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Abstract. In this paper we introduce the bivariate Pólya-Aeppli process (BPAP) as a birth process. Then we consider the bivariate
risk model with BPAP counting process. The ruin probability is discussed. In the case of exponentially distributed claims we derive
partial differential equation for non-ruin probability and discuss the solution and properties.

INTRODUCTION

The Pólya-Aeppli process is a compound Poisson process with geometric compounding distribution. It was introduced
in [1] and characterized in [2]. The construction of the Pólya-Aeppli process is quite simple and quite close to the
classical case of counting processes. One relatively simple counting process is the sum of Poisson and Pólya-Aeppli
process, see [3]. The simplicity of the Pólya-Aeppli process motivates the construction of the bivariate Pólya-Aeppli
distribution. It was introduced in [4]. In this paper we introduce the bivariate Pólya-Aeppli process (BPAP). As
application we consider the bivaraite risk model with BPAP counting process.

In the next section we introduce the process with extended bivariate Pólya-Aeppli distribution. The probability
mass function is given with recursion formulas. The process is defined as a bivariate birth process and is applied as a
counting process in bivariate risk model. The ruin probability with exponentially distributed claims is analyzed.

EXTENDED BIVARIATE PÓLYA-AEPPLI PROCESS

There are several approaches to extend an univariate distribution to bivariate form. In this section, we begin with the
bivariate Poisson distribution obtained by the trivariate reduction method, see [5], and [6], and then compound this
process with the geometric distribution, to derive a bivariate Pólya - Aeppli process.

Let Zi(t), i = 1,2,3,4 be independent Pólya-Aeppli processes. Suppose that Z1(t) ∼ PAP(λ1,ρ1),Z2(t) ∼
PAP(λ2,ρ2),Z3(t)∼ PAP(λ3,ρ1),Z4(t)∼ PAP(λ3,ρ2). Now, set

M(t) = Z1(t)+Z3(t) and N(t) = Z2(t)+Z4(t).

Then, according to the well known properties of the Pólya-Aeppli distribution, we have

M(t)∼ PAP(λ1 +λ3,ρ1) and N(t)∼ PAP(λ2 +λ3,ρ2).

This means that the compounding distribution of Z1 and Z3 is the geometric distribution with success probability
1−ρ1, and the compounding distribution of Z2 and Z4 is the geometric distribution with success probability 1−ρ2.
Then the joint distribution of (M(t),N(t)) is the bivariate Pólya-Aeppli distribution, with the joint PGF as

ψ(t,s1,s2) = e−(λ1+λ2+λ3)t eλ1tψ1(s1,ρ1)+λ2tψ1(s2,ρ2)+λ3tψ1(s1,ρ1)ψ1(s2,ρ2), (1)

where ψ1(s,ρ) is the PGF of the geometric distribution, given by

ψ1(s,ρ) =
(1−ρ)s
1−ρs

. (2)

Definition 1. The probability distribution of (M(t),N(t)), corresponding to (1) and (2) is referred to as a bivariate
Pólya - Aeppli distribution (BivPA(λ1,λ2,λ3,ρ1,ρ2)), with parameters λ1,λ2,λ3,ρ1 and ρ2.

Remark 1. If ρ1 = ρ2, the distribution in (1) reduces to the bivariate Pólya - Aeppli distribution, given in [4].
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The marginal PGFs of M(t) and N(t) are easily obtained from (1), respectively, to be

ψM(t)(s1) = ψ(t,s1,1) = e−(λ1+λ3)t(1−ψ1(s1,ρ1))

and

ψN(t)(s2) = ψ(t,1,s2) = e−(λ2+λ3)t(1−ψ1(s2,ρ2)).

The means are given by EM(t) = (λ1+λ3)t
1−ρ1

and EN(t) = (λ2+λ3)t
1−ρ2

, while the variances are Var(M(t)) = (λ1+λ3)t(1+ρ1)
(1−ρ1)2

and Var(N(t)) = (λ2+λ3)t(1+ρ2)
(1−ρ2)2 . From (1), we obtain

∂ 2Ψ(t,s1,s2)

∂ s1∂ s2
= Ψ(t,s1,s2)[(λ1t +λ3tψ1(s2,ρ2))(λ2t +λ3tψ1(s1,ρ1))+λ3t]ψ ′

1(s1,ρ1)ψ ′
1(s2,ρ2). (3)

