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Original scientific article 
Abstract: The presented paper deals with simulation research of the probability density function of 
geometrical characteristics for main girder of one bridge crane. The bridge crane is represented 
through idealized calculation model of main girder witch is sheet material thickness relevant. The 
quality characteristics for the main girder is developed with material sheet thickness probability 
density function, cumulative density function and its inverse function. The functional dependence 
between parameters are revealed with triangular probability density function. Relevance between 
sheet metal thickness and cumulative density function for sectional inertial moment and girder 
stiffness is done with Monte-Carlo simulations. 
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1. Introduction 

The main component of the hoisting bridge cranes is their steel construction which ensures reliable 
exploration. Reliability and exploration assurance are in the straight subjection to the main girder 
characteristics represented with its stiffness and sectional inertial moment values. Constructional 
design of the main girder and steel construction is valuated at the crane weight and price cost. At the 
engineering parameters it is valuated at required dynamical deformation, stiffness to frequency 
dependence, statically and fatigue strength. In the cases for small and middle class hoisting 
applications the main girder is formed by the steel profiles from standard or unified constructional 
catalogues. In the most usual case at heavy hoisting applications main girder is composed by the steel 
sheet weldment in a spatial box forming with respect to the mass and the price optimization.  
The weldment construction is direct reflected to the mechanical characteristics of the main girder but 
also there is a dependence between mechanical parameters from the sheet metal quality and the 
main girder stiffness and sectional inertia moment. The quality property of the sheet metal have two 
main factors – the material compositional characteristics and the thickness value. 
Previous researches [1], [2] shown that the typical sheet thickness values compared to nominal shown 
as histogram at Figure 1. The thickness value reflects over the strength amount for the weldment 
construction but also can be subjected as a fatigue and notch coefficient [3], [4], [5] factor with dual 
impact over the geometrical characteristics and material properties. Other researchers investigate [6], 
[7], [8] connection and dependence between carrying capacity, geometrical properties of main girder 
section ant its influence over proof of competence, reliability and durability. 
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Figure 1. Experimental density [1] for the sheet metal thickness 

 

2. Theoretical background 

In a simulation study of the sectional inertia moment and stiffness characteristics the typical 
probability density function for variable values have to be represented with substitution theoretical 
density function. The substitution density function has to fulfill the requirements of any broadly-used 
non-parametrical criteria, non-parametrical Pearson’s density type test or Kolmogorov-Smirnov’s test. 
According to those criteria one can choose the triangular probability density function 
/Triangular(a,m,b)/ with parameters: - ‘a’ is lower limit; - ‘m’ is mode; - ‘b’ is upper limit. Comparison 
between the experimental density from Figure 1 and triangular density function is presented at Figure 
2, where: - ‘Oi’ is the observed empirical density sample graph representation; - ‘Ei’ is expected density 
from triangular pdf graph representation. 
 

 
Figure 2. Comparison between observed ‘Oi’ density and expected ‘Ei’ theoretical density functions 

 
The triangular density function is split at two continuity intervals according to the following formulas:  

 𝑓1(𝑥) =  
2 ⋅ (𝑥 − 𝑎)

(𝑎 − 𝑚) ⋅ (𝑎 − 𝑏)
, 𝑥 ∈ [𝑎, 𝑚] (1) 

 𝑓2(𝑥) =  
2 ⋅ (𝑥 − 𝑏)

(𝑏 − 𝑚) ⋅ (𝑎 − 𝑏)
, 𝑥 ∈ [𝑚, 𝑏] (2) 
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where the ‘x’ is the variable; ‘f1’ is the density at first continuity interval; and ‘f2’ is the density at 
second continuity interval for triangular probability density function. The artificial history generation 
[9] for the input factor can be processed by different methods. One can choose the inverse function 
method which need cumulative distribution function (CDF), and for chosen triangular density function 
its CDF is presented by the following formulas and graph (Figure 3). 
 

 𝐹1(𝑥) =  
(𝑥 − 𝑎)2

(𝑎 − 𝑚) ⋅ (𝑎 − 𝑏)
, 𝑥 ∈ [𝑎, 𝑚] (3) 

 𝐹2(𝑥) =  
(𝑥 − 𝑏)2

(𝑏 − 𝑚) ⋅ (𝑎 − 𝑏)
+ 1 , 𝑥 ∈ [𝑚, 𝑏] (4) 

where the ‘x’ is the variable; ‘F1’ is the cumulative distribution at the first continuity interval; and ‘F2’ 
is the cumulative distribution at the second continuity interval for triangular probability density 
function. 
 

