
Max-product Fuzzy Linear Systems -
Application to Linear Optimization

K. Peeva, Zl. Zahariev
Technical University of Sofia, Bulgaria

e-mail: kgp@tu-sofia.bg,

Abstract

An optimization problem is studied with linear objective function subject
to a system of fuzzy linear equations using max−product composition.
Since the solution set of the system is non-convex, conventional linear
programming methods cannot be applied. We apply methods for solving
fuzzy linear system of equations when the composition is max-product,
as proposed in [23]. These methods provide algorithm for computing the
maximum solution and the set of all minimal solutions, when the system
is consistent. After computing all extremal solutions of the system, we
propose a method to solve the linear optimization problem.

Keywords: linear optimization; max−product fuzzy linear equations; in-
verse problem;

1 Introduction

We are interested in the optimization problem with a linear objective function
subject to a system of fuzzy linear system of equations with max−product com-
position. The results for solving this optimization problem are provided by the
inverse problem resolution for fuzzy linear systems as presented in [23]. Solving
fuzzy linear system of equations with max−product composition is subject of
great scientific interest. The main results are published in [4], [6], [21], [22].
They demonstrate long and difficult period of investigations for discovering an-
alytical methods and procedures to determine complete solution set, as well as
to develop software for computing the maximum and all minimal solutions [21],
[22].

The first and most essential are Sanchez results [24] for the greatest solu-
tion of fuzzy relational equations with max−min and min−max composition.
Sanchez gives formulas that permit to determine the potential greatest solution
in any of these cases, often used as solvability criteria. After Sanchez results for
the greatest solution, attention was paid on the minimal solutions [2], [10], [17]–
[22]. Universal algorithm and software for solving max−min and min−max
fuzzy relational equations is proposed in [20], [21], [22].

For fuzzy linear system of equations with max− product composition [5],
[6], the results concern finding greatest solution [3] and minimal solutions, esti-
mating time complexity of the problem, applications in optimization problems
[9], [12], [13], [14].

Implementing methods, procedures and software for inverse problem resolu-
tion of fuzzy relational equations with max−product composition as presented
in [23]

1

This paper deals with optimization problem - minimize the linear objective
function

Z =
n∑

i=1

cixi (1)

subject to constrains - a fuzzy linear system of equations with max− product
composition

A�X = B, 0 ≤ xi ≤ 1, 1 ≤ i ≤ n (2)

where A stands for the matrix of coefficients, X = (xi)n×1 stands for the ma-
trix of unknowns, B is the right-hand side of the system, the max− product
composition is written as � and c = (c1, ..., cm) is the weight (cost) vector. The
aim is to minimize Z subject to constrains (2).

When the solution set of (2) is not empty, it is completely determined by the
unique maximum solution and a finite number of minimal solutions. Since the
solution set can be non-convex, traditional linear programming methods cannot
be applied to this problem. In this paper we apply the algorithm and software
from [23] for computing the maximum solution and all minimal solutions of the
consistent system A�X = B and solve the linear optimization problem.

The paper is organized as follows. In Section 2 we introduce basic notions. In
Section 3 we give the main results for solving fuzzy linear system of equations
- determination of the greatest solution and all minimal solutions. Section 4
presents the effect of the weight vector and shows that the linear optimization
problem (1) with constraints (2) can be devided into two parts: one with non-
negative weight coefficients and the other with negative weight coefficients. The
algorithm for solving the linear optimization problem (1) with constraints (2)
is presented in Section 5, where we also propose software description and some
comments on experimental results.

Terminology for computational complexity and algorithms is as in [1], [7], for
fuzzy sets and fuzzy relations is according to [4], [6], [11], [22], [24], for lattices
- as in [8], for algebra - as in [15].

2 Basic Notions

Partial order relation on a partially ordered set (poset) P is denoted by the
symbol ≤. By a greatest element of a poset P we mean an element b ∈ P such
that x ≤ b for all x ∈ P . The least element of P is defined dually.

Set I� = 〈[0, 1], ∨, ∧, 0, 1, �〉, where [0, 1] is the real unit interval, � is
the usual product between real numbers and ∨, ∧ are respectively defined by

a ∨ b = max{a, b}, a ∧ b = min{a, b}.

Then I� is a complete lattice with universal bounds 0 and 1; it is residuated
with respect to �, being the residuum given by:

a � b =
{

1, if a ≤ b
b
a , if a > b

.

2

The algebraic structure I� = 〈[0, 1], ∨, ∧, 0, 1, �〉 is called fuzzy algebra.
We denote by F (X) the fuzzy sets over the crisp set X. A fuzzy relation

R ∈ F (X × Y) is defined as a fuzzy subset of the Cartesian product X × Y ,

R = { ((x, y), µR(x, y)) | (x, y) ∈ X × Y, µR : X × Y → [0, 1] } .

The inverse (or transpose) R−1 = Rt ∈ F (Y × X) of R ∈ F (X × Y) is
defined as

R−1(y, x) = R(x, y) for all pairs (y, x) ∈ Y ×X.

A matrix A = (aij)m×n, with aij ∈ [0, 1] for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,
is called a membership matrix [11].

