
Copyright 2013 by Technical University - Sofia, Plovdiv branch, Bulgaria. ISSN 1310 - 8271

Journal of the Technical University – Sofia

Plovdiv branch, Bulgaria

“Fundamental Sciences and Applications” Vol. 19, 2013

International Conference Engineering, Technologies and System

TECHSYS 2013

BULGARIA

ИЗСЛЕДВАНЕ ЕФЕКТИВНОСТТА НА

ГЕНЕТИЧНИТЕ АЛГОРИТМИ ПРИ

ОПТИМИЗИРАНЕ НА ТЪРСЕНЕТО НА НАЙ-

ДОБРА КОМПЮТЪРНА КОНФИГУРАЦИЯ

ДИЛЯНА БУДАКОВА

Резюме: Целта на тази статия е да се изследва ефективността на генетичен

алгоритъм за оптимизиране избора на компютърни компоненти (CPU, HDD, Mother

Board, RAM, Video Card and Mark) за конструиране на най-добра компютърна

конфигурация. Предложен е модел, подходящ за симулиране на еволюция. Разработена е

програмна система, която използва този модел. Проведените експерименти с

разработената програмна система доказват ефективността от прилагането на

генетичните алгоритми за решаването на задачи от този клас.

Ключови думи: генетични алгоритми, оптимизация, методи за търсене, машинно обучение,

компютърни конфигурации

INVESTIGATION OF THE EFFICIENCY OF

GENETIC ALGORITHMS IN OPTIMIZING THE

SEARCH FOR THE BEST QUALITY COMPUTER

CONFIGURATION

DILYANA BUDAKOVA

Abstract: The aim of this paper is to investigate the efficiency of using a genetic algorithm in

optimizing the selection of computer components (CPU, HDD, Mother Board, RAM, Video Card

and Mark) for constructing the best quality computer configuration. A model, appropriate for

simulation of evolution has been proposed. A software system, based on this model, has been

developed. The experiments, conducted with the developed software system, confirm the

efficiency of implementation of genetic algorithms for solving problems of this order.

Key words: genetic algorithms, optimization, search methods, machine learning, computer

configuration

1. Introduction

Genetic algorithms (GAs), introduced by

Holland in 1975 [4], are inspired by natural

evolution and the magnum opus „The Origin of

Species“, published in 1859 by Charles Darwin.

They are search methods based on the evolutionary

concept of natural mutation and the survival of the

fittest individuals. Given a well-defined search

space they apply three different genetic search

operations, namely, selection, crossover, and

mutation, to transform an initial population of

chromosomes, with the objective to improve their

quality.

Experimental analysis illustrated that the

GAs design constantly outperforms the greedy

method in terms of solution quality.

GAs have been used for problem-solving

and for modeling[9]. GAs are applied to many

scientific, engineering problems, in business and

entertainment, including [2,3,6,9]:

Optimization: numerical optimization,

combinatorial optimization problems such as

traveling salesman problem (TSP).

Machine and robot learning: including

classification and prediction, and protein structure

prediction. GAs have also been used to design

neural networks, to evolve rules for learning

classifier systems or symbolic production systems,

and to design and control robots.

Economic models. Immune system

models. Ecological models: GAs have been used to

model ecological phenomena such as biological

arms races, host-parasite co-evolutions, symbiosis

and resource flow in ecologies.

Models of social systems: GAs have been

used to study evolutionary aspects of social

systems, such as the evolution of cooperation [2],

the evolution of communication, and trail-following

behaviour in ants.

In this paper the efficiency of a genetic

algorithm in optimizing the selection of computer

components (CPU, HDD, Mother Board, RAM,

Video Card and Mark) for constructing the best

quality computer configuration is under

investigation. A model, suitable for evolution

simulation is proposed. A programming system,

using this model, is developed. The experiments,

conducted with the developed programming system

the efficiency of genetic algorithms in solving

problems of this order.

2. Examples of evolution simulation

In GAs the following specifications are

adhered [7]: A chromosome is a representation in

which: There is a list of elements called genes. The

chromosome determines the overall fitness

manifested by some mechanism that uses the

chromosome’s genes as a sort of blueprint.

Create a chromosome from a given list of

elements – in this case the constructor might be

called the genesis constructor. The multiplicity of

candidate solutions, processed by the genetic

algorithms at each step is called population. Mutate

one or more genes in one or more of the current

chromosomes, producing one new offspring for

each chromosome mutated. Mate one or more pairs

of chromosomes. Add the mutated and offspring

chromosomes to the current population.

Create a new generation by keeping the best

of the current population’s chromosomes, along

with other chromosomes selected randomly from

the current population. Bias the random selection

according to assessed fitness.