Upon substituting s1 = s2 = 1 in (3) and using the facts that ψ1(1) = 1 and ψ ′(1) = EX = 1
1−ρ , we obtain the

product moment of M(t) and N(t) to be

E(M(t)N(t)) =
(λ1 +λ3)t(λ2 +λ3)t +λ3t

(1−ρ1)(1−ρ2)
,

which readily yields the covariance between N1 and N2 to be

Cov(M(t),N(t)) =
λ3t

(1−ρ1)(1−ρ2)
(4)

and the correlation coefficient to be

Corr(M(t),N(t)) =
λ3√

(1+ρ1)(1+ρ2)(λ1 +λ3)(λ2 +λ3)
. (5)

If ρ1 = ρ2 = 0, then (M(t),N(t)) has a bivariate Poisson distribution and the correlation coefficient is positive, (see
[7] and [8] for example)

Corr(Y1,Y2) =
λ3√

(λ1 +λ3)(λ2 +λ3)

and cannot exceed
λ3√

λ3 +min(λ1,λ2)
. Thus, from (5), we note that for the bivariate Pólya-Aeppli process

(M(t),N(t)),

Corr(M(t),N(t))<Corr(Y1,Y2).

Joint Probability Mass Function

Let P(t, i, j) = P(M(t) = i,N(t) = j), i, j = 0,1,2, . . . , be the joint probability mass function of (M(t),N(t)). The
following proposition gives an extension of the Panjer recursion formulas, see [9].

Proposition 1. The joint PMF of the bivariate Pólya-Aeppli process satisfies the following recursions:

P(t, i,0) = (2ρ1 +
(1−ρ1)λ1t−2ρ1

i )P(t, i−1,0)− (1− 2
i )ρ

2
1 P(t, i−2,0), i = 1,2, . . . ,

P(t,0, j) = (2ρ2 +
(1−ρ2)λ2t−2ρ2

j )P(t,0, j−1)− (1− 2
j )ρ

2
2 P(t,0, j−2), j = 1,2, . . . ,

(6)

and P(t,−1,0) = 0,P(t,0,−1) = 0. In addition,
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P(t, i+1, j)−ρ2P(t, i+1, j−1)

= (2ρ1 +
(1−ρ1)λ1t−2ρ1

i+1 )[P(t, i, j)−ρ2P(t, i, j−1)]−ρ2
1 (1− 2

i+1 )[P(t, i−1, j)−ρ2P(t, i−1, j−1)]

+
λ3t

i+1
(1−ρ1)(1−ρ2)P(t, i, j−1) i = 1,2, . . . , j = 1,2, . . . ,

P(t, i, j+1)−ρ1P(t, i−1, j+1)

= (2ρ2 +
(1−ρ2)λ2t−2ρ2

j+1 )[P(t, i, j)−ρ1P(t, i−1, j)]−ρ2
2 (1− 2

j+1 )[P(t, i, j−1)−ρ1P(t, i−1, j−1)]

+
λ3t
j+1

(1−ρ1)(1−ρ2)P(t, i−1, j), i = 1,2, . . . , j = 1,2, . . .

with P(t,0,0) = e−(λ1+λ2+λ3)t .
Proof.
Differentiation of (1) with respect to s1 and s2 yields

(1−ρ1s1)
2(1−ρ2s2)

∂ψ(t,s1,s2)

∂ s1
= (1−ρ1)[λ1t +(λ3t −ρ2(λ1 +λ3)t)s2]ψ(s1,s2) (7)

and

(1−ρ2s2)
2(1−ρ1s1)

∂ψ(t,s1,s2)

∂ s2
= (1−ρ2)[λ2t +(λ3t −ρ1(λ2 +λ3)t)s1]ψ(s1,s2), (8)

where ψ(t,s1,s2) =
∞
∑

i=0

∞
∑
j=0

P(M(t) = i,N(t) = j)si
1s j

2,
∂ψ(t,s1,s2)

∂ s1
=

∞
∑

i=0

∞
∑
j=0

(i + 1)P(t, i + 1, j)si
1s j

2 and
∂ψ(t,s1,s2)

∂ s2
=

∞
∑

i=0

∞
∑
j=0

( j+1)P(t, i, j+1)si
1s j

2. The required recursions are obtained by equating the coefficients of si
1s j

2 on both sides,

for fixed i, j = 0,1,2, . . . .
�

Theorem 1. The joint probability mass function of the BPAP is given by

P(t, i,0) =
i

∑
m=1

( i−1
i−m

) [λ1t(1−ρ1)]
m

j! ρ i−m
1 P(t,0,0), i = 1,2, . . . ,

P(t,0, j) =
j

∑
l=1

( j−1
j−l

) [λ2t(1−ρ2)]
m

m! ρ j−l
2 P(t,0,0), j = 1,2, . . . ,

P(t, i, j) =

[(
i

∑
m=1

(
i−1

i−m

)
[λ1t(1−ρ1)]

m

m!
ρ i−m

1

)(
j

∑
l=1

(
i−1

l −1

)
[λ2t(1−ρ2)]

l

l!
ρ j−l

2

)

+
i∧ j

∑
k=1

[(1−ρ1)(1−ρ2)λ3t]k

k!

i−k

∑
m=0

(
i−1

i− k−m

)
[λ1t(1−ρ1)]

m

m!
ρ i−k−m

1

×
j−k

∑
l=0

(
j−1

j− k− l

)
[λ2t(1−ρ2)]

l

l!
ρ j−k−l

2

]
P(t,0,0), i, j = 1,2, . . . ,

with P(t,0,0) = e−(λ1+λ2+λ3)t .

