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A B S T R A C T   

We present a study of solutions of the complex cubic–quintic Ginzburg-Landau equation 
(CCQGLE) and CCQGLE perturbed with the term responsible for the intrapulse Raman scattering 
(IRS). In both cases, using the method of first-order autonomous sub-equations, novel exact kink 
and antikink solutions have been identified. These solutions are represented in explicit analytic 
form. The numerical investigation of the influence of the IRS on the shape, amplitude, and ve-
locity of the right side of the observed "front" CCQGLE solution revealed a good correlation with 
the identical features predicted by the newly discovered exact kink solution.   

1. Introduction 

The main physical factors determining the propagation of optical pulses in fiber-optic communication systems [1–3] and the 
formation of ultrashort optical pulses in lasers (solid –state and fiber lasers) [4,5] are: loss, dispersion, self-phase modulation, spectral 
filtering, saturated net-loss, saturated gain, and self-amplitude modulation [6–8]. The basic mathematical model for the description of 
all these phenomena is the complex cubic–quintic Ginzburg-Landau equation (CCQGLE) [9] and the related concept of dissipative 
solitons [10]. 

Although in the beginning CCQGLE was considered a qualitative model for the description of the optical phenomena [11], it was 
found later on that such a model could be connected with the parameters of the experimental setups (the mode-locked fiber lasers [12, 
13]). Due to the importance of this equation, a huge interest has been focused on its solutions and their stability [14–20]. New 
analytical [15,16] and numerical solutions like pulsating solutions: plain pulsating, creeping, and erupting (exploding) solutions [17, 
18] have been identified. Exact and numerical solutions of CCQGLE have been reviewed in [9,14,19]. 

A lot of investigations have been devoted to the study of the influence of different high-order effects on the above solutions [6–8]. 
An important higher-order effect is the stimulated Raman self-scattering of femtosecond optical solitons, experimentally discovered in 
[21,22]. This effect is also called intrapulse stimulated Raman scattering or simply intrapulse Raman scattering (IRS) [6,7,23,24]. In 
this regime of stimulated Raman scattering, the spectrum of a high-power ultrashort laser pulse proves to be so broad that it covers the 
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band of Raman resonances of the medium. In this case, the Stokes spectral component of the field shifted by the frequency of molecular 
vibrations is contained within the pump pulse itself. The amplification of low-frequency Stokes components in the field of 
high-frequency anti-Stokes spectral components of the same soliton pulse results in a continuous shift of its spectrum known as soliton 
Raman self-frequency shift [6,7,21–24]. The influence of intrapulse Raman scattering on the different solutions of the CCGLE and 
CCQGLE has been actively studied ([25–27] and referenced therein). The kink solution represents an optical front that preserves its 
shape when propagating through optical fiber [28–31]. We note that the influence of intrapulse Raman scattering on the kink solutions 
has been studied earlier in [28–30]. 

The aim of this article is to explore the existence of a novel kink solution of CCQGLE and CCQGLE perturbed by the term responsible 
for the intrapulse Raman scattering (IRS). Using the approaches of Akhmediev and Afanasjev [15] and Uzunov and Georgiev [32], 
respectively, novel exact kink and antikink solutions of the corresponding Ginzburg-Landau equation have been identified by applying 
the method of first-order autonomous sub-equations, see Conte and Musette [19, pp. 373–406]. The method of first-order autonomous 
sub-equations [19] is a particular case of the method of differential constraints [33–36]. In the case of CCQGLE perturbed with the term 
responsible for the intrapulse Raman scattering (IRS) our study can be considered as an extension of the earlier study [32]. Using an 
ansatz of the general form of the traveling wave, the equation of the nonlinear Liénard – Van der Pol oscillator for the amplitude of the 
nonlinear wave has been derived. The corresponding phase function can be calculated through the amplitude function. In this study, 
novel analytical kink solutions of the equation of the nonlinear Liénard – Van der Pol oscillator and therefore to the CCQGLE perturbed 
with the term responsible for the IRS are derived. 