In what follows we write ‘matrix’ instead of ‘membership matrix’.
We consider operations with matrices on the fuzzy algebra I�.
Any fuzzy relation R ∈ F (X × Y) is representable by a matrix [6], written

for convenience with the same letter R = (rij), where rij = µR(xi, yj) for any
(xi, yj) ∈ X × Y .

We stipulate to use the matrix R = (rij) for the fuzzy relation R ∈ F (X×Y).
Definition 2 Let the matrices A = (aij)m×p and B = (bij)p×n be given.

i) The matrix C = (cij)m×n = A � B is called �− product of A and B if
cij =

p
max
k=1

(aik.bkj), when 1 ≤ i ≤ m, 1 ≤ j ≤ n.

ii) The matrix C = (cij)m×n = A � B is called �-product of A and B if

cij =
p

min
k=1

(aik � bkj), when 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Definition 2 permits to manipulate with the matrix products instead of with
compositions of fuzzy relations.

Theorem 2 [5] Let A = (aij)m×p and C = (cij)m×n be given matrices and
let B� be the set of all matrices such that A�B = C. Then:

i) B� 6= ∅ iff At � C ∈ B�.

ii) If B� 6= ∅ then At � C is the greatest element in B�.

3 �−Fuzzy Linear Systems of Equations

We study fuzzy linear systems of equations with �−composition (�−FLSE):∣∣∣∣∣∣
(a11. x1) ∨ · · · ∨ (a1 n. xn) = b1

· · · · · · · · · · · · · · ·
(am 1. x1) ∨ · · · ∨ (am n. xn) = bm

, (3)

written in the following equivalent matrix form

A�X = B,

3

where A = (aij)m×n stands for the matrix of coefficients, X = (xj)n×1 stands
for the matrix of unknowns, B = (bi)m×1 is the right-hand side of the system.
For each i, 1 ≤ i ≤ m and for each j, 1 ≤ j ≤ n, we have aij , bi, xj ∈ [0, 1] and
the max−product composition is written as �.

For X = (xj)n×1 and Y = (yj)n×1 the inequality X ≤ Y means xj ≤ yj for
each j, 1 ≤ j ≤ n.

Let us first define solutions for A � X = B and give a classification of the
�−FLSE according to the number of its solutions.

Definition 3 Let the system A�X = B in n unknowns be given.

i) X0 = (x0
j)n×1 with x0

j ∈ [0, 1], when 1 ≤ j ≤ n, is called a (point) solution
of the system A�X = B if A�X0 = B holds.

ii) The set of all point solutions X0 of A�X = B is called complete solution
set.

iii) If X0 6= ∅ then A � X = B is called consistent, otherwise A � X = B is
called inconsistent.

In the next exposition we omit the word “point” in “point solution”.
Definition 4 Let the system A�X = B in n unknowns be given.

i) A solution X0
low ∈ X0 is called a lower (minimal) solution of A�X = B

if for any X0 ∈ X0 the relation X0 ≤ X0
low implies X0 = X0

low, where ≤
denotes the partial order, induced in X0 by the order of [0, 1]. Dually, a
solution X0

u ∈ X0 is called an upper (maximal) solution of A � X = B if
for any X0 ∈ X the relation X0

u ≤ X0 implies X0 = X0
u . When the upper

solution is unique, it is called greatest (or maximum) solution.

ii) The n−tuple (X1, . . . , Xn) with Xj ⊆ [0, 1] for each j, 1 ≤ j ≤ n, is called
an interval solution of the system A�X = B if any X0 = (x0

j)n× 1 with
x0

j ∈ Xj for each j, 1 ≤ i ≤ n, implies X0 = (x0
j)n× 1 ∈ X0.

iii) Any interval solution of A � X = B whose components (interval bounds)
are determined by a lower solution from the left and by the maximum
solution from the right, is called maximal interval solution of A � X = B.

We consider inhomogeneous systems with bi 6= 0 for each i = 1, ...,m.
If A�X = B is consistent, according to Theorem 2, it has unique maximum

solution Xgr = At � B. The complete solution set is described by the set of
all maximal interval solutions. They are determined by all minimal solutions
and the maximum one, see [23]. Since there exists analytical expression for
the maximum solution, attention in references is paid on computing minimal
solutions.

3.1 Preliminary simplifications

We propose the first steps for simplifying �−FLSE so that the complete solution
set can be easily found and the size of the instant can be reduced.

4

3.1.1 Step 1. Associated matrix

For the system (3) any coefficient aij ≥ bi provides a way to satisfy the i−th
equation with aij . xj = bi, when xj = bi

aij
. This leads to the idea to distin-

guish coefficients that contribute for solving the system from these that do not
contribute, see (4).

We assign to A � X = B a symbolic matrix A∗ = (a∗ij) with elements a∗ij
determined according to the next expression:

a∗ij =

 S, if aij < bi

E, if aij = bi

G if aij > bi

. (4)

The matrix A∗ with elements a∗ij , determined by (4), is called associated
matrix of the system (3). Its elements depend both on A and on B.

The time complexity function for obtaining A∗ is O(mn).
Interpretation of A∗

• Any a∗ij = S in A∗ corresponds to aij < bi in the i−th equation of (3).
But aij < bi means aij . xj < bi for each xj ∈ [0, 1]. Hence each a∗ij = S
in the i−th row of A∗ indicates, that the coefficient aij do not contribute
to satisfy i−th equation of (3).