Here we have a number of exemplary

models, used for evolution simulation in accordance

with this terminology.

The model, developed for solving the

traveling salesman problem (TSP) with the help of

a genetic algorithm is of special interest. This is a

typical optimization problem, aimed at finding a

Hamilton cycle with minimum length at a given

weighed complete graph G(V,E) with weight of the

edges real (positive) numbers. It is NP-complete

and in solving it by full running of a complete graph

with n vertices, n! Hamilton cycles must be

checked, which is unacceptable for big graphs with

more than 50 vertices.

For solving this problem with GAs [1][9] an

initial population with arbitrary Hamilton cycles –

chromosomes, as well as with genes – the vertices

of the graph under consideration, is built. They are

stored as permutations of the numbers from 1 to n,

according to the order in which the vertices are

visited in any Hamilton cycle. Population

development is guided by the objective function, by

which only a number of the generated Hamilton

cycles with the smallest length survive to the next

generation, and those with greater length drop out.

The genetic algorithm builds a Hamilton cycle with

optimal or close to the optimal length for only a few

steps, avoiding the necessity of considering all

solutions [1][9].

In http://www.boxcar2d.com/index.html [8]

a model is developed with the terms of GAs, aiming

at evolution simulation in order to study a

programming system for constructing high quality

2D cars.

Each car is a set of 8 randomly chosen

vectors: direction and magnitude. All the vectors

radiate from a central point (0,0) and are connected

with triangles. For each wheel it randomly chooses

a vertex to put the axle on, and picks an axle angle

from 0 to 2 pi.

For the purposes of GAs the following

model is developed [8]. Each car represents one

chromosome and has 22 variables such as: vertex,

axle angle, and radius, each represented as a real

number (or integer) with varying ranges. For the

selection process two algorithms are

implemented: Roulette-Wheel Selection and

Tournament Selection. The authors use two point

crossover, which means two random points along

the chromosome are selected and everything in

between is swapped. In addition to the crossover, in

each generation the chromosomes go through

http://www.boxcar2d.com/index.html

Copyright 2013 by Technical University - Sofia, Plovdiv branch, Bulgaria. ISSN 1310 - 8271

mutation. This means there is a probability that each

aspect of the car (or variable in the chromosome)

will change, as determined by the mutation rate

slider set by the user. When a variable mutates, a

new value is randomly chosen in the desired

range.[8]

Another example is the model developed

for solving the problem of minimizing network

traffic for fast dissemination and access of

information in large distributed systems, such as the

Internet with GAs [5]. The decision of what to

replicate where, requires solving a constraint

optimization problem, which is NP-complete in

general. The replication in large static distributed

systems is considered and it is aimed at finding the

appropriate allocation of the replicas in the

distributed system so that the network traffic is

minimized. The developed in [5] Genetic

replication algorithm (GRA) and Adaptive GRA are

a good example. In their model [5] a chromosome

encoding a replication scheme is a bitstring

consisting of M genes (one for each site). Every

gene is composed of N bits (one for each object). A

1 value in the kth bit of the ith gene, denotes that ith

site holds a replica of kth object, otherwise it is 0.

Using this encoding the total length of a

chromosome is MN bits. [5] The main merits of

using a genetic algorithm approach in the dynamic

case lies in the proposed adaptive GA that uses

existing knowledge about replica distribution in

order to quickly define a new scheme.[5].

Fig. 1. A chromosome in the computer configuration world consists of six numbers, which act as gene

analogs. They determine quality(from 1 to 5) of CPU, HDD, Mark, Memory, Mother Board, and Video Card

to use.

…

Fig.2 A chromosome undergoing a series of mutations, each of which changes genes by adding or

subtracting 1. The original chromosome is 1-3-3-5-4-2 chromosome which produces a computer

configuration of quality 18. The final chromosome is a 5-5-4-5-4-4 chromosome, yielding a quality 27

computer configuration.

http://academic.research.microsoft.com/Keyword/7568/constraint-optimization
http://academic.research.microsoft.com/Keyword/7568/constraint-optimization

3. Model and procedures constructing

The design of the chromosome (or

individual) is probably the most important step in

making a successful genetic algorithm.

In the computer configuration world each

computer configuration is an “individual”. The

chromosome consists of six “genes” each of which

is a data structure with a number, quality from 1 to

5, description and a picture (Fig.1) The genes are as

it follows: CPU, HDD, Mother Board, RAM, Video

Card and Mark. The quality of the computer

configuration ranges from 5 to 30.

The fitness of a chromosome is the

probability that the chromosome survives to the

next generation. Accordingly a formula is required

to relate the fitness of the ith chromosome, fi, a

probability ranging from 0 to 1 to the quality of the

corresponding computer configuration, qi, a number

ranging from 5 to 30. The following formula, in

which the sum is over all candidates, is one

possibility[7]:

∑
 (1)

An example of calculated quality and

fitness of the individuals from one population by ten

computer configurations is given in Table 1.