Next, we study numerically the influence of the IRS on the front solutions of CCQGLE. Moreover, we explore whether is it possible 
to identify the exact kink solution found here in the process of front propagation described by the numerical solution of CCQGLE. A 
numerical investigation of the CCQGLE has been performed through the split-step Fourier method (SSFM). This method has been 
proposed and developed by Tappert [37–39]. The SSFM has been further developed for the needs of consideration of higher-order 
effects [40–44]. Our numerical investigation utilizes Agrawal’s split-step Fourier method with two iterations [44,45]. Due to the 
periodic boundary condition of our numerical method, we deal with the propagation of a combination of obtained kink solution and its 
mirror image [29,31]. Our numerical way of analysis of kink propagation in the presence of IRS follows the approach of [29]. 

The paper is organized as follows: First, the basic equation, and description of the numerical method for its solution are shortly 
given in Section2. Reductions to the ordinary differential equations (ODEs) of the basic CCQGLE and CCQGLE with the term 
responsible for IRS are described in Section 3. The new kink and antikink analytical solutions are presented there as well. In Section 4 
we present the results of a numerical study of the influence of the intrapulse Raman scattering on the front solutions of CCQGLE. Here, 
we also explore the possibility to identify the novel kink analytical solution in the process of front propagation described by the 
numerical solution of CCQGLE. Finally, we make our conclusions in Section 5. 

2. Basic equation and its numerical calculation 

The basic equation which will be analyzed is the CCQGLE perturbed with IRS [6–9]: 

i
∂U
∂x

+
1
2

∂2U
∂t2 + |U|

2U = iδU + iβ
∂2U
∂t2 + iε|U|

2U − ν|U|
4U + iμ|U|

4U + γU
∂
∂t

(
|U|

2
)

(1)  

where U is the normalized envelope of the electric field, x and.. are the evolutional and moving time frame variables, δ is the linear loss- 
gain coefficient, β describes the spectral filtering, ε is the nonlinear gain or absorption coefficient, μ, is the higher-order correction term 
to the nonlinear amplification (absorption), which, if negative, accounts for the saturation of the nonlinear gain [9,15–18], ν is the 
higher order correction term to the nonlinear refractive index [13–15] (if negative, it corresponds to the saturation of the nonlinear 
refraction index [9,15–18]). In this equation, we have implied that the group-velocity dispersion is anomalous. The parameter γ takes 
into account the effect of the IRS in the simplest quasi – instantaneous description [7]. Such a description of the IRS is valid for pulses 
shorter than 1 ps but wide enough to contain many optical cycles (pulse width ≥ 100fs) [7]. Eq. (1) assumes a frame of reference 
moving with the pulse. Eq. (1) (without the term related to the IRS) has been originally proposed as a qualitative model [11], but now, 
as has already been mentioned, it can be directly connected to the parameters of the experimental setups of the real mode-locked fiber 
lasers [12,13]. 

For the numerical solution of Eq. (1), we have used Agrawal’s split-step Fourier method with two iterations [44,45]. This method 
has shown the best robustness in long-range IRS modeling, which has been validated using a direct comparison of numerical results 
with analytical results from soliton perturbation theory [45]. The numerical parameters for our calculations are as follows: the number 
of samples: 216, time resolution 0.00244, frequency resolution 0.00625, constant step-size with value 10− 4. 

As a result of intensive investigations of CCQGLE, numerical in [9] and analytical in [20] some areas in the space of parameters 
(δ, β, ε, ν, μ) of Eq. (1) have been established (δ < 0,β > 0,ε > 0,ν < 0,μ < 0), in which there exist stable localized solutions of CCQGLE 
[9,20]. In what follows we will choose the value of these parameters in these areas. 

3. Reduction to ordinary differential equations and exact solutions 

One of the widely used methods for obtaining particular exact solutions to a partial differential equation in an explicit analytic form 
is to reduce it to ordinary differential equations. This is usually achieved through a suitable ansatz as it is done in the cases regarded 
below. Once such a reduction is accomplished, a great number of methods are available for determining exact solutions to the so- 
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obtained system of ordinary differential equations. In what follows, for that purpose we shall use the so-called method of first-order 
autonomous sub-equations (see [19]). It should be noted that this method is a particular case of the method of differential constraints 
(see [33,34,35, Chapter 4,36], and references therein). This method requires that the regarded system of equations be enlarged by 
appending an additional first-order autonomous equation such that the over-determined system obtained in this way be compatible. 

