A risk model with bivariate Pólya-Aeppli counting process

Cite as: AIP Conference Proceedings 2505, 100003 (2022); https://doi.org/10.1063/5.0100711 Published Online: 06 September 2022
M. Lazarova and L. Minkova
\qquad

ARTICLES YOU MAY BE INTERESTED IN

Application of the pontryagin maximum principle in the optimal management of short-term requests for natural gas supply
AIP Conference Proceedings 2505, 080028 (2022); https://doi.org/10.1063/5.0101639
Jordan derivations of the endomorphism semiring of an infinite chain with least element AIP Conference Proceedings 2505, 120002 (2022); https://doi.org/10.1063/5.0101302

Oscillation properties of the mathematical model of hydro turbine with a long penstock - part i
AIP Conference Proceedings 2505, 080020 (2022); https://doi.org/10.1063/5.0100929

Meet the Lock-in Amplifiers that measure microwaves.

Zurich Instruments

Find out more

A Risk Model with Bivariate Pólya-Aeppli Counting Process

M. Lazarova ${ }^{1, a}{ }^{\text {a }}$ and L. Minkova ${ }^{2,}$ b)
${ }^{1)}$ Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8 " Kl. Ohridski" Blvd., Sofia, Bulgaria
${ }^{2)}$ Faculty of Mathematics and Informatics, Sofia Univesrsity " Kl. Ohridski ", 5 " James Bourchier " Blvd., 1164 Sofia, Bulgaria
${ }^{\text {a) }}$ Corresponding author: meglena.laz@tu-sofia.bg
${ }^{\text {b) }}$ Electronic mail: leda@fmi.unu-sofia.bg

Abstract

In this paper we introduce the bivariate Pólya-Aeppli process (BPAP) as a birth process. Then we consider the bivariate risk model with BPAP counting process. The ruin probability is discussed. In the case of exponentially distributed claims we derive partial differential equation for non-ruin probability and discuss the solution and properties.

INTRODUCTION

The Pólya-Aeppli process is a compound Poisson process with geometric compounding distribution. It was introduced in [1] and characterized in [2]. The construction of the Pólya-Aeppli process is quite simple and quite close to the classical case of counting processes. One relatively simple counting process is the sum of Poisson and Pólya-Aeppli process, see [3]. The simplicity of the Pólya-Aeppli process motivates the construction of the bivariate Pólya-Aeppli distribution. It was introduced in [4]. In this paper we introduce the bivariate Pólya-Aeppli process (BPAP). As application we consider the bivaraite risk model with BPAP counting process.

In the next section we introduce the process with extended bivariate Pólya-Aeppli distribution. The probability mass function is given with recursion formulas. The process is defined as a bivariate birth process and is applied as a counting process in bivariate risk model. The ruin probability with exponentially distributed claims is analyzed.

EXTENDED BIVARIATE PÓLYA-AEPPLI PROCESS

There are several approaches to extend an univariate distribution to bivariate form. In this section, we begin with the bivariate Poisson distribution obtained by the trivariate reduction method, see [5], and [6], and then compound this process with the geometric distribution, to derive a bivariate Pólya - Aeppli process.

Let $Z_{i}(t), i=1,2,3,4$ be independent Pólya-Aeppli processes. Suppose that $Z_{1}(t) \sim \operatorname{PAP}\left(\lambda_{1}, \rho_{1}\right), Z_{2}(t) \sim$ $\operatorname{PAP}\left(\lambda_{2}, \rho_{2}\right), Z_{3}(t) \sim \operatorname{PAP}\left(\lambda_{3}, \rho_{1}\right), Z_{4}(t) \sim \operatorname{PAP}\left(\lambda_{3}, \rho_{2}\right)$. Now, set

$$
M(t)=Z_{1}(t)+Z_{3}(t) \quad \text { and } \quad N(t)=Z_{2}(t)+Z_{4}(t) .
$$

Then, according to the well known properties of the Pólya-Aeppli distribution, we have

$$
M(t) \sim \operatorname{PAP}\left(\lambda_{1}+\lambda_{3}, \rho_{1}\right) \text { and } N(t) \sim \operatorname{PAP}\left(\lambda_{2}+\lambda_{3}, \rho_{2}\right)
$$

