AN APPLICATION OF THE QUADRILATERAL'S GEOMETRY IN SOLVING COMPETITIVE PLANIMETRIC PROBLEMS

Jordan Tabov, Asen Velchev, Rayna Alashka and Sevdalin Tsvetanov

Abstract

In the present publication, which can be considered as a continuation of the paper V. Nenkov, St. Stefanov, H. Haimov, An application of quadrilateral's geometry in solving competitive mathematical problems, Synergetics and reflection in mathematics education, Proceedings of the anniversary international scientific conference, Pamporovo, October 16-18, pp. 121-128, 2020, the application of the geometry of quadrilateral to the solution of exams is considered. Three examples given in the magazine "Mathematics and Informatics" have been selected, the solutions of which illustrate well the benefit of studying the recently discovered properties of convex quadrilaterals. Two solutions to the tasks are presented for comparison. The first, proposed by participants in the competition, are relatively complex and longer, and the second-based precisely on elements of the geometry of quadrilateral, are significantly simpler and shorter. These solutions are based on properties of quadrilaterals associated with some of their remarkable points.

MathEduc Subject Classification: G43 AMS Subject Classification: 97G40 Key words and phrases: Convex quadrilateral; incenter; pseudocenter; inverse isogonality; competitive planimetric problems.

1. Introduction

Unlike the well-studied triangle, an arbitrary convex quadrilateral has remained an understudied geometric figure until now. In a series of papers, significant progress was made in the study of convex quadrilaterals. Numerous remarkable points, lines and circles, and two universal transformations were found. Using their properties, the classical theorems of Mickel, Gauss, Ober and Steiner on complete quadrilaterals [8] and a theorem of Carnot on triangles [3] were generalized. A generalization of Steiner's trapezoid theorem was also found [1], as well as an addition to Brocard's inscribed quadrilateral theorem [2]. Two popular theorems were also transferred from triangles to quadrilaterals: the cosine theorem and the so-called cotangent theorem [3]. The obtained results proved to be useful in solving non-standard tasks. We will focus on three tasks from the competition of the "Mathematics and Informatics" magazine. We will see that knowing even only a part of the notable points of a quadrilateral can contribute to simplifying and shortening of solutions of similar problems. We will first introduce these properties of two remarkable points in a convex quadrilateral, which will help us find short solutions to the three competition problems in question.

2. Incenter of an arbitrary quadrilateral

It was proved in [7], that an arbitrary convex quadrilateral $A B C D$ has a unique point J, for which (Fig. 1):

$$
\measuredangle J A D+\measuredangle J C D=\frac{1}{2}(\measuredangle A+\measuredangle C), \quad \measuredangle J B A+\measuredangle J D A=\frac{1}{2}(\measuredangle B+\measuredangle D) .
$$

As it is easy to check, in a circumscribed quadrilateral this point (called an incenter) coincides with the center of its inscribed circle.

Fig. 1. The incenter

Fig. 2. Property 3

The incenter has the following properties, that will used here:
Property 1. The following equations hold [7]:

$$
\frac{A J}{C J}=\frac{\sqrt{A B \cdot A D}}{\sqrt{B C \cdot C D}}, \quad \frac{B J}{D J}=\frac{\sqrt{A B \cdot B C}}{\sqrt{A D \cdot D C}} .
$$

Property 2. The circumcircles of $\triangle A J D$ and $\triangle B J C$ touch each other, as well as those of $\triangle A J B$ and $\triangle C J D[7]$.

3. Pseudocenter of a quadrilateral

It was proven in [4] that there is a unique point O in the plane of any convex quadrilateral, which satisfies the equalities:

$$
A O \cdot R_{B C D}=B O \cdot R_{C D A}=C O \cdot R_{D A B}=D O \cdot R_{A B C}
$$

where R_{\triangle} is the circumradius of triangle \triangle (Fig. 2). This point is called the pseudocenter of the quadrilateral.

It is easy to check that the pseudocenter of an inscribed quadrilateral coincides with the center of its circumscribed circle. It has the following properties.

Property 3. The orthogonal projections of the pseudocenter O to the lines that the sides of the quadrilateral lie on, form a parallelogram [4] (Fig. 2).

Property 4. The following equalities hold [8]:

$$
\begin{array}{lr}
\measuredangle A O B=\measuredangle A D B+\measuredangle A C B, \quad \measuredangle D O C=\measuredangle D A C+\measuredangle D B C, \\
\measuredangle A O D=\measuredangle A B D+\measuredangle A C D, \quad \measuredangle B O C=\measuredangle B A C+\measuredangle B D C .
\end{array}
$$

4. Inverse isogonality

Let $A B C D$ be an arbitrary convex quadrilateral, such that the extensions of each couple of its opposite sides intersect: $A D \cap B C=U$ and $A B \cap D C=V$.

