear combination of the previous vectors and
vector is added to the behavior matrix if it is not linear combination of
the previous vectors.

function b=find_bn(cols,b)
global composition_key;
global compositions;
function_name =

[’is_fuzzy_’ compositions{composition_key} ’_lc_int’];
for i=1:size(cols,2)

bc=cols(:,i);
is_comb = feval(function_name, b, bc);
if ~(isa(is_comb, ’im’) || is_comb == true)

b(:, size(b,2)+1) = bc;
end;

end;

8 Conclusions

All other equivalence, reduction and minimization problems as intro-
duced in [6] are solved by suitable functions, developed by the authors.
We give here illustration only for some of them. The reason is that
the theoretical background for these problems is tremendous, see [5], [6]
and this will embarrass the reader. The essence is that we propose soft-
ware (under the request to the authors) for finding behavior matrix and
solving equivalence, reduction and minimization problems for FIFM.

References

[1] K. Atanassov (1999), Intuitionistic Fuzzy Sets, Theory and Appli-
cations, Physica-Verlag.

15

[2] B. De Baets (2000), Analytical solution methods for fuzzy relational
equations, in D. Dubois and H. Prade (eds.), the series: Funda-
mentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series, Vol. 1,
Kluwer Academic Publishers, 291-340.

[3] A. Di Nola, A. Lettieri, I. Perfilieva, V. Novák (2007), Algebraic
analysis of fuzzy systems, Fuzzy Sets and Systems, 158 (1) 1 - 22.

[4] G. Klir, B. Yuan (1995), Fuzzy Sets and Fuzzy Logic: Theory and
Applications, Prentice Hall PTR, NJ.

[5] J. N. Mordeson and D. S. Malik (2002), Fuzzy Automata and Lan-
guages – Theory and Applications, CAPMAN&HALL/CRC, Lon-
don.

[6] K. Peeva (2004), Finite L-Fuzzy Machines Fuzzy Sets and Systems,
Vol 141, No 3, pp. 415-437.

[7] K. Peeva (2003), Finite Intuitionistic Fuzzy Machines, Notes on
IFS, volume 9 Number 3 pp 40- 45 Proceedings of the Seventh In-
ternational Conference on Intuitionistic Fuzzy Sets, Sofia, 23-24
August 2003.

[8] K. Peeva and Y. Kyosev (2004), Fuzzy Relational Calculus-Theory,
Applications and Software (with CD-ROM), In the series Advances
in Fuzzy Systems - Applications and Theory, Vol. 22, World Scien-
tific Publishing Company. CD-ROM http://mathworks.net

[9] K. Peeva, Zl. Zahariev (2006), Linear dependence in fuzzy algebra,
in Proceedings of 31th International Conference AME, Sozopol June
2005 (in press).

[10] K. Peeva, Zl. Zahariev (2006), Software for Testing Linear Depen-
dence in Fuzzy Algebra, in Proceedings of Second International Sci-
entific Conference Computer Science, Chalkidiki, 30 Sept -2 Oct
2005, part I, pp 294-299.

[11] E. Sanchez (1976), Resolution of composite fuzzy relation equations,
Information and Control, 30 38-48.

[12] E. S. Santos (1968), Maximin automata, Information and Control,
13 363-377.

[13] E. S. Santos (1968), Maximin, minimax and composite sequential
mashines, J. Math. Anal. Appl., 24 246-259.

16

[14] E. S. Santos (1972), On reduction of maxi-min machines, J. Math.
Anal. Appl., 40 60-78.

[15] E. S. Santos (1972), Max-product machines, Journal of Math. Anal.
And Applications, 37 677-686.

[16] E. S. Santos and W. G. Wee (1968), General formulation of sequen-
tial machines, Information and Control, 12(1) 5-10.

17