This means that the compounding distribution of Z_{1} and Z_{3} is the geometric distribution with success probability $1-\rho_{1}$, and the compounding distribution of Z_{2} and Z_{4} is the geometric distribution with success probability $1-\rho_{2}$. Then the joint distribution of $(M(t), N(t))$ is the bivariate Pólya-Aeppli distribution, with the joint PGF as

$$
\begin{equation*}
\psi\left(t, s_{1}, s_{2}\right)=e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) t} e^{\lambda_{1} t \psi_{1}\left(s_{1}, \rho_{1}\right)+\lambda_{2} t \psi_{1}\left(s_{2}, \rho_{2}\right)+\lambda_{3} t \psi_{1}\left(s_{1}, \rho_{1}\right) \psi_{1}\left(s_{2}, \rho_{2}\right)}, \tag{1}
\end{equation*}
$$

where $\psi_{1}(s, \rho)$ is the PGF of the geometric distribution, given by

$$
\begin{equation*}
\psi_{1}(s, \rho)=\frac{(1-\rho) s}{1-\rho s} \tag{2}
\end{equation*}
$$

Definition 1. The probability distribution of $(M(t), N(t))$, corresponding to (1) and (2) is referred to as a bivariate Pólya-Aeppli distribution $\left(\operatorname{BivPA}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \rho_{1}, \rho_{2}\right)\right)$, with parameters $\lambda_{1}, \lambda_{2}, \lambda_{3}, \rho_{1}$ and ρ_{2}.

Remark 1. If $\rho_{1}=\rho_{2}$, the distribution in (1) reduces to the bivariate Pólya - Aeppli distribution, given in [4].

The marginal PGFs of $M(t)$ and $N(t)$ are easily obtained from (1), respectively, to be

$$
\psi_{M(t)}\left(s_{1}\right)=\psi\left(t, s_{1}, 1\right)=e^{-\left(\lambda_{1}+\lambda_{3}\right) t\left(1-\psi_{1}\left(s_{1}, \rho_{1}\right)\right)}
$$

and

$$
\psi_{N(t)}\left(s_{2}\right)=\psi\left(t, 1, s_{2}\right)=e^{-\left(\lambda_{2}+\lambda_{3}\right) t\left(1-\psi_{1}\left(s_{2}, \rho_{2}\right)\right)} .
$$

The means are given by $E M(t)=\frac{\left(\lambda_{1}+\lambda_{3}\right) t}{1-\rho_{1}}$ and $E N(t)=\frac{\left(\lambda_{2}+\lambda_{3}\right) t}{1-\rho_{2}}$, while the variances are $\operatorname{Var}(M(t))=\frac{\left(\lambda_{1}+\lambda_{3}\right) t\left(1+\rho_{1}\right)}{\left(1-\rho_{1}\right)^{2}}$ and $\operatorname{Var}(N(t))=\frac{\left(\lambda_{2}+\lambda_{3}\right) t\left(1+\rho_{2}\right)}{\left(1-\rho_{2}\right)^{2}}$. From (1), we obtain

$$
\begin{equation*}
\frac{\partial^{2} \Psi\left(t, s_{1}, s_{2}\right)}{\partial s_{1} \partial s_{2}}=\Psi\left(t, s_{1}, s_{2}\right)\left[\left(\lambda_{1} t+\lambda_{3} t \psi_{1}\left(s_{2}, \rho_{2}\right)\right)\left(\lambda_{2} t+\lambda_{3} t \psi_{1}\left(s_{1}, \rho_{1}\right)\right)+\lambda_{3} t\right] \psi_{1}^{\prime}\left(s_{1}, \rho_{1}\right) \psi_{1}^{\prime}\left(s_{2}, \rho_{2}\right) \tag{3}
\end{equation*}
$$