• Any a∗ij 6= S in (4) corresponds to aij ≥ bi 6= 0 in the i−th equation of (3)
that determines a way to satisfy this equation by xj = bi

aij
. In this case

aij .xj = aij .
bi

aij
= bi.

Hence, associated matrix A∗ provides first simplification. Rather than work
with the system A�X = B, we use A∗, whose elements capture all the properties
of the equations. This reduces the size of the instant and makes easier to solve
the original system.

3.1.2 Step 2. IND vector

We introduce a vector IND = INDm×1 to establish consistency of the system.
We describe how the components of IND depend on A∗. Let we denote by |Gi|
the number of elements a∗ij = G and by |Ei| the number of elements a∗ij = E in
the i−th row of A∗, j = 1, ..., n. Then

IND(i) = |Gi|+ |Ei| (5)

equals the number of elements a∗ij 6= S in the i−th row of A∗. It means that:

i) If a∗ij = S for each j = 1, ..., n then IND(i) = 0. In this case the i−th
equation can not be satisfied and the system is inconsistent.

ii) If a∗ij 6= S for some j = 1, ..., n then IND(i) = |Gi| + |Ei| 6= 0. In this
case the i−th equation can be satisfied by |Gi| + |Ei| different paths. If
IND(i) 6= 0 for each i = 1, ...,m then the system can be either consistent
or inconsistent.

5

Lemma 1 Let the system A�X = B be given. Then we have:

i) If IND(i) = 0 for at least one i = 1, ...,m then the system is inconsistent.

ii) If the system is consistent then the number of its potential minimal solu-
tions does not exceed

PN =
m∏

i=1

IND(i). (6)

Here IND(i) is computed according to (5).

3.1.3 Step 3. Rearrangement of the equations

Two systems are called equivalent [15] if any solution of the first one is a solution
of the second one and vice versa. Any interchange of equations in the system
A�X = B results an equivalent system.

A system A�X = B, in which the equations are rearranged in such a way
that the components of the index vector IND are ranked non-decreasingly, i.e.

IND(1) ≤ IND(2) ≤ . . . ≤ IND(m),

is said to be in a normal form.

4 Solving �−Fuzzy Linear Systems

In this section we follow [23], where a unified and exact method and algorithm
for solving inhomogeneous �−FLSE of the form A�X = B is proposed.

Let the following stipulations be satisfied for inhomogeneous A�X = B:

1. The system A � X = B has coefficient matrix A = (aij)m×n, matrix of
unknowns X = (xj)n×1, and right-hand side B = (bi)m×1 with bi 6= 0 for
each i = 1, ...,m. Hence it has n unknowns and m equations.

2. The associated matrix A∗ for the system A�X = B is obtained.

3. Any coefficient a∗ij = S is called S−type coefficient, any a∗ij = E is called
E−type coefficient and any a∗ij = G is called G−type coefficient.

4. For each j, j = 1, · · · , n, A∗(j) = (a∗ij)m×1 denotes the j−th column of
A∗ and a∗ij denotes the i−th element (1 ≤ i ≤ m) in A∗(j).

Theorem 3 [23] Let the system A�X = B be given.

i) If A∗(j) contains G−type coefficient(s) a∗ij = G and

x̂j =
m

min
i=1

{ bi

aij
}, when aij > bi,

then xj = x̂j implies in (3):

6

• aij . xj = bi for each i, 1 ≤ i ≤ m when bi

aij
= x̂j ,

• aij . xj < bi for each i, 1 ≤ i ≤ m with bi

aij
6= x̂j .

ii) If A∗(j) does not contain any G−type coefficient, but it contains E−type
coefficient(s) a∗kj = E, then x̂j = 1 and xj = x̂j = 1 implies:

• aij . xj = bi for each i, 1 ≤ i ≤ m with a∗ij = E,

• aij . xj < bi for each i, 1 ≤ i ≤ m with a∗ij = S.

iii) If A∗(j) contains neither G− nor E−type coefficient then x̂j = 1 and
xj = x̂j = 1 implies aij . xj < bi for each i, 1 ≤ i ≤ m (a∗ij = S in A∗(j)).

The proof follows from the definition of the associated matrix, its relationship
with the system (3) and expression (4).

Corollary 1 [23] For any consistent system A�X = B,

Xgr = At �B = X̂ = (x̂j)n×1

where x̂j , 1 ≤ j ≤ n, are computed according to Theorem 3.
Corollary 2 [23] If a∗ij = S for each i = 1, ...,m, then x̌j = 0 in any minimal

solution X̌ = (x̌j)n×1 of the consistent system A�X = B.
Corollary 3 [23] If X̌ = (x̌j)n×1 is a minimal solution of the consistent

system A�X = B, then for each j = 1, ..., n either x̌j = 0 or x̌j = x̂j .

4.1 Selected elements

Theorem 3 and its Corollaries 2, 3 prove that all S− type coefficients do not
contribute for solving the system and there may exist redundant coefficients of
type G and E in the system. We propose a selection of all coefficients that
contribute to solve the system. All other coefficients are called non-essential for
solvability procedure and we drop them.