 
Figure 3. Theoretical CDF for sheet thickness from triangular density 

 
The core of the Monte Carlo simulation calculation is a random number generation with suitable 
prepositional distribution. Usual case at the random number generator is by using random numbers 
from the uniform distribution whereafter had to be placed in the inverse function to calculate the 
variable random value at the chosen functional interval. The inverse cumulative distribution function 
is square root function for triangular probability density, represented by the following formulas: 
 

 𝑥1(𝐹1) =  𝑎 + √𝐹1 ⋅ (𝑎 − 𝑚) ⋅ (𝑎 − 𝑏), 𝐹1 ∈ [0,   
𝑚 − 𝑎

𝑏 − 𝑎
] (5) 

 𝑥2(𝐹2) =  𝑏 − √(𝐹2 − 1) ⋅ (𝑏 − 𝑚) ⋅ (𝑎 − 𝑏), 𝐹2 ∈ [
𝑚 − 𝑎

𝑏 − 𝑎
, 1] (6) 

 
where the ‘x1’ and ‘x2’ are the random variables; ‘F1’ and ‘F2’ are the values for random variables 
from the uniform distribution ‘U[0, 1]’ sitting at the continuity interval for triangular probability 
density function. Those random values (represented with ‘F’) generate the randomized values for 
sheet thickness, which randomized values are used in the Monte Carlo simulation. 
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3. Calculation and Simulation model 

3.1. Section Inertia calculation 
Sectional inertia moment for rectangular scheme, with typical form shown at Figure 4, is well known 
formula for box main girder, as presented below:¸ 
 

 𝐽 =
ℎ3⋅𝑡𝑤

6
+  

𝐵⋅𝑡𝑓
3

6
 +  2 ⋅ (

ℎ+𝑡𝑓

2
)

2

⋅ 𝐵 ⋅ 𝑡𝑓 , 𝑚4  (7) 

 
where the - ‘h’ is girder height; - ‘B’ is girder width; - ‘tw’ is web thickness; - ‘tf’ is flange thickness. 
 

 
Figure 4. Scheme of main girder dimensions 

 
Model for idealized bridge crane [10], [11] with parameters: - load capacity Q = 8 t; - bridge length L = 
28,5 m; and with main girder section dimensions: - girder height H = 936 mm; - girder width B = 328 
mm; - nominal flange thickness tfn = 8 mm; - nominal wall thickness twn = 6 mm. Theoretical nominal 
value for sectional inertial moment, calculated according equation (7) is as follows: 
 

 
 

𝐽𝑛 =
ℎ3 ⋅ 𝑡𝑤

6
+ 

𝐵 ⋅ 𝑡𝑓
3

6
 +  2 ⋅ (

ℎ + 𝑡𝑓

2
)

2

⋅ 𝐵 ⋅ 𝑡𝑓  = 19.087 ⋅ 10−4  𝑚4 (8) 

3.2. Section Inertia for simulation model 
The simulation model for sectional inertial moment have to use the formula without simplifications 
as follows: 

 

𝐽(𝑡𝑓1, 𝑡𝑓2, 𝑡𝑤1, 𝑡𝑤2) =
ℎ3 ⋅ (𝑡𝑤1 + 𝑡𝑤2)

12
+ 

𝐵 ⋅ (𝑡𝑓1 + 𝑡𝑓2)3

12
+ ⋯ 

+ (
ℎ + 𝑡𝑓1

2
)

2

 ⋅ 𝐵 ⋅ 𝑡𝑓1  + (
ℎ + 𝑡𝑓2

2
)

2

 ⋅ 𝐵 ⋅ 𝑡𝑓2 ,  𝑚4 

(9) 

 
where according to Figure 4: - tf1, mm is upper flange thickness; - tf2, mm is bottom flange thickness; - 
tw1, mm is left web thickness; - tw2, mm is the right web thickness. 
The values for wall and flange thickness have to be taken as a random quantity with probability 
densities obtained from inverse transformation models from equations (5) and (6). Simulated 
thickness values are taken from computer software generated pseudo randomized real numbers from 
following intervals: 
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✓ flange thickness – 𝑡𝑓𝑖(𝐹) =  𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(0.93 ⋅ 𝑡𝑓𝑛, 0.975 ⋅ 𝑡𝑓𝑛, 1.04 ⋅ 𝑡𝑓𝑛); 

✓ wall thickness - 𝑡𝑤𝑖(𝐹) =  𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(0.93 ⋅ 𝑡𝑤𝑛, 0.975 ⋅ 𝑡𝑤𝑛, 1.04 ⋅ 𝑡𝑤𝑛); 

3.3. Results from simulation model 
The result from simulation model represent particular realization for section inertial moment value. 
The control of the influence of the sheet metal quality over the main girder characteristics and 
specifically over the studied section inertial moment it is developed the diagram shown at Figure 5. 
That particular diagram is representation of estimated cumulative distribution function for relative 
frequencies of ten interval bins resulted from Monte Carlo simulation model. 

 

 
Figure 5. Estimated cumulative distribution for section inertia moment value 

 
The diagram of estimated cumulative distribution function is pointing the nominal value towards the 
realizations of sectional inertial moment values from simulation model. The comparison between 
them shows that in 96.89 % of cases achieved moment value is smaller than the nominal. 