Upon substituting $s_{1}=s_{2}=1$ in (3) and using the facts that $\psi_{1}(1)=1$ and $\psi^{\prime}(1)=E X=\frac{1}{1-\rho}$, we obtain the product moment of $M(t)$ and $N(t)$ to be

$$
E(M(t) N(t))=\frac{\left(\lambda_{1}+\lambda_{3}\right) t\left(\lambda_{2}+\lambda_{3}\right) t+\lambda_{3} t}{\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)}
$$

which readily yields the covariance between N_{1} and N_{2} to be

$$
\begin{equation*}
\operatorname{Cov}(M(t), N(t))=\frac{\lambda_{3} t}{\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)} \tag{4}
\end{equation*}
$$

and the correlation coefficient to be

$$
\begin{equation*}
\operatorname{Corr}(M(t), N(t))=\frac{\lambda_{3}}{\sqrt{\left(1+\rho_{1}\right)\left(1+\rho_{2}\right)\left(\lambda_{1}+\lambda_{3}\right)\left(\lambda_{2}+\lambda_{3}\right)}} . \tag{5}
\end{equation*}
$$

If $\rho_{1}=\rho_{2}=0$, then $(M(t), N(t))$ has a bivariate Poisson distribution and the correlation coefficient is positive, (see [7] and [8] for example)

$$
\operatorname{Corr}\left(Y_{1}, Y_{2}\right)=\frac{\lambda_{3}}{\sqrt{\left(\lambda_{1}+\lambda_{3}\right)\left(\lambda_{2}+\lambda_{3}\right)}}
$$

and cannot exceed $\frac{\lambda_{3}}{\sqrt{\lambda_{3}+\min \left(\lambda_{1}, \lambda_{2}\right)}}$. Thus, from (5), we note that for the bivariate Pólya-Aeppli process $(M(t), N(t))$,

$$
\operatorname{Corr}(M(t), N(t))<\operatorname{Corr}\left(Y_{1}, Y_{2}\right)
$$

Joint Probability Mass Function

Let $P(t, i, j)=P(M(t)=i, N(t)=j), i, j=0,1,2, \ldots$, be the joint probability mass function of $(M(t), N(t))$. The following proposition gives an extension of the Panjer recursion formulas, see [9].

Proposition 1. The joint PMF of the bivariate Pólya-Aeppli process satisfies the following recursions:

$$
\begin{align*}
& P(t, i, 0)=\left(2 \rho_{1}+\frac{\left(1-\rho_{1}\right) \lambda_{1} t-2 \rho_{1}}{i}\right) P(t, i-1,0)-\left(1-\frac{2}{i}\right) \rho_{1}^{2} P(t, i-2,0), i=1,2, \ldots, \\
& P(t, 0, j)=\left(2 \rho_{2}+\frac{\left(1-\rho_{2}\right) \lambda_{2} t-2 \rho_{2}}{j}\right) P(t, 0, j-1)-\left(1-\frac{2}{j}\right) \rho_{2}^{2} P(t, 0, j-2), j=1,2, \ldots, \tag{6}
\end{align*}
$$