Definition 4 Let the system A � X = B with associated matrix A∗ be
given.

i) If A∗(j) = (a∗ij)m×1 contains G−type coefficient a∗kj = G, such that

bk

akj
=

m
min
i=1,

{ bi

aij
} when aij > bi,

then each G−type coefficient a∗ij in A∗(j) with bi

aij
= bk

akj
is called selected.

ii) If A∗(j) = (a∗ij)m×1 does not contain G−type coefficient, but it contains
E−type coefficient(s), then all E−type coefficients in A∗(j), namely a∗ij =
E when 1 ≤ i ≤ m, are called selected.

iii) If A∗(j) does not contain neither G−, nor E−type coefficient, then there
does not exist selected coefficient in A∗(j).

7

From Theorem 3 we obtain
Corollary 4 [23] Let the system A�X = B be given.

i) It is consistent if and only if for each i, 1 ≤ i ≤ m, there exists at least
one selected coefficient a∗ij , otherwise it is inconsistent.

ii) If the system is consistent then

Xgr = At � B (7)

is its unique maximal (i.e. greatest, or maximum) solution.

iii) The time complexity function for establishing the consistency of the sys-
tem and for computing Xgr is O(mn).

4.2 Help matrix and dominance matrix

Now we propose the next simplification steps.

4.2.1 Step 4. Help matrix

We introduce a help matrix H = (hij)m×n with elements

hij =
{

1 if a∗ij is selected
0 otherwise . (8)

We upgrade the components of the vector IND = INDm×1 to establish the
consistency of the system and to diminish the potential number PN (see (6))
of minimal solutions. Now the i−th component IND(i) of IND equals the
number of selected coefficients in the i−th equation of the system, i.e.

IND(i) =
n∑

j=1

hij . (9)

If there are no selected coefficients in the i−th equation, then IND(i) = 0 and
the system is inconsistent, see Corollary 4 i).

Obviously, now the potential number PN1 of minimal solutions will be di-
minished in comparison with PN , i.e.

PN1 =
m∏

i=1

IND(i) ≤ PN. (10)

4.2.2 Step 5. Dominance matrix

In order to determine the minimal solutions of a �−FLSE, a suitable dominance
relation for the rows of the help matrix H is introduced.

Definition 5 [23] Let hl = (hlj) and hk = (hkj) be the l−th and the k−th
rows, respectively, in the help matrix H. If for each j, 1 ≤ j ≤ n, hlj ≤ hkj ,
then

8

• hl is said to be a dominant row to hk in H.

• hk is redundant row with respect to hl for solving the system (3).

If hk is redundant row with respect to hl for solving (3) it means that:

• k−th equation is automatically satisfied whenever l−th equation is satis-
fied.

• It is meaningless to investigate the k−th equation, because it will not lead
to smaller solution than the l−th equation.

• When we eliminate k−th equation from next consideration we cut re-
dundant branches from the search (they not lead to minimal solutions),
making a more clever choice of the objects over which the search is per-
formed.

Using Definition 5, we introduce a dominance matrix D = (dij) obtained
from H as described below. If the row hl dominates the row hk in H, then in
D:

We preserve all elements of the row hl , i.e. dij = hlj for j = 1, ..., n. This
preserves non-redundant (or essential for solution procedure) equation.

We replace all elements of the row hk by 0, i.e. dkj = 0 for j = 1, ..., n. This
eliminates redundant equations and also removes redundant branches of
the search.

We again upgrade the components of the vector IND,

IND(i) =
n∑

j=1

dij .

Now the i−th component IND(i) equals the number of non-redundant se-
lected coefficients in the i−th equation of the system.

Next, the potential number PN2 of minimal solutions will be diminished in
comparison with PN1 and PN , i.e.

PN2 =
m∏

i=1,IND(i) 6=0

IND(i) ≤ PN1 ≤ PN. (11)

4.3 Finding minimal solutions

From dominance matrix D = (dij) we go to the next simplification. We form a
matrix M = (m∗

ij) indicating non-redundant elements for solving (3). First we
remove all zero rows (redundant equations) and all zero columns (non-essential
coefficients) from D. From the rest, we obtain:

m∗
ij =

{
bi

aij
if h∗ij = 1

0 if h∗ij = 0
(12)

In what follows we work with the matrix M .

9

4.3.1 Algebraic properties

We expand the possible irredundant paths, i.e. different ways to satisfy simulta-
neously equations of the system using the matrix M and the algebraic properties
of the logical sums, as described below.

If the element m∗
ij 6= 0, we symbolize this with

〈
m∗

ij

j

〉
. In this case aij .m∗

ij =
bi and hence x̂j = m∗

ij gives a lower bound to fulfill the i−th equation of the
system; x̌j = x̂j = m∗

ij is the minimum value for the j−th component.
For each i, 1 ≤ i ≤ m, the elements m∗

ij 6= 0 in M mark the potential lower
bounds of different ways, to satisfy the i-th equation of the system, written Mi

and symbolized by the sign
∑

:

Mi =
∑

1≤j≤n

〈
m∗

ij

j

〉
. (13)

We have to consider equations simultaneously, i.e., to compute the concate-
nation W of all ways, symbolized by the sign

∏
:

W =
∏

1≤i≤m

 ∑
1≤j≤n

〈
m∗

ij

j

〉 . (14)

In order to compute complete solution set, it is important to determine
different ways to satisfy simultaneously equations of the system. To achieve
this aim we list the properties of concatenation (14).