3.1. Kink-like solutions to Eq. (1) with γ = 0 

In [15] (see also, [16] and [9, Chapter 13]), stationary solutions of Eq. (1) with γ = 0 are sought in the form: 

U(x, t) = a(t)exp{id ln[a(t)] − iωx} (2)  

where d (the chirp parameter) and ω are real constants. After substituting Eq. (2) into Eq. (1) and separating real and imaginary parts, 
one obtains the following over-determined system of equations for the amplitude function a(t), namely: 

ωa+
(

1
2
+ βd

)

a′′ +
(

βd −
d2

2

)
a′2
a

+ a3 + va5 = 0 (3)  

δa −
(

d
2
− β

)

a′′ −
(

d
2
+ βd2

)
a′2
a

+ ε3a3 + μa5 = 0 (4)  

where the primes denote differentiation with respect to the variable t. The following assertion can be verified by direct computation. 
This system turned out to be compatible provided that the coefficients d, ω, ε, β, δ, μ and ν meet the compatibility conditions (10) 
obtained in [16]. Various such cases are found in [15] (see also, [16] and [9, Chapter 13]). Let us, however, check what would happen 
if we enlarge the system (3), (4) with a first-order autonomous sub-equation of the form: 

a′ +A1a+A3a3 = 0 (5)  

where A1 and A3 are some real constants. In fact, this is a constant coefficient Bernoulli equation with n = 3. Then, one can easily verify 
by direct computation that under the conditions: 

δ =
2ω

(
d2β + d − β

)
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3d + 2
(
d2 − 2

)
β

d2 − 6dβ − 2

μ =

(
d2 − 4dβ − 1
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d2β + 2d − 3β

)

2ω
(
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(
d2 − 8dβ − 3
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)

2ω
(
d2 − 6dβ − 2
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̅̅̅̅̅̅
2ω
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̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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√ , A3 = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2 − 4dβ − 1

√

̅̅̅̅̅̅
2ω

√ (
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),

(6) 

the Eqs. (3) –(5) are compatible, and each solution of an equation of the form: 

a′ ±

̅̅̅̅̅̅
2ω

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2 − 4dβ − 1

√ a ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2 − 6dβ − 1

√

̅̅̅̅̅̅
2ω

√ (
d2 − 6dβ − 2

)a3 = 0 (7) 

satisfies both Eqs. (3) and (4). In this way, we obtain new stationary solutions of the form (2) to Eq.(1) with γ = 0, which are given 
through the amplitude functions of the form: 

Fig. 1. Solutions of types a) kink and b) anti-kink of the form (8). Here, C1 = 1, t0 = 0, d = 1, ω = 1 and β = − 0.11.  
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a(t) =
1̅̅̅
̅̅̅̅̅

ν(t)
√ , ν(t) = C1exp

[

±
2

̅̅̅̅̅̅
2ω

√
(t + t0)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2 − 4dβ − 1

√

]

−
d2 − 4dβ − 1

2ω
(
d2 − 6dβ − 2

) (8)  

where C1 and t0 are arbitrary constants. These solutions, which turned out to be kink-like (see Fig. 1) are missed in [9,15,16]. 
In this case, kink and antikink solutions are mirror images of each other. 

3.2. Kink-like solutions to Eq. (1) with γ ∕= 0 

In [32], it is shown that the complex partial differential Eq. (1) admits reduction to a system of ordinary differential equations 
through the ansatz: 

U(x, t) = u(ξ)exp(i(f (ξ)+Kx)) (9)  

where ξ = t − Mx, and M and K are real numbers. u(ξ) and f(ξ) are real-valued functions of the similarity variable ξ. Indeed, by 
substituting (9) into (1) and separating the real and imaginary parts of the obtained expression one obtains the following nonlinear 
system of ordinary differential equations for the amplitude and phase functions u(ξ) and f(ξ), namely: 

1
2

u′′ + 2β u′ f ′ − 2γu2u′ − Ku+ Mu f ′ − (1/2) u (f ′)2
+ β u f ′′ + u3 + νu5 = 0 (10)  

βu′′ − f ′ u′ +Mu′ + δu − βu(f ′)2
− (1/2)uf ′′ + εu3 + μu5 = 0 (11)  

where the primes denote now differentiation with respect to the similarity variable ξ. 
Using results presented in [32] for γ ∕= 0, it can be verified by direct computation that under the condition: 

v =
μ
2β

, M =

(
1 + 4β2)(ε − 2β)