Proof. The initial value P(t,0,0) = e−(λ1+λ2+λ3)t follows simply from (1), i.e., P(t,0,0) = ψ(t,0,0). Formulas for
P(t, i,0), i = 1,2, . . . and P(t,0, j), j = 1,2, . . . follow from (6). The PMF in the other cases are obtained recursively
from the recursions stated in Proposition 1.

�
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BIVARIATE BIRTH PROCESS

In this section we define the BPAP as a bivariate birth process. Suppose that for a small h > 0, we have the following
assumptions.

P(M(t +h)−M(t) = 0,N(t +h)−N(t) = 0) = 1− (λ1 +λ2 +λ3)h+o(h),

P(M(t +h)−M(t) = i,N(t +h)−N(t) = 0) = λ1(1−ρ1)ρ i−1
1 h+o(h), i = 1,2, . . .

P(M(t +h)−M(t) = 0,N(t +h)−N(t) = j) = λ2(1−ρ2)ρ j−1
2 h+o(h). j = 1,2, . . .

P(M(t +h)−M(t) = i,N(t +h)−N(t) = j) = λ3(1−ρ1)(1−ρ2)ρ i−1
1 ρ j−1

2 h+o(h), i, j = 1,2, . . .

The assumptions correspond to the definition of the bivariate Pólya-Aeppli distribution. From these assumptions, it
follows that the probabilities P(t, i, j), i, j = 0,1, . . . , t ≥ 0 satisfy the following equations

∂
∂ t P(t,0,0)+(λ1 +λ2 +λ3)P(t,0,0) = 0,

∂
∂ t P(t, i,0)+(λ1 +λ2 +λ3)P(t, i,0) = λ1(1−ρ1)∑i−1

m=0 ρ i−m−1
1 P(t, i,0), i = 1,2, . . .

∂
∂ t P(t,0, j)+(λ1 +λ2 +λ3)P(t,0, j) = λ2(1−ρ2)∑ j−1

n=0 ρ j−n−1
2 P(t,0, j), j = 1,2,

For i, j = 1,2, . . . , we have

∂
∂ t P(t, i, j)+(λ1 +λ2 +λ3)P(t, i, j) = λ1(1−ρ1)∑i−1

m=0 ρ i−m−1
1 P(t, i, j−1)

+λ2(1−ρ2)∑ j−1
n=0 ρ j−n−1

2 P(t, i−1, j)+λ3(1−ρ1)(1−ρ2)∑i−1
m=0 ρ i−m−1

1 ∑ j−1
n=0 ρ j−n−1

2 P(t, i, j).

APPLICATION TO RISK MODEL

Let us consider the following bivariate risk model.

U1(t) = u1 + c1t −
M(t)

∑
i=1

Xi and U2(t) = u1 + c1t −
N(t)

∑
i=1

Yi.

Suppose that Xi, i = 1,2, . . . are independent copies of X ∼ F1(x), and Yi, i = 1,2, . . . are independent copies of Y ∼
F2(x), with F1(0) = F2(0) = 0. Additionally, (X ,Y ) is independent of (M(t),N(t)). Denote the means by E(X) =

μ1,and E(Y ) = μ2. The relative safety loadings are given by θi =
ci(1−ρi)

λiμi+λ3(1−ρi)μi
−1 > 0, i = 1,2.

Denote by τi = inf{t : Ui(t)< 0}, i = 1,2, the time to ruin of Ui(t). The corresponding ruin probabilities are given
by

Ψi(ui) = P(τi < ∞ |Ui(t) = ui), i = 1,2.

We consider the following time to ruin

τmin = min{τ1,τ2}= inf{t : U1(t)< 0 or U2(t)< 0},
and use the corresponding definition of ruin probability.

Ψ(u1,u2) = P(τmin < ∞ |U1(t) = u1,U2(t) = u2)

= P(inft≥0 min(U1(t),U2(t))< 0).
(9)

The ruin probability in (9) is analyzed in [10] and [11] in the case of bivariate Poisson counting process.
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Denote by Φ(u1,u2) = 1−Ψ(u1,u2) the non-ruin probability. For sufficiently small h, according to the assumptions
in the previous section, we have the following.