Concatenation is distributive with respect to addition, i.e.〈
m∗

i1j1

j1

〉 (〈
m∗

i2j2

j2

〉
+

〈
m∗

i2j3

j3

〉)
=

=
〈

m∗
i1j1

j1

〉 〈
m∗

i2j2

j2

〉
+

〈
m∗

i1j1

j1

〉 〈
m∗

i2j3

j3

〉
. (15)

This analytical expression demonstrates simultaneous satisfaction of both equa-
tions (i1, i2) by selected elements in two different ways – the first way, that
corresponds to the first summand, is by the selected elements m∗

i1j1
and m∗

i2j2
in rows i1, i2 and columns j1, j2, respectively; the second way corresponds to
the second summand and it is formed by the selected elements m∗

i1j1
,m∗

i2j3
.

Concatenation is commutative:〈
m∗

i1j1

j1

〉 〈
m∗

i2j2

j2

〉
=

〈
m∗

i2j2

j2

〉 〈
m∗

i1j1

j1

〉
. (16)

This provides the validity of Step 3 – rearrangement of equations in the�−FLSE.
The next property is called absorption for multiplication:〈

m∗
i1j1

j1

〉 〈
m∗

i2j1

j1

〉
=

〈
m∗

i1j1

j1

〉
(17)

10

Expression (17) gives the lower solution for simultaneous satisfying of two
different equations i1 and i2, when selected coefficients belong to the same col-
umn j1. Hence, expanding along the non-zero elements in the the i−th row,
we automatically satisfy all equations in the system, having the same m∗

ij . It
is clear that this property reduces the number of the ways that have to be
investigated.

We apply (15), (16), (17) to expand the parentheses in (14). We obtain the
set of ways, from which we extract the minimal solutions:

W =
∑

(j1,···,jm)

〈
m∗

i1j1

j1

〉 〈
m∗

i2j2

j2

〉
· · ·

〈
m∗

imjm

jm

〉
. (18)

We simplify (18) according to the next described absorption for addition
(missing

〈
m∗

ij

j

〉
are supposed to be

〈
0
j

〉
):〈

m∗
i1j1

j1

〉
· · ·

〈
m∗

imjm

jm

〉
+

〈
m∗

s1j1

j1

〉
· · ·

〈
m∗

smjm

jm

〉
=

=


〈

m∗
i1j1
j1

〉
· · ·

〈
m∗

imjm

jm

〉
, if m∗

itjt
≤ m∗

stjt
for t = 1, · · · ,m

unchanged, otherwise
. (19)

From two compatible point solutions with respect to the relation ≤, expres-
sion (19) selects the smaller, because complete solution set X0 is a poset [6].

Property (19) provides reduction of the number of terms in (18) that we
investigate to obtain lower solutions. In particular,〈

m∗
i1j1

j1

〉
.

〈
m∗

i2j2

j2

〉
+

〈
m∗

i1j1

j1

〉
.

〈
m∗

i2j2

j2

〉
=

〈
m∗

i1j1

j1

〉
.

〈
m∗

i2j2

j2

〉
. (20)

A property called combined absorption follows from (17), (19) and (20):〈
m∗

i1j1

j1

〉 [〈
m∗

i2j1

j1

〉
+

〈
m∗

i2j2

j2

〉]
=

=
〈

m∗
i1j1

j1

〉 〈
m∗

i2j2

j1

〉
+

〈
m∗

i1j1

j1

〉 〈
m∗

i2j2

j2

〉
=

〈
m∗

i1j1

j1

〉
. (21)

After simplifying (18) according to (19) – (21) any term〈
m∗

i1j1

j1

〉 〈
m∗

i2j2

j2

〉
· · ·

〈
m∗

imjm

jm

〉
determines a minimal solution X̌ = (x̌j), with components (obtained after ex-
panding brackets in (14) by rules (15) – (22)), see also Corollary 3:

x̌jt =
{

m∗
itjt

= x̂jt
if m∗

itjt
6= 0 in (18)

0 otherwise (22)

Corollary 3 [23] For any consistent �−FLSE the minimal solutions are
computable and the set of all its minimal solutions is finite.

11

4.3.2 Method based on expansion along the non-zero elements of M

The proposed formalism in 4.3.1 provides the next quite simple method based
on expansion along the non-zero elements of the row in M .

1. Take the non-zero elements of i−th row (for i = 1, ...,m) of M and form
the sum Mi, see (13).

2. Expand M : From each element m∗
ij 6= 0 in Mi we form a summand,

consisting of
〈

m∗
ij

j

〉
, multiplied by a submatrix Mij of M ; Mij is obtained

as follows: we delete in M the i−th row and the j−th column, see (17), as
well as all rows with the same m∗

ij 6= 0 - they are automatically satisfied,
see (20). From the resulting submatrix we remove redundant rows, zero
rows and zero columns.

3. If i > m – stop, otherwise take the next i.

4.4 The algorithm

Conventional reasoning to solve �−FLSE leads to combinatorial problem [16].
Using the theoretical background from Sections 3 and 4, we devise algorithm
that computes maximal and all minimal solutions (without listing duplications
of minimal solutions or non-minimal solutions) and that is smaller time con-
suming in comparison with the algorithms given in [9], [12], [13], [14], [16].