4β2γ
; K =

(
1 + 4β2)(ε − 2β)2

16β4γ2
−

δ
2β

(12) 

the differential constraint: 

f ′ =
M

1 + 4β2 +
2βγ

1 + 4β2u2 +
c0

u2 exp
(

2β − ε
βγ

ξ
)

(13)  

where c0 is a real constant, is compatible with the system of Eqs. (10), (11) and leads to the single differential equation: 

u′′ +
(
c2 + c4u2)u′ + c1u+ c3u3 + c5u5 = c0exp

(
2β − ε

βγ
ξ
)[

c0

u3 exp
(

2β − ε
βγ

ξ
)

+
4βγ

1 + 4β2 u
]

(14) 

for the amplitude function u(ξ), where: 

c1 =
δ
β
−
(ε − 2β)2

16β4γ2
, c2 =

ε − 2β
βγ

, c3 =
2 + 4βε
1 + 4β2 , c4 = −

4γ
1 + 4β2, c5 =

μ
β
−

4β2γ2

(
1 + 4β2)2 (15) 

In other words, each solution (u , f) of the systems (13), (14) is a solution of the system (10), (11) as well provided that the 
conditions (12) hold. Eq. (13) implies the following expression for the phase function: 

f =
2βγ

1 + 4β2

∫

u2dξ+
M

1 + 4β2 ξ+ f0 + c0

∫
1
u2exp

(
2β − ε

βγ
ξ
)

dξ (16)  

wheref0 is a real constant, and hence it is determined by quadratures once the amplitude function u(ξ) is found. For that purpose, we 
have to solve Eq. (14). Hereafter, assuming c0 = 0 we are going to analyze some possibilities for obtaining exact solutions of the 
respective equation of the form (14), i.e.: 

u′′ +
(
c2 + c4u2)u′ + c1u+ c3u3 + c5u5 = 0 (17) 

Let us remark that Eq. (17) is of Liénard type [46]. The interested reader is referred to the recent papers [47,48] for a detailed 
analysis of the integrability and solvability of those types of equations. 

In order to obtain particular solutions to Eq. (17) we will look for the conditions under which this equation is compatible with a sub- 
equation of the form: 

u′ +B1u+B3u3 = 0, (18)  

where B1 and B3 are some real constants. This is again a constant coefficient Bernoulli equation with n = 3. Now, substituting the 
derivatives of the function u expressed via equation Eq. (18) into (17) one can easily verify by direct computation that under the 
conditions: 
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√
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1
6

(
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c2
4 − 12c5

√ )

(20) 

each solution of the respective Eq. (18) is a solution to Eq. (17) as well. Thus, we found kink-like solutions (see Fig. 2) of the form (9) 
to equations of the form (1), which are given through the following amplitude function: 

u(ξ) =
1̅̅̅
̅̅̅̅̅̅

v(ξ)
√ (21)  

v(ξ) =
c2

4 ± c4
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2

4 − 12c5
√
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(
c4 ±
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√ )+ C2exp

⎡

⎣

(
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c2

4 − 12c5
√

± c2c4 ∓ 6c3
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2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2
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√

∓ c4
(ξ+ ξ0)

⎤

⎦ (22)  

where C2 and ξ0 are arbitrary constants. 
The presented in Fig. 2a exact kink solution given by Eq. (21) will be used in the next section as a part of the initial condition for 

numerical simulations. Note that the choice of values of parameters:δ = − 0.0145769; β = 0.28; ε = 0.742; ν = − 0.482143; μ  
= − 0.2771; γ = 0.65 satisfy earlier mentioned conditions [9,20] for observing stable solutions. 

4. Numerical results 

This section aims to present a numerical study of the influence of the intrapulse Raman scattering on the front solutions of CCQGLE. 
Moreover, we explore whether is it possible to identify the novel exact solution of Eq. (21) in the process of front propagation described 
by the numerical solution of CCQGLE. In what follows, we will have a special attitude to the described above example of kink (front) 
solutions predicted by Eq. (21). 