and $P(t,-1,0)=0, P(t, 0,-1)=0$. In addition,

$$
\begin{aligned}
& P(t, i+1, j)-\rho_{2} P(t, i+1, j-1) \\
& =\left(2 \rho_{1}+\frac{\left(1-\rho_{1}\right) \lambda_{1} t-2 \rho_{1}}{i+1}\right)\left[P(t, i, j)-\rho_{2} P(t, i, j-1)\right]-\rho_{1}^{2}\left(1-\frac{2}{i+1}\right)\left[P(t, i-1, j)-\rho_{2} P(t, i-1, j-1)\right] \\
& \quad+\frac{\lambda_{3} t}{i+1}\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) P(t, i, j-1) i=1,2, \ldots, j=1,2, \ldots, \\
& P(t, i, j+1)-\rho_{1} P(t, i-1, j+1) \\
& =\left(2 \rho_{2}+\frac{\left(1-\rho_{2}\right) \lambda_{2} t-2 \rho_{2}}{j+1}\right)\left[P(t, i, j)-\rho_{1} P(t, i-1, j)\right]-\rho_{2}^{2}\left(1-\frac{2}{j+1}\right)\left[P(t, i, j-1)-\rho_{1} P(t, i-1, j-1)\right] \\
& \quad+\frac{\lambda_{3} t}{j+1}\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) P(t, i-1, j), i=1,2, \ldots, j=1,2, \ldots
\end{aligned}
$$

with $P(t, 0,0)=e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) t}$.

Proof.

Differentiation of (1) with respect to s_{1} and s_{2} yields

$$
\begin{equation*}
\left(1-\rho_{1} s_{1}\right)^{2}\left(1-\rho_{2} s_{2}\right) \frac{\partial \psi\left(t, s_{1}, s_{2}\right)}{\partial s_{1}}=\left(1-\rho_{1}\right)\left[\lambda_{1} t+\left(\lambda_{3} t-\rho_{2}\left(\lambda_{1}+\lambda_{3}\right) t\right) s_{2}\right] \psi\left(s_{1}, s_{2}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-\rho_{2} s_{2}\right)^{2}\left(1-\rho_{1} s_{1}\right) \frac{\partial \psi\left(t, s_{1}, s_{2}\right)}{\partial s_{2}}=\left(1-\rho_{2}\right)\left[\lambda_{2} t+\left(\lambda_{3} t-\rho_{1}\left(\lambda_{2}+\lambda_{3}\right) t\right) s_{1}\right] \psi\left(s_{1}, s_{2}\right) \tag{8}
\end{equation*}
$$

where $\psi\left(t, s_{1}, s_{2}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} P(M(t)=i, N(t)=j) s_{1}^{i} s_{2}^{j}, \frac{\partial \psi\left(t, s_{1}, s_{2}\right)}{\partial s_{1}}=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}(i+1) P(t, i+1, j) s_{1}^{i} s_{2}^{j}$ and $\frac{\partial \psi\left(t, s_{1}, s_{2}\right)}{\partial s_{2}}=$ $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}(j+1) P(t, i, j+1) s_{1}^{i} s_{2}^{j}$. The required recursions are obtained by equating the coefficients of $s_{1}^{i} s_{2}^{j}$ on both sides, for fixed $i, j=0,1,2, \ldots$.

Theorem 1. The joint probability mass function of the BPAP is given by

$$
\begin{aligned}
P(t, i, 0) & =\sum_{m=1}^{i}\binom{i-1}{i-m} \frac{\left[\lambda_{1} t\left(1-\rho_{1}\right)\right)^{m}}{j!} \rho_{1}^{i-m} P(t, 0,0), \quad i=1,2, \ldots, \\
P(t, 0, j) & =\sum_{l=1}^{j}\binom{j-1}{j-l} \frac{\left[\lambda_{2} t\left(1-\rho_{2}\right)\right]^{m}}{m!} \rho_{2}^{j-l} P(t, 0,0), j=1,2, \ldots, \\
P(t, i, j) & =\left[\left(\sum_{m=1}^{i}\binom{i-1}{i-m} \frac{\left[\lambda_{1} t\left(1-\rho_{1}\right)\right]^{m}}{m!} \rho_{1}^{i-m}\right)\left(\sum_{l=1}^{j}\binom{i-1}{l-1} \frac{\left[\lambda_{2} t\left(1-\rho_{2}\right)\right]^{l}}{l!} \rho_{2}^{j-l}\right)\right. \\
& +\sum_{k=1}^{i N} \frac{\left[\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) \lambda_{3} t\right]^{k}}{k!} \sum_{m=0}^{i-k}\binom{i-1}{i-k-m} \frac{\left[\lambda_{1} t\left(1-\rho_{1}\right)\right]^{m}}{m!} \rho_{1}^{i-k-m} \\
& \left.\times \sum_{l=0}^{j-k}\binom{j-1}{j-k-l} \frac{\left[\lambda_{2} t\left(1-\rho_{2}\right)\right]^{l}}{l!} \rho_{2}^{j-k-l}\right] P(t, 0,0), i, j=1,2, \ldots,
\end{aligned}
$$