Algorithm [23] for solving A�X = B.

1. Enter the matrices Am×n and Bm×1.

2. Compute A∗ = (a∗ij) with a∗ij according to (4).

3. Compute H, IND, Xgr.

4. Transform the system in normal form.

5. If IND(i) = 0 for some i = 1, · · · , m, then the system is inconsistent and
the equation(s) with IND(i) = 0 can not be satisfied simultaneously with
the other equation(s) (that have IND(i) 6= 0) in the system.

Go to Step 10.

6. If IND(i) = 1 for each i = 1, ..., m, the system is consistent with unique:
maximum solution, minimum solution (expression (22)) and maximal in-
terval solution; Xgr contains the maximum solution; Xlow is determined
according expression (22); Xmax is determined by Xlow on the left and by
Xgr on the right.

Go to Step 10.

7. Compute the dominance matrix D = (dij)m×n as described in 4.2.2.

12

8. Compute the matrix M with elements computed by (12). Expand M
along non-zero elements by rows as given in 4.3.2. Simplify W according
to algebraic properties in 4.3.1.

9. The system is consistent, Xgr contains the maximum solution. Determine
the minimal solutions according to expressions (14) – (22). Obtain the
maximal interval solutions by minimal solutions and by maximum solu-
tion.

10. End.

The algorithm for solving �−FLSE is provided by Theorem 3 and its Corol-
laries, algebraic-logic properties of the terms as described in Section 4.3 and
expansion along M . Based on simplifications, help and dominance matrices, as
well as the matrix M , the algorithm has smaller computational complexity in
comparison with the algorithms proposed in [9], [12], [13], [14], [16].

Theorem 5

If the system is consistent the maximum solution, the minimal solutions and
the maximal interval solutions are computable.

For inconsistent system we can determine the equations that can not be satisfied
by At �B.

By this theoretical background in MATLAB workspace we develop software
for computing the complete solution set or for establishing inconsistency of the
system A�X = B.

5 Algorithm for finding optimal solution

The aim is to solve the optimization problem - to minimize the linear objective
function

Z =
m∑

i=1

cixi (23)

subject to constrains - a fuzzy linear system of equations with max− product
composition

A�X = B, 0 ≤ xi ≤ 1, 1 ≤ i ≤ n (24)

where A stands for the matrix of coefficients, X = (xi)n×1 stands for the ma-
trix of unknowns, B is the right-hand side of the system, the max− product
composition is written as � and c = (c1, ..., cm) is the weight (cost) vector. The
aim is to minimize Z subject to constrains (2).

We apply the algorithm and software from [23] for computing the greatest
solution and all minimal solutions of the consistent system A � X = B. Then
we solve the linear optimization problem, first decomposing (1) into two vectors
with suitable components Z ′ = (c′1, c

′
2, ..., c

′
n) and Z ′′ = (c′′1 , c′′2 , ..., c′′n), such

that:

13

ci = c′i + c′′i , for each i = 1, ..., n, Z = Z ′ + Z ′′,

c′i =
{

ci, if ci ≥ 0,
0, if ci < 0 . (25)

c′′i =
{

0, if ci ≥ 0,
ci, if ci < 0 . (26)

Now the original ploblem: to minimize Z subject of constrains (2), is split
into two problems. To minimize both

Z ′ =
m∑

i=1

c′ixi (27)

and

Z ′′ =
m∑

i=1

c′′i xi (28)

with constrains (2).
Z takes its minimum when Z ′ takes its minimum and Z ′′ takes its maximum.

Hence for the problem (28) the optimal solution is X̂ = (x̂1, ..., x̂n) = Xgr, for
the problem (27) the optimal solution X̆ = (x̆1, ..., x̆n) is among the minimal
solutions of the system (2). In this case the optimal solution of the problem (1)
is X∗ = (x∗1, ..., x

∗
n), where

x∗i =
{

x̂∗i , if ci ≤ 0
x̆∗i , if ci > 0,

. (29)

If the aim is to maximize the linear objective function (1), we again split
it, but now for the problem (28) the optimal solution is among the minimal
solutions of the system (2), for the problem (27) the optimal solution is Xgr. In
tis case the optimal solution of the problem (1) is X∗ = (x∗1, ..., x

∗
n), where

x∗i =
{

x̆∗i , if ci ≤ 0
x̂∗i , if ci > 0,

. (30)

In any of these cases the optimal value is

Z∗ =
n∑

i=1

cix
∗
i (31)

The algorithm for finding optimal solutions is based on the above results.
Algorithm for finding optimal solutions.