According to [29,31] our initial condition will be formed as a construction (combination) of our exact kink solution and its mirror 
image. (This mirror image could be thought of as an “antikink” [29]). Such kind of formation (in some places we use common names 
for the formation - front or kink instead of fronts or kink and antikink) can be considered also as two fronts propagating from each other 
[31]. We could expect that the trailing part of the formation is related to the evolution of the exact kink solution. An important 
parameter in such a construction of the initial condition is a separation (spacing) between kink and antikink. This separation de-
termines the initial time-width of our pulselike input and in our consideration, it has a magnitude of 2t0. 

Before considering the influence of the IRS on the front propagation, however, we will present propagation of the front solution of 
CCQGLE with the parameters δ = − 0.0145769,β = 0.28, ε = 0.742,ν = − 0.482143,μ = − 0.2771 but in the condition of the 
absence of IRS i.e.γ = 0. Considering such a case is necessary to establish the influence of the IRS- see Fig. 3. 

In Fig. 3a and Fig. 3b we clearly see, that after initial adjustment a stationary and stable front solution is formed. Precise con-
servation of the transverse profile of the solution is well observed in Fig. 3(b). (This result is similar to the ones of [31]). Note that the 
appearance of a sink plateau in the middle part of the front has been attributed to the chirp of continuous wave solution between kink 
and antikink [31]. The important influence of all nonlinear effects on the spectrum is illustrated in Fig. 3(c). 

In the next Fig. 4 is presented the influence of IRS on the above front propagation. It should be mentioned that, as above, the value 

Fig. 2. Solutions of types: a) kink and b) anti-kink of the form (21). Here,C2 = 0.03143, ξ0 = 0,M = 1.17286,K = 1.07322. Parameters: δ = −

0.0145769, β = 0.28, ε = 0.742, ν = − 0.482143,μ = − 0.2771,γ = 0.65. 
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of the parameter describing the influence of IRS coincides with that predicted from our analytical solution. 
It is seen in Fig. 4a and Fig. 4b that, as a result of the influence of IRS the stable front propagation in Fig. 3 is considerably disturbed. 

The temporal profile of the numerical solution during the front propagation is separated conditionally on the left and right parts. The 
left part, (“antikink”) forms a stable shape and amplitude during its propagation, while the right part (“kink”) after a short initial 
distance, recovers its original (initial) shape and amplitude, corresponding exactly to that presented in Fig. 2а exact kink solution of 
CCQGLE. The value of this amplitude is around 1.2 - the same as the value of our exact kink solution. Based on these observations we 
could connect the right part of our deformed front with the exact kink solution found in the previous section. Finally, in addition to the 
influence of all nonlinear effects on the spectrum, a transfer of energy to lower frequencies attributed to IRS can be observed (see 
Fig. 4c). In Fig. 4d, a time-shifted exact kink solution (so that it can be compared with the numerical solution) taken from Eq. (21) and 
part of the CCQGLE numerical solution taken around the right edge of the formation at x = 20 are presented. What we see in Fig. 4d is 
the good correlation between the obtained numerical results for the shape and amplitude of the right edge of the front and those 
characteristics of the predicted novel kink solution. Such correlation is observed after a short initial stage of evolution which leads to 
the appearance in the right part of the formation of a relatively stable kink, matching in shape, amplitude and velocity with the 
analytically represented by Eq. (21) kink solution. In the following figures - Fig. 5 and Fig. 6, we will also see that with different width 
and shape of the initial condition, this characteristic right part of the formation corresponding to the kink solution from Eq. (21) 
appears in each of the CCQGLE numerical solutions presented. 

As has been mentioned above, an important parameter in the construction of the initial condition is a separation (spacing) between 
kink and antikink, which determines the initial width of our pulselike input. Below, Fig. 5 shows our numerical results for two 
additional values of t0, namely 1 and 20. 

As can be seen in Fig. 5 the change of initial separation (spacing) between kink and antikink (in that interval) does not result in the 
qualitative change from the observed behavior in Fig. 4. Moreover, we could see that the amplitudes of the right and left parts of our 
propagating front remain the same with the right-hand edge (the kink) always keeping its initial parameters corresponding to the exact 
solution of the CCQGLE. 