with $P(t, 0,0)=e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) t}$.
Proof. The initial value $P(t, 0,0)=e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) t}$ follows simply from (1), i.e., $P(t, 0,0)=\psi(t, 0,0)$. Formulas for $P(t, i, 0), i=1,2, \ldots$ and $P(t, 0, j), j=1,2, \ldots$ follow from (6). The PMF in the other cases are obtained recursively from the recursions stated in Proposition 1.

BIVARIATE BIRTH PROCESS

In this section we define the BPAP as a bivariate birth process. Suppose that for a small $h>0$, we have the following assumptions.

$$
\begin{aligned}
& P(M(t+h)-M(t)=0, N(t+h)-N(t)=0)=1-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) h+o(h) \\
& P(M(t+h)-M(t)=i, N(t+h)-N(t)=0)=\lambda_{1}\left(1-\rho_{1}\right) \rho_{1}^{i-1} h+o(h), i=1,2, \ldots \\
& P(M(t+h)-M(t)=0, N(t+h)-N(t)=j)=\lambda_{2}\left(1-\rho_{2}\right) \rho_{2}^{j-1} h+o(h) . j=1,2, \ldots \\
& P(M(t+h)-M(t)=i, N(t+h)-N(t)=j)=\lambda_{3}\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) \rho_{1}^{i-1} \rho_{2}^{j-1} h+o(h), i, j=1,2, \ldots
\end{aligned}
$$

The assumptions correspond to the definition of the bivariate Pólya-Aeppli distribution. From these assumptions, it follows that the probabilities $P(t, i, j), i, j=0,1, \ldots, t \geq 0$ satisfy the following equations

$$
\begin{aligned}
& \frac{\partial}{\partial t} P(t, 0,0)+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) P(t, 0,0)=0 \\
& \frac{\partial}{\partial t} P(t, i, 0)+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) P(t, i, 0)=\lambda_{1}\left(1-\rho_{1}\right) \sum_{m=0}^{i-1} \rho_{1}^{i-m-1} P(t, i, 0), \quad i=1,2, \ldots \\
& \frac{\partial}{\partial t} P(t, 0, j)+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) P(t, 0, j)=\lambda_{2}\left(1-\rho_{2}\right) \sum_{n=0}^{j-1} \rho_{2}^{j-n-1} P(t, 0, j), \quad j=1,2,
\end{aligned}
$$

For $i, j=1,2, \ldots$, we have

$$
\begin{aligned}
& \frac{\partial}{\partial t} P(t, i, j)+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) P(t, i, j)=\lambda_{1}\left(1-\rho_{1}\right) \sum_{m=0}^{i-1} \rho_{1}^{i-m-1} P(t, i, j-1) \\
& +\lambda_{2}\left(1-\rho_{2}\right) \sum_{n=0}^{j-1} \rho_{2}^{j-n-1} P(t, i-1, j)+\lambda_{3}\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) \sum_{m=0}^{i-1} \rho_{1}^{i-m-1} \sum_{n=0}^{j-1} \rho_{2}^{j-n-1} P(t, i, j)
\end{aligned}
$$

APPLICATION TO RISK MODEL

Let us consider the following bivariate risk model.

$$
U_{1}(t)=u_{1}+c_{1} t-\sum_{i=1}^{M(t)} X_{i} \quad \text { and } \quad U_{2}(t)=u_{1}+c_{1} t-\sum_{i=1}^{N(t)} Y_{i}
$$