1. Enter the matrices Am×n, Bm×1 and the weight vector C1×n.

2. Solve the system. If the system is inconsistent go to step 8.

14

3. Otherwise compute Xgr and all minimal solutions according to expressions
(14) – (22).

4. If finding Zmax go to Step 6.

5. For finding Zmin compute x∗i , i = 1, ..., n according to (29). Go to Step 7.

6. For finding Zmax compute x∗i , i = 1, ..., n according to (30).

7. Compute the optimal value according to (31).

8. End.

Example [13]. Minimize

Z = −4x1 + 3x2 + 2x3 + 3x4 + 5x5 + 2x6 + x7 + 2x8 + 5x9 + 6x10

subject to

A�X = B, 0 ≤ xi ≤ 1, 1 ≤ i ≤ 10, (32)

where
A = 0.6 0.5 0.1 0.1 0.3 0.8 0.4 0.6 0.2 0.1 0.2 0.6 0.9 0.6 0.8 0.4 0.5 0.3 0.5 0.3
0.5 0.9 0.4 0.2 0.8 0.1 0.4 0.4 0.7 0.6 0.3 0.5 0.7 0.5 0.8 0.1 0.8 0.3 0.4 0.6 0.7 0.8
0.5 0.4 0.8 0.2 0.4 0.1 0.9 0.6 0.5 0.9 0.7 0.1 0.5 0.8 0.7 0.2 0.9 0.4 0.2 0.3 0.4 0.7
0.5 0.8 0.3 0.5 0.7 0.4 0.8 0.8 0.7 0.5 0.8 0.3 0.4 0.7 0.2 0.8
B’ = 0.48 0.56 0.72 0.56 0.64 0.72 0.42 0.64

The system is consistent with
greatest Solution - transposed
ans = 0.8000 0.8000 0.6222 0.6000 0.7000 0.5250 0.7000 0.8000 0.6000 0.8000
minimal Solutions - transposed
ans = 0.8000 0.8000 0.6222 0.6000 0 0 0.7000 0 0 0 0.8000 0.8000 0.6222 0 0

0.5250 0.7000 0 0 0 0.8000 0.8000 0.6222 0 0 0 0.7000 0 0.6000 0 0.8000 0.8000
0 0.6000 0.7000 0 0 0 0 0 0.8000 0.8000 0 0 0.7000 0.5250 0 0 0 0 0.8000 0.8000
0 0 0.7000 0 0 0 0.6000 0 0 0.8000 0.6222 0.6000 0 0 0.7000 0.8000 0 0 0 0.8000
0.6222 0 0 0.5250 0.7000 0.8000 0 0 0 0.8000 0.6222 0 0 0 0.7000 0.8000 0.6000
0 0 0.8000 0 0.6000 0.7000 0 0 0.8000 0 0 0 0.8000 0 0 0.7000 0.5250 0 0.8000 0
0 0 0.8000 0 0 0.7000 0 0 0.8000 0.6000 0

6 Software description and some experimental
results

We develop software, based on this method and algorithm in MATLAB workspace.
The algebraic - logical approach and matrix based approach are programmed

as alternative programming techniques. The algebraic-logical approach uses the
MATLAB library published in [22] and free available under General Public
License for construction and operation with terms. This approach has two ad-
vantages – to operate only with essential (non-zero) elements of the matrix, not

15

wasting computational time for checking duplicated or non-minimal solutions
(see absorptions in 4.3.1), so directly whole branches of redundant solutions are
cut.

The matrix approach is based on the operation with and within matrices,
without building new structures. Applying dominance rules before each new
sub-step can speed up the calculation process, and thus the method seems to
be preferable for larger systems.

Theoretically both methods are equivalent. Which one is faster depends on
the properties of the instant. A comparison between computational times at
this moment is not suitable, because the MATLAB Environment has a set of
pre-compiled functions for matrix operations, which are very fast. In contrast,
our MATLAB Library with implementation of the algebraic - logical approach
is currently used as not compiled set of functions, which are working slower.

We include some prints from MATLAB session. For the above Example they
confirm the same results as these in Markovskii [16]:

Help matrix:
0.0000 0.5000 0.0000 0.0000 0.2500 0.0000
0.0000 0.5000 1.0000 0.0000 0.0000 0.0000
0.3000 0.5000 1.0000 0.5000 0.0000 0.0000
0.0000 0.0000 0.0000 0.5000 0.2500 0.0000
0.0000 0.0000 1.0000 0.0000 0.2500 0.0000
0.3000 0.5000 0.0000 0.0000 0.2500 0.0000

Greatest Solution transposed =
0.3000 0.5000 1.0000 0.5000 0.2500 1.0000

Dominance matrix initial
0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
0.0000 1.0000 1.0000 0.0000 0.0000 0.0000
1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 1.0000 0.0000
0.0000 0.0000 1.0000 0.0000 1.0000 0.0000
1.0000 1.0000 0.0000 0.0000 1.0000 0.0000

Significant rows from the dominance matrix
0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
0.0000 1.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 1.0000 0.0000
0.0000 0.0000 1.0000 0.0000 1.0000 0.0000
1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

Minimal Solutions - transposed
0 0.5000 1.0000 0.5000 0 0
0 0.5000 0 0 0.2500 0
0 0 1.0000 0 0.2500 0

16

Short solution summary: s =
exists: 1

low: [3x6 double]
sol_numb: 3

Xgr: [0.3000 0.5000 1 0.5000 0.2500 1]
Ind: [5x1 double]
hlp: [6x6 double]
A: [6x6 double]
B: [6x1 double]
d: [5x6 double]

The presented structure consists information about the input matrix and
data from different solution steps. More detailed solution summary is also avail-
able, where also solution times for the different routines are saved.

The next example is for a consistent system with three minimal solutions,
while following the procedure in [12] we should obtain 18 solutions - the proce-
dure yield to some non-minimal solutions as well.