Φ(u1,u2) = [1− (λ1 +λ2 +λ3)h]Φ(u1 + c1h,u2 + c2h)

+λ1(1−ρ1)h∑∞
i=1 ρ i−1

1

∫ u1+c1h
0 Φ(u1 + c1h− z1,u2)dF∗i

1 (z1)

+λ2(1−ρ2)h∑∞
j=1 ρ j−1

1

∫ u2+c2h
0 Φ(u1,u2 + c2h− z2)dF∗ j

2 (z2)

+λ3(1−ρ1)(1−ρ2)h∑∞
i=1 ρ i−1

1 ∑∞
j=1 ρ j−1

2

∫ u1+c1h
0

∫ u2+c2h
0 Φ(u1 + c1h− z1,u2 + c2h− z2)dF∗i

1 (z1)dF∗ j
2 (z2).

Denote by

H1(z1) = (1−ρ1)
∞

∑
i=1

ρ i−1
1 F∗i

1 (z1) and H2(z2) = (1−ρ2)
∞

∑
j=1

ρ j−1
2 F∗i

2 (z2) (10)

the distribution functions of the aggregated claims. The non-ruin probability Φ(u1,u2) satisfies the equation

c1
∂

∂u1
Φ(u1,u2) +c2

∂
∂u2

Φ(u1,u2) = (λ1 +λ2 +λ3)Φ(u1,u2)

−λ1

∫ u1
0 Φ(u1 − z1,u2)dH1(z1)−λ2

∫ u2
0 Φ(u1,u2 − z2)dH2(z2)

−λ3

∫ u1
0

∫ u2
0 Φ(u1 − z1,u2 − z2)dH1(z1)dH2(z2).

(11)

EXPONENTIALLY DISTRIBUTED CLAIMS

In this case the distribution functions in (10) are again exponential, i.e.,

H1(z1) = 1− e−
1−ρ1

μ1
z1 and H2(z2) = 1− e−

1−ρ2
μ2

z2 .

The equation (11) has the form:

c1
∂ 3

∂u2
1∂u2

Φ(u1,u2)+ c2
∂ 3

∂u1∂u2
2

Φ(u1,u2) =
(

λ1 +λ2 +λ3 − c1(1−ρ1)
μ1

− c2(1−ρ2)
μ2

)
∂ 2

∂u1∂u2
Φ(u1,u2)

− c1(1−ρ2)
μ2

∂ 2

∂u2
1

Φ(u1,u2)− c2(1−ρ1)
μ1

∂ 2

∂u2
2

Φ(u1,u2)

+ 1−ρ2
μ2

(
λ1 +λ3 − c1(1−ρ1)

μ1

)
∂

∂u1
Φ(u1,u2)

+ 1−ρ1
μ1

(
λ2 +λ3 − c2(1−ρ2)

μ2

)
∂

∂u2
Φ(u1,u2).

(12)

One solution of this equation is given by:

Φ(u1,u2) = 1− 1

1+θ1
e−

1−ρ1
μ1

θ1
1+θ1

u1 − 1

1+θ2
e−

1−ρ2
μ2

θ2
1+θ2

u2

Φ(u1,u2) satisfies the conditions Φ(∞,∞) = 1 and

Φ(u1,∞) = Φ1(u1) = 1− 1

1+θ1
e−

1−ρ1
μ1

θ1
1+θ1

u1

and

Φ(∞,u2) = Φ2(u2) = 1− 1

1+θ2
e−

1−ρ2
μ2

θ2
1+θ2

u2 ,
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where Φi(ui), i = 1,2 are the corresponding non-ruin probabilities of Ui(t).

In the case of λ3 = 0, i.e., when M(t) and N(t) are independent, the solution is given by

Φ(u1,u2) = 1− 1

1+θ1
e−

1−ρ1
μ1

θ1
1+θ1

u1 − 1

1+θ2
e−

1−ρ2
μ2

θ2
1+θ2

u2 +
1

1+θ1

1

1+θ2
e−

1−ρ1
μ1

θ1
1+θ1

u1e−
1−ρ2

μ2

θ2
1+θ2

u2 .

CONCLUSION

In this paper a risk model with a bivariate Pólya-Aeppli counting process is studied. An extended Bivariate Pólya-
Aeppli process, joint probability mass function and Bivariate Pólya-Aeppli process as birh process are introduced.
Essential part of this reserch is the application of the Bivariate Pólya-Aeppli process as a counting process in a
bivariate risk model. A case of exponentially distributed claims is also given.
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