Suppose that $X_{i}, i=1,2, \ldots$ are independent copies of $X \sim F_{1}(x)$, and $Y_{i}, i=1,2, \ldots$ are independent copies of $Y \sim$ $F_{2}(x)$, with $F_{1}(0)=F_{2}(0)=0$. Additionally, (X, Y) is independent of $(M(t), N(t))$. Denote the means by $E(X)=$ μ_{1}, and $E(Y)=\mu_{2}$. The relative safety loadings are given by $\theta_{i}=\frac{c_{i}\left(1-\rho_{i}\right)}{\lambda_{i} \mu_{i}+\lambda_{3}\left(1-\rho_{i}\right) \mu_{i}}-1>0, i=1,2$.

Denote by $\tau_{i}=\inf \left\{t: U_{i}(t)<0\right\}, i=1,2$, the time to ruin of $U_{i}(t)$. The corresponding ruin probabilities are given by

$$
\Psi_{i}\left(u_{i}\right)=P\left(\tau_{i}<\infty \mid U_{i}(t)=u_{i}\right), \quad i=1,2
$$

We consider the following time to ruin

$$
\tau_{\min }=\min \left\{\tau_{1}, \tau_{2}\right\}=\inf \left\{t: U_{1}(t)<0 \text { or } U_{2}(t)<0\right\}
$$

and use the corresponding definition of ruin probability.

$$
\begin{align*}
\Psi\left(u_{1}, u_{2}\right) & =P\left(\tau_{\min }<\infty \mid U_{1}(t)=u_{1}, U_{2}(t)=u_{2}\right) \\
& =P\left(\inf _{t \geq 0} \min \left(U_{1}(t), U_{2}(t)\right)<0\right) \tag{9}
\end{align*}
$$

The ruin probability in (9) is analyzed in [10] and [11] in the case of bivariate Poisson counting process.

Denote by $\Phi\left(u_{1}, u_{2}\right)=1-\Psi\left(u_{1}, u_{2}\right)$ the non-ruin probability. For sufficiently small h, according to the assumptions in the previous section, we have the following.

$$
\begin{aligned}
& \Phi\left(u_{1}, u_{2}\right)=\left[1-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) h\right] \Phi\left(u_{1}+c_{1} h, u_{2}+c_{2} h\right) \\
& +\lambda_{1}\left(1-\rho_{1}\right) h \sum_{i=1}^{\infty} \rho_{1}^{i-1} \int_{0}^{u_{1}+c_{1} h} \Phi\left(u_{1}+c_{1} h-z_{1}, u_{2}\right) d F_{1}^{* i}\left(z_{1}\right) \\
& +\lambda_{2}\left(1-\rho_{2}\right) h \sum_{j=1}^{\infty} \rho_{1}^{j-1} \int_{0}^{u_{2}+c_{2} h} \Phi\left(u_{1}, u_{2}+c_{2} h-z_{2}\right) d F_{2}^{* j}\left(z_{2}\right) \\
& +\lambda_{3}\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) h \sum_{i=1}^{\infty} \rho_{1}^{i-1} \sum_{j=1}^{\infty} \rho_{2}^{j-1} \int_{0}^{u_{1}+c_{1} h} \int_{0}^{u_{2}+c_{2} h} \Phi\left(u_{1}+c_{1} h-z_{1}, u_{2}+c_{2} h-z_{2}\right) d F_{1}^{* i}\left(z_{1}\right) d F_{2}^{* j}\left(z_{2}\right) .
\end{aligned}
$$