A=

0.5600 0.6000 0.2000 0.4000 0.2000 0.7000 0.7000 0.5000

0.4200 0.3000 0.7000 0.6000 0.1000 0.3000 0.5000 0.3000

0.5000 0.8000 0.7000 0.4000 0.7000 0.8000 0.3000 0.8000

0.2000 0.4000 0.5000 0.1000 0.3000 0.5000 0.8000 0.4000

0.4200 0.2000 0.5000 0.5000 0.1000 0.4000 0.7000 0.2000

0.7200 0.9000 0.8000 0.2000 0.8000 0.6000 0.1000 0.4000

B =

0.5600

0.4200

0.6400

0.4000

0.4200

0.7200

Greatest Solution transposed =

1.0000 0.8000 0.6000 0.7000 0.9000 0.8000 0.5000 0.8000

Minimal Solutions - transposed

1.0000 0.8000 0 0 0 0 0.5000 0

1.0000 0 0 0 0 0.8000 0 0

1.0000 0 0 0 0 0 0.5000 0.8000

7 Conclusions

In this paper we develop exact method and universal algorithm for solving
max−product fuzzy linear systems of equations and max−product fuzzy rela-
tional equations.

Various applications of inverse problem for max−product composition in
finite fuzzy machines, as inference engine, for fuzzy modeling, for some opti-
mization problems, are possible. They will be a subject of next publications.

17

References

[1] A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley Publ. Co., London, 1976.

[2] L. Cheng and P. Wang, Fuzzy Relational Equations (I): the general and
specialized solving algorithms, Soft Computing 6 (2002) 428-435.

[3] M. M. Bourke and D. G. Fisher, Solution algorithms for fuzzy relational
equations with max-product composition, Fuzzy Sets and Systems 94
(1998) 61-69.

[4] B. De Baets, Analytical solution methods for fuzzy relational equations,
in the series: Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets
Series, D. Dubois and H. Prade (eds.), Vol. 1, Kluwer Academic Publishers
(2000) 291-340.

[5] A. Di Nola, A. Lettieri, Relation Equations in Residuated Lattices, Rendi-
conti del Circolo Matematico di Palermo, s. II, XXXVIII (1989), pp.246-
256.

[6] A. Di Nola, W. Pedrycz, S. Sessa and E. Sanchez, Fuzzy Relation Equations
and Their Application to Knowledge Engineering, Kluwer Academic Press,
Dordrecht, 1989.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to
the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[8] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin, 1978.

[9] S. M. Guu and Y.-K. Wu, Minimizing a linear objective function with fuzzy
relation equation constraints, Fuzzy Optimization and Decision Making 4
(1) (2002) 347-360.

[10] M. Higashi and G. J. Klir, Resolution of finite fuzzy relation equations,
Fuzzy Sets and Systems 13 (1) (1984) 65 - 82.

[11] G. Klir, U. H. St. Clair and Y. Bo, Fuzzy Set Theory Foundations and
Applications, Prentice Hall PRT, 1997.

[12] J. Loetamonphong and S.-C. Fang, An efficient solution procedure for fuzzy
relational equations with max-product composition, IEEE Transactions on
Fuzzy Systems 7 (4) (1999) 441–445.

[13] J. Loetamonphong and S.-C. Fang, Optimization of fuzzy relation equations
with max-product composition, Fuzzy Sets and Systems 118 (3) (2001)
509–517.

[14] J. Loetamonphong, S.-C. Fang and R. E. Young, Multi-objective optimiza-
tion problems with fuzzy relation equation consrtaints, Fuzzy Sets and
Systems 127 (3) (2002) 141–164.

18

[15] S. MacLane, G. Birkhoff, Algebra, Macmillan, New York, 1979.

[16] A. V. Markovskii, On the relation between equations with max−product
composition and the covering problem, Fuzzy Sets and Systems 153 (2005)
261-273.

[17] M. Miyakoshi and M. Shimbo, Lower solutions of systems of fuzzy equa-
tions, Fuzzy Sets and Systems 19 (1986) 37-46.

[18] C. P. Pappis and M. Sugeno, Fuzzy relational equations and the inverse
problem, Fuzzy Sets and Systems 15 (1985) 79 - 90.

[19] K. Peeva, Fuzzy linear systems, Fuzzy Sets and Systems 49 (1992) 339 -
355.

[20] K. Peeva, Fuzzy linear systems – Theory and applications in Artificial In-
telligence areas, DSc Thesis, Sofia (2002), pp. 239 (in Bulgarian).

[21] K. Peeva, Universal algorithm for solving fuzzy relational equations, Italian
Journal of Pure and Applied Mathematics 19 (2006) 9-20.

[22] K. Peeva and Y. Kyosev, Fuzzy Relational Calculus-Theory, Ap-
plications and Software (with CD-ROM), In the series Advances
in Fuzzy Systems - Applications and Theory, Vol. 22, World Sci-
entific Publishing Company, 2004, Software downloadable from
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=6214

[23] K. Peeva and Y. Kyosev, Algorithm for Solving Max-product Fuzzy Rela-
tional Equations, Soft Computing (in press)

[24] E. Sanchez, Resolution of composite fuzzy relation equations, Information
and Control 30 (1976) 38-48.

19