Table 1

The fitness of a ten chromosome population
N: CHROMOSOMES QUALITY STANDARD

FITNESS

1 1-3-3-5-4-2 18 0.08

2 2-5-5-3-4-5 24 0.11

3 5-5-4-5-4-4 27 0.13

4 3-4-5-1-1-1 15 0.07

5 3-3-3-2-4-5 20 0.09

6 4-5-2-2-3-4 20 0.09

7 5-5-3-2-5-5 25 0.12

8 5-2-3-4-4-5 23 0.11

9 1-1-4-4-5-4 19 0.09

10 4-3-2-5-5-5 24 0.11

Only half of the most adapted individuals

survive to the next generation (computer

configurations – CC). As it is seen from Table 1,

these are the CCs with numbers 2,3,7,8, and 10.

These are the CCs which will participate in

mutation and crossover for obtaining new CCs,

whose quality will be evaluated again etc. up to

reaching the best quality CC.

Fig. 2 shows the process of mutation. A

chromosome is undergoing a series of mutations,

each of which changes genes by adding or

subtracting 1. The original chromosome is 1-3-3-5-

4-2 chromosome, which produces a quality 18

computer configuration. The final chromosome is a

5-5-4-5-4-4 chromosome, yielding a quality 27

computer configuration.

In Fig. 3 two chromosomes are undergoing

crossover, each of which is cut in the 2,4, and 6

genes and reattached to the other chromosome. One

of the original chromosomes is a 2-5-1-5-4-5

chromosome and the other is a 5-2-4-1-5-2

chromosome. One of the two new chromosomes is a

5-5-4-5-5-4 chromosome, which yields quality 28

computer configuration.

For the work of the GAs a number of basic

functions of the programming system are developed

in order to realize the following possibilities:

- function for random computer

configuration creation

- function for selection of the 5 or 10 or 15

of the best generated computer configurations of the

generating population.

- function for viewing the best generated

computer configuration

- function for realization of the mutation of

the selected genes. The step of mutation is +1 or -1.

- funciton for realization of the crossbreed

of the genes of the chromosomes.

- function for realization of the crossbreed

between 1-2-3 genes from one of the chromosomes

and 4-5-6 genes from another chromosome.

- function for realization of the crossbreed

between 2-4-6 genes from one of the chromosomes

and 1-3-5 genes from another chromosome

The software system is implemented using

Visual Studio .NET, ASP.NET - server- side Web

application framework designed for Web

development to produce dynamic Web pages;

AJAX (Asynchronous JavaScript and XML) - a

group of interrelated web development techniques

used on the client-side to create asynchronous web

applications and the programming language C#.

 A number of experiments are conducted

with the help of this system and the results from

them will be presented in the next section.

3. The experimental results

Genetic algorithms generally involve many

choices [7]:

How many chromosomes are to be in the

population? If the number is too low, all

chromosomes will soon have identical traits and

crossover will do nothing; if the number is too high

computation time will be unnecessarily excessive.

Copyright 2013 by Technical University - Sofia, Plovdiv branch, Bulgaria. ISSN 1310 - 8271

Fig. 3. Two chromosomes undergoing crossover,

each of which is cut in the 2,4, and 6 gene and

reattached to the other chromosome. One of the

original chromosomes is a 2-5-1-5-4-5 chromosome

and the other is a 5-2-4-1-5-2 chromosome. One of

the two new chromosomes is a 5-5-4-5-5-4

chromosome, which yields quality 28 computer

configuration.

What is the mutation rate? If the rate is too

low, new traits will appear too slowly in the

population; if the rate is too high, each generation

will be unrelated to the previous generation.

Is mating allowed? If so, how are mating

pairs selected, and how are crossover points

determined?

Can any chromosome appear more than

once in a population?

Based on these questions, a number of

experiments are conducted to investigate the

efficiency of the developed model:

- The search for the best quality computer

configuration is realized by creating populations

with different number of individuals, e.g. 10, 20 or

30 CC.

- The mechanisms of mutation and crossover

are used in some of the experiments, while in others

only mutation or only crossover is implemented.

Then the procedures for quality assessment and

natural selection are applied.

- When implementing crossover, experiments

are conducted in which different positions for

cutting the chromosomes are chosen, e.g. after the

2nd and the 4th gene or after the 1st, 3rd and 5th

gene or after the 3
rd

 one. It is investigated how the

different choices influence finding the best solution.

The results show that, when crossover is

used along with mutation, the best quality computer

configuration is found much faster.