Denote by

$$
\begin{equation*}
H_{1}\left(z_{1}\right)=\left(1-\rho_{1}\right) \sum_{i=1}^{\infty} \rho_{1}^{i-1} F_{1}^{* i}\left(z_{1}\right) \text { and } H_{2}\left(z_{2}\right)=\left(1-\rho_{2}\right) \sum_{j=1}^{\infty} \rho_{2}^{j-1} F_{2}^{* i}\left(z_{2}\right) \tag{10}
\end{equation*}
$$

the distribution functions of the aggregated claims. The non-ruin probability $\Phi\left(u_{1}, u_{2}\right)$ satisfies the equation

$$
\begin{align*}
c_{1} \frac{\partial}{\partial u_{1}} \Phi\left(u_{1}, u_{2}\right) & +c_{2} \frac{\partial}{\partial u_{2}} \Phi\left(u_{1}, u_{2}\right)=\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \Phi\left(u_{1}, u_{2}\right) \\
& -\lambda_{1} \int_{0}^{u_{1}} \Phi\left(u_{1}-z_{1}, u_{2}\right) d H_{1}\left(z_{1}\right)-\lambda_{2} \int_{0}^{u_{2}} \Phi\left(u_{1}, u_{2}-z_{2}\right) d H_{2}\left(z_{2}\right) \tag{11}\\
& -\lambda_{3} \int_{0}^{u_{1}} \int_{0}^{u_{2}} \Phi\left(u_{1}-z_{1}, u_{2}-z_{2}\right) d H_{1}\left(z_{1}\right) d H_{2}\left(z_{2}\right) .
\end{align*}
$$

EXPONENTIALLY DISTRIBUTED CLAIMS

In this case the distribution functions in (10) are again exponential, i.e.,

$$
H_{1}\left(z_{1}\right)=1-e^{-\frac{1-\rho_{1}}{\mu_{1}} z_{1}} \text { and } H_{2}\left(z_{2}\right)=1-e^{-\frac{1-\rho_{2}}{\mu_{2}} z_{2}}
$$

The equation (11) has the form:

$$
\begin{align*}
c_{1} \frac{\partial^{3}}{\partial u_{1}^{2} \partial u_{2}} \Phi\left(u_{1}, u_{2}\right)+c_{2} \frac{\partial^{3}}{\partial u_{1} \partial u_{2}^{2}} \Phi\left(u_{1}, u_{2}\right) & =\left(\lambda_{1}+\lambda_{2}+\lambda_{3}-\frac{c_{1}\left(1-\rho_{1}\right)}{\mu_{1}}-\frac{c_{2}\left(1-\rho_{2}\right)}{\mu_{2}}\right) \frac{\partial^{2}}{\partial u_{1} \partial u_{2}} \Phi\left(u_{1}, u_{2}\right) \\
& -\frac{c_{1}\left(1-\rho_{2}\right)}{\mu_{2}} \frac{\partial^{2}}{\partial u_{1}^{2}} \Phi\left(u_{1}, u_{2}\right)-\frac{c_{2}\left(1-\rho_{1}\right)}{\mu_{1}} \frac{\partial^{2}}{\partial u_{2}^{2}} \Phi\left(u_{1}, u_{2}\right) \\
& +\frac{1-\rho_{2}}{\mu_{2}}\left(\lambda_{1}+\lambda_{3}-\frac{c_{1}\left(1-\rho_{1}\right)}{\mu_{1}}\right) \frac{\partial}{\partial u_{1}} \Phi\left(u_{1}, u_{2}\right) \tag{12}\\
& +\frac{1-\rho_{1}}{\mu_{1}}\left(\lambda_{2}+\lambda_{3}-\frac{c_{2}\left(1-\rho_{2}\right)}{\mu_{2}}\right) \frac{\partial}{\partial u_{2}} \Phi\left(u_{1}, u_{2}\right) .
\end{align*}
$$

One solution of this equation is given by:

$$
\Phi\left(u_{1}, u_{2}\right)=1-\frac{1}{1+\theta_{1}} e^{-\frac{1-\rho_{1}}{\mu_{1}} \frac{\theta_{1}}{1+\theta_{1}} u_{1}}-\frac{1}{1+\theta_{2}} e^{-\frac{1-\rho_{2}}{\mu_{2}} \frac{\theta_{2}}{1+\theta_{2}} u_{2}}
$$