In the expression of the similarity variable ξ = t − Mx, the real number.. describes the “velocity” with which the kink and antikink 
move in time t during the propagation distance x. It is seen that in Fig. 3 (for γ = 0) the velocities of the two fronts propagating from 

Fig. 3. Illustration of: (a) front propagation with t0 = 10; (b) the amplitude at fixed distances: x = 0, (black solid line), 10 (red dash line) and 20 
(blue short-dash line); and (c) the spectrum amplitude at fixed distances 0 (black solid line) and 20 (blue short-dash); Parameters: δ = − 0.0145769,
β = 0.28, ε = 0.742, v = − 0.482143, μ = − 0.2771,γ = 0. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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each other are constant and with equal magnitude. Our numerical estimation for the velocities of left/right fronts is: 1.2048/1.2048. 
What we observe in Fig. 4 and Fig. 5 is that under the influence of IRS, the velocities of the kink-antikink pair are constant with 
distance, but now different in magnitude and larger for the kink. Numerically computed values for the velocities kink/antikink at x =
20 and t0 = 1 are: 1.17/0.98; at t0 = 10: 1.17/0.98; and at t0 = 20: 1.29/1.08. Calculation of the real number M into Eq. (12) gives M =
1.17286. It is seen also that a very good correlation between the analytical prediction of M for t0 = 1 and t0 = 10, and its numerically 
measured values exists. Note that the velocities in the case γ = 0 exceed those with γ ∕= 0. 

Finally, we study the stability of the propagation of the exact solution with respect to the initial condition through the usage of a 
super-Gaussian pulse U(t) = exp[ − (t/5)4

] as an initial input. The result is presented in Fig. 6. 
Comparing the results presented in Fig. 6a, b with those in Fig. 4 we conclude that the propagation of a super-Gaussian pulse is very 

similar to the propagation our kink-antikink formation with the same width. This small dependence from the initial condition in the 
equation like CCGLE has been mentioned earlier. 

5. Conclusion 

The paper reports the results of a combined analytical and numerical study of the complex cubic–quintic Ginzburg-Landau equation 
(CCQGLE) and CCQGLE perturbed with the term responsible for the intrapulse Raman scattering (IRS). Using the approaches of 
Akhmediev et al. [9,15,16] and Uzunov and Georgiev [32], novel exact kink and antikink solutions of these types of complex 
Ginzburg-Landau equations are identified by applying the method of first-order autonomous sub-equations, see Conte and Musette 
[19]. The foregoing solitary wave solutions are represented in explicit analytic form. Results of a numerical study of the influence of 
the IRS on the front solutions of CCQGLE are presented too. Agrawal’s split-step Fourier method with two iterations [44,45] was 
applied in our numerical analysis. We have explored the possibility to identify the novel kink solution given by Eq. (21) in the process 
of front propagation described by the numerical solution of CCQGLE. A good correlation between obtained numerical results for the 
shape, amplitude, and velocity of the right part of the front and those characteristics of the predicted novel kink solution has been 
established. It has also been established that such a good correlation between the right part of the propagating front and the char-
acteristics of novel kink solutions conserves for the following different initial conditions: a) formation of kink and antikink, and b) 

Fig. 4. (a) The front propagation with t0 = 10; (b) the corresponding amplitude at fixed distances: x = 0, (black solid line), x = 10 (red dash line) 
and x = 20 (blue short-dash line); c) the spectrum amplitude at x = 0 (black solid line) and x = 20 (blue short-dash line); (d) А comparison between 
the exact kink solution from Eq. (21) (solid black line) time-shifted close to the numerical curve and a slice of the numerical solution taken around 
the right edge of the formation at x = 20 (blue short-dash line) is presented; Here: δ = − 0.0145769,β = 0.28,ε = 0.742,ν = − 0.482143,μ 
= − 0.2771 and γ = 0.65. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. The fronts propagation (a) for.. and (c) t0 = 20; the temporal shapes at fixed distances x = 0 (black solid line), x = 10 (red dash line) and x 
= 20 (blue short-dash line) b) for t0 = 1 and d) t0 = 20. Here δ = − 0.0145769, β = 0.28, ε = 0.742, v = − 0.482143, μ = − 0.2771 and γ = 0.65. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Illustration of: (a) front propagation for the initial condition U(t) = exp[ − (t/5)4
]; b) the temporal shapes at fixed distances: x = 0, (black 

solid line), x = 10 (red dash line) and 20 (blue short-dash line). Here the values of the parameters are: δ = − 0.0145769, β = 0.28, ε = 0.742, v =
− 0.482143, μ = − 0.2771 and γ = 0.65. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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super-Gaussian pulses. 
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