3.4. Assessment for simulation results 
The simulation model has to be assessed in some statistical criteria for stability of results values and 
statistical comparison. One can easy use the following two statistical indicators: 

✓ Size effect /SE/ estimator: 

 𝑒𝑓𝑆𝑑 =  
𝜇 −  𝜇0

𝑠𝑑
 (10) 

   
where: - 𝜇 = 𝜇(𝑧) = 𝑚𝑒𝑎𝑛(𝑧𝑖) is the sample mean for the estimated variable; - 𝑠𝑑 = 𝑠𝑑(𝑧) =
𝑠𝑡𝑑𝑒𝑣(𝑧𝑖) is the sample standard deviation for the estimated variable; - 𝜇0 = 𝑧𝑛 is the nominal value 
for the estimated variable; 

✓ standard error of the sample mean: 

 𝑠𝑑𝑆𝑞𝑛 =  
𝑠𝑑

√𝑛𝑠

 (11) 

where: - 𝑠𝑑 = 𝑠𝑑(𝑧) = 𝑠𝑡𝑑𝑒𝑣(𝑧𝑖) is the sample standard deviation for estimated variable; - 𝑛𝑠 =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑧𝑖) is the number of sample length in the estimated sample. 
Usually [9], [12] the simulations using Monte Carlo method are recommended to be done with ‘as 
much as could be calculated’ number of calculations. The Figure 6 presented the algorithm one can 
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use to achieve a software programmable procedure in calculation the simulated values and some 
estimators and assessors. 
 

 
Figure 6. Block scheme for estimation algorithm for Monte Carlo simulation. 

 
The secondary estimators algorithm was used to calculate an optimized ‘nsim’ – number of simulations 
with randomized variables in particular spreadsheet which forms the resulting Monte Carlo simulated 
results. In purpose to estimate the stability of that particular result there were done a multiple runs 
‘nrun’ at same conditions and same number of simulations. The results are stored at arrays and used in 
the calculation of second estimators. 
The secondary estimator shown on Figure 7, size effect (SE) over the mean from different runs ’nrun’ 
shows a table decreasing curve when rising the number of simulation. That curve is informative but 
there it is lacking with explicit inflex points. It is possible to use the change of drop angle between 
20 ⋅ 103 and 200 ⋅ 103 number of simulations but not in definitive criteria because the changes in the 
slope can be influenced in particular complicatedness calculations.  
 

 
Figure 7. Assessment diagram for the size effect over the mean. 

 

The secondary estimators shown on Figure 8, standard error of sample mean and mean over the size 
effect show different behavior. There is a definitive inflex of the slope (or drop down angle) and it is 
possible to be defined a minimum threshold level, for example 2.63 ⋅ 10−10 for ‘mean over SE’ at near 
10 ⋅ 103 simulations, and 1.68 ⋅ 10−7 for ‘sdSqn’ over SE at near 17 ⋅ 103 simulations. At Figure 9 is 
presented the interval of particular interest for number of simulations for Monte Carlo method 
between 1 ⋅ 103 and 100 ⋅ 10 3 simulations. 
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Figure 8. Assessment diagram for the standard error of sample mean over the size effect and mean over the 

size effect. 

 

 
Figure 9. Assessment diagram for the standard error of sample mean over the size effect and mean over the 

size effect with logarithmic horizontal axis. 

 
The total number of nearly twenty different samples with forty two (42) runs in a row and starting 
with thousand to more than one million (1.0496 ⋅ 106) simulations were lead and results in global 
scale (Figures 7 and 8) shown that the stability of assessors was achieved over the one hundred 
thousands (100 ⋅ 103) simulations where the curve of the assessor is asymptotiate to horizontal. 

4. Conclusions 

Deterministic approaches are at the heart of engineering education and engineering design. On the 
other hand, in operation, reliability, maintenance and testing, deviations are accounted for and 
realized, which are the basis for the development of probabilistic methods. The considered models 
and algorithms allow to reveal the relationship between deterministic and probabilistic approaches in 
a trivial engineering problem - calculation of geometrical characteristics of a main girder for a bridge 
crane. The presented comparative results show that ~97% physical performance of the structure 
cannot reach the design or nominal values. 
The conducted multi length numerically-simulated experiment shows that number of simulations 
must exceed twenty thousands (20 ⋅ 103) in order to ensure stability of numerical results at proposed 
model. The concluding remarks are summarized as follows: 
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✓ the presented model and algorithm is allowing to determine the influence of sheet metal 
quality over the main girder sectional inertia momentum and stiffness for bridge crane; 

✓ the presented model is allowing to determine the limits for cumulative distribution function 
for sectional inertia moment value 𝐽 ∈ [𝐽𝑚𝑖𝑛, 𝐽𝑚𝑎𝑥 ]; 

✓ it is possible to settle the type and parameters for the distribution of the sectional inertia 
moment; 

✓ it is possible to conduct experimental ultrasonic thickness measurement and import data for 
the assessment of the section inertial moment characteristics about physical steel construction; 

✓ algorithm is developed with criterial assessment values and steps for admission and 
estimation of minimal simulations in row for Monte Carlo method. 
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