$\Phi\left(u_{1}, u_{2}\right)$ satisfies the conditions $\Phi(\infty, \infty)=1$ and

$$
\Phi\left(u_{1}, \infty\right)=\Phi_{1}\left(u_{1}\right)=1-\frac{1}{1+\theta_{1}} e^{-\frac{1-\rho_{1}}{\mu_{1}} \frac{\theta_{1}}{1+\theta_{1}} u_{1}}
$$

and

$$
\Phi\left(\infty, u_{2}\right)=\Phi_{2}\left(u_{2}\right)=1-\frac{1}{1+\theta_{2}} e^{-\frac{1-\rho_{2}}{\mu_{2}} \frac{\theta_{2}}{1+\theta_{2}} u_{2}}
$$

where $\Phi_{i}\left(u_{i}\right), i=1,2$ are the corresponding non-ruin probabilities of $U_{i}(t)$.
In the case of $\lambda_{3}=0$, i.e., when $M(t)$ and $N(t)$ are independent, the solution is given by

$$
\Phi\left(u_{1}, u_{2}\right)=1-\frac{1}{1+\theta_{1}} e^{-\frac{1-\rho_{1}}{\mu_{1}} \frac{\theta_{1}}{1+\theta_{1}} u_{1}}-\frac{1}{1+\theta_{2}} e^{-\frac{1-\rho_{2}}{\mu_{2}} \frac{\theta_{2}}{1+\theta_{2}} u_{2}}+\frac{1}{1+\theta_{1}} \frac{1}{1+\theta_{2}} e^{-\frac{1-\rho_{1}}{\mu_{1}} \frac{\theta_{1}}{1+\theta_{1}} u_{1}} e^{-\frac{1-\rho_{2}}{\mu_{2}} \frac{\theta_{2}}{1+\theta_{2}} u_{2}} .
$$

CONCLUSION

In this paper a risk model with a bivariate Pólya-Aeppli counting process is studied. An extended Bivariate PólyaAeppli process, joint probability mass function and Bivariate Pólya-Aeppli process as birh process are introduced. Essential part of this reserch is the application of the Bivariate Pólya-Aeppli process as a counting process in a bivariate risk model. A case of exponentially distributed claims is also given.

ACKNOWLEDGMENTS

This research is totally supported by project "Stochastic project and simulation models in the field of medicine, social sciences and dynamic systems" founded by the National Science Fund of Ministry of Education and Science of Bulgaria (Contract No DN 12/11/20 Dec.)

REFERENCES

1. Minkova L.D., J. Appl. Math. Stoch. Analysis, 3, 221-234, (2004).
2. Chukova S. and Minkova L.D., Stochastic Analysis and Applications, 31, 590-599, (2013).
3. Kostadinova K. AIP Conference Proceedings, 2333, 150013:1-5, (2021).
4. Minkova L.D. and N. Balakrishnan, Commun. Statist.-Theory and Methods, 43, 5026-3038, (2014).
5. Campbell J.T., Proceedings of the Edinburgh Mathematical Society (Series 2), 4, 18-26, (1934).
6. Kawamura K., Kodai Math. Sem. Rep. 25, 246-256, (1973).
7. Johnson N.L., Kotz S. and Balakrishnan N., Discrete Multivariate Distributions, John Wiley \& Sons, New York, (1997).
8. Kocherlakota S. and Kocherlakota K., Bivariate Discrete Distributions, Marcel Dekker, New York, (1992).
9. Panjer H., ASTIN Bull., 12, 22-26, (1981).
10. Yuen K.C., Guo J. and Wu X., Insurance: Mathematics and Economics, 38, 298-308, (2006).
11. Dang L., Zhu N. and Zhang H., Insurance: Mathematics and Economics, 44, 491-496, (2009).