The small number of individuals in one

generation and the use of only crossover (with no

mutations) quickly leads to obtaining repeating

individuals and cannot result in achieving the best

solution.

The mutation leads to obtaining new genes,

not seen before and correspondingly to appearance

of new individuals with new quality. Therefore, the

use of mutation is compulsory. For solving the

problem in which it is impossible to achieve a

generation with zero quality (0) and when there will

be no surviving CCs to the next generation, the use

of only mutation (with no crossover) and selection

is sufficient for obtaining the best solution.

The efficiency of using GAs can be

illustrated by calculating the total number of CCs,

which can be built in solving the problem with full

running,

In the model considered here 6 components

are used for building a computer configuration, and

copies from each component with quality 1, 2, 3, 4

and 5; then 15625 computer confirgurations can be

made out of these components. These are all

variations with repetition
 of n=5 elements of

k=6 class

 (2)

variations with repetition.

In order to obtain the best quality computer

configuration with the help of the genetic algorithm

it is enough to build 50-100 computer

configurations.

The genetic algorithm is efficient for

building qualitative computer configurations

because without building all 15625 computer

configurations we manage to quickly build the best

and approximately the most qualitative one.

4. Conclusion

The efficiency of using a genetic algorithm

in optimizing the selection of computer components

(CPU, HDD, Mother Board, RAM, Video Card and

Mark) for building the best quality computer

configuration is investigated in this paper.

 A model is proposed, in which the

computer components are analogues to the genes,

and the computer configurations themselves are the

analogue to the chromosomes. All genes can have

5 5 4

1 4 2 2 2 1

5 5 5

5 2 4 1 5 2 1

9

2 5 1 5 4 5 2

2

Quality 12

5 5 4 5 5 4

1 4 2 2 2 1

Quality 28

quality from 1 to 5 and, consequently, the quality of

the computer configurations can vary from 5 to 30.

 A formula for quality assessment of each

computer configuration is suggested.

Procedures, analogous to mutation,

crossover and natural selection are developed. By

means of them and based on the quality assessment,

the process of evolution is modeled and the best

solution is searched for.

The experiments, conducted with the

developed software system confirm the efficiency

and the benefits from implementing genetic

algorithms for solving this type of problems.

The results from the conducted experiments

show that the GAs are efficient in solving this type

of problems and allow for avoiding a great number

of poor quality computer configurations.

The results also show that when along with

mutation crossover is also used, the best quality

computer configuration is found much faster.

On the one hand, the small number of

individuals in one generation and the use of only

crossover (with no mutation) quickly lead to

appearance of repeating individuals and cannot

result in the best solution. On the other hand, the

mutation leads to new genes, not seen before, and,

consequently, to appearance of new individuals

with new quality. Therefore, the use of mutation is

required.

The efficiency of implementation of genetic

algorithms is also confirmed by the fact that without

being needed to go through full running (i.e.,

through building all 15645 computer

configurations), it is sufficient to build only 5-6

generations of computer configurations with 10,20

or 30 individuals in order to find the best quality

computer configuration.

References

1. Nakov,Pr., P. Dobrikov, Programming =

++Algorithms, TopTeam Co., ISBN: 954-8905-06-

X, 2003,

2. Chughtai M., Determining Economic Equilibria

using Genetic Algorithms, published by Imperial

College – theses, September 1995

3. Goldstein M. Jonathan, Genetic Algorithm

Simulation of the SHOP Scheduling Problem,

published by An ICMS/Shell Oil Business

Consultancy; Central Library of Imperial College (4

Management Thesis) – theses, September 1991

4. Holland J.H., Adaptation in natural and artificial

systems, University of Michigan Press, Ann Arbor,

MI, 1975.

5. Loukopoulos Thanasis, Ishfaq Ahmad, Static

and adaptive distributed data replication using

genetic algorithms, Journal of parallel and

distributed computing; Elsevier, 0743-7315, 2004.

6. Schultz C. Alan, Learning Robot Behaviours

using Genetic Algorithms , by. Navy Center for

Applied Research in Artificial Intellignece. Central

Library of Imperial, Obtained : web page - theses

College, 2 Info. Desk MSc 1995.

7. Winston P., Artificial Intelligence, Addison-

Wesley, 1992

8. http://www.boxcar2d.com/index.html

9. http://www.doc.ic.ac.uk/~nd/surprise_96/journal/

vol4/tcw2/report.html#TSP

Department of Computer Systems and

 Technologies

Technical University–Sofia, Branch Plovdiv

25 Tsanko Dystabanov St.

4000 Plovdiv

BULGARIA

E-mail: dilyana_budakova@yahoo.com

Submitted on ………………

Reviewer ……………………………..

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/
mailto:dilyana_budakova@yahoo.com