Fig. 3. Inverse isogonality It is known that the circumcircles of $\triangle A B U$, $\triangle D C U, \triangle A B V$ and $\triangle B C V$ intersect at one point M, called Mikel's point (Fig. 3). Let us assume that the vertex C lies between the points U and B, and between D and V. The composition of the symmetry g with the bisector axis of $\measuredangle D M B$ and the inversion I with the pole M and degree $r^{2}=B M \cdot D M$, is called the inverse isogonality with respect to $A B C D$ and it is denoted as $\operatorname{I\circ } \circ\left(M ; r^{2}\right)$ [5].

Property 5. The incenter of a convex quadrilateral is a fixed point of the inverse isogonality, i.e. $I \circ g(J)=J[7]$.

5. Competitive planimetric problems and different solutions of them - with and without the quadrilateral's geometry

Problem 1. Let $A B \cdot C D=A D \cdot B C$ hold in the convex quadrilateral $A B C D$. For its interior point O, the following equalities are satisfied: $\frac{A O}{C O}=\frac{A D}{C D}$ and $\frac{B O}{D O}=\frac{A B}{A D}$. If k_{1}, k_{2}, k_{3} and k_{4} are the circumcircles of $\triangle A D O, \triangle A B O$, $\triangle B C O$ and $\triangle C D O$, respectively, prove that k_{1} touches k_{3} and k_{2} touches k_{4} (Fig. 4).

Solution I. Denote the angles at A, B, C and D, respectively, by α, β, γ and δ. We will prove that the equalities $A B \cdot C D=A D \cdot B C$ and $\frac{A O}{C O}=\frac{A D}{C D}$ lead to the equality $\measuredangle A D O+\measuredangle A B O=\frac{1}{2}(\beta+\delta)$. Indeed, we have $\frac{A D}{C D}=\frac{A B}{C B}$ and $\frac{A D}{C D}=\frac{A O}{C O}$, and therefore $\frac{A D}{C D}=\frac{A B}{C B}=\frac{A O}{C O}=k$. Let the points M and N lie on the line $A C$, and $\frac{A M}{C M}=\frac{A N}{C N}=k$. The points D, B and O lie on the Apollonius circle c of $A C$ with ratio k ($M N$ is its diameter). As $D M$ is the bisector of $\measuredangle A D C$, then

$$
\measuredangle C D O-\measuredangle A D O=(\measuredangle C D M+\measuredangle O D M)-(\measuredangle A D M-\measuredangle O D M)=2 \measuredangle O D M
$$

i.e., $\measuredangle C O D-\measuredangle A D O=2 \measuredangle O D M$.

Fig. 4. Problem 1
Similarly, $B M$ is the bisector of $\measuredangle A B C$ and $\measuredangle A B O-\measuredangle C B O=2 \measuredangle O B M$. But $\measuredangle O D M=\measuredangle O B M$ (as inscribed in the Apollonius circle c). Therefore $\measuredangle C D O-$ $\measuredangle A D O=\measuredangle A B O-\measuredangle C B O$, and then

$$
\begin{aligned}
\measuredangle A D O+\measuredangle A B O & =\measuredangle C D O+\measuredangle C B O \\
& =\frac{1}{2}(\measuredangle A D O+\measuredangle A B O+\measuredangle C D O+\measuredangle C B O)=\frac{1}{2}(\beta+\delta) .
\end{aligned}
$$

Analogously, from $A B \cdot C D=A D \cdot B C$ and $\frac{B O}{D O}=\frac{A B}{A D}$ it follows that $\measuredangle B A O+$ $\measuredangle B C O=\frac{1}{2}(\alpha+\gamma)$. Using the resulting equalities we get

$$
\begin{aligned}
\measuredangle A O B & =180^{\circ}-\measuredangle B A O-\measuredangle A B O \\
& =180^{\circ}-\left(\frac{\alpha+\gamma}{2}-\measuredangle B C O\right)-\left(\frac{\beta+\delta}{2}-\measuredangle A D O\right)=\measuredangle B C O+\measuredangle A D O
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\measuredangle A O B=\measuredangle B C O+\measuredangle A D O \tag{*}
\end{equation*}
$$

Let X_{1} be an internal point of $\measuredangle A O B$, such that $\measuredangle A O X_{1}=\measuredangle A D O$. Then the line $O X_{1}$ touches the circumcircle k_{1} of $\triangle A D O$ at the point O. Since from (*) we have $\measuredangle B O X_{1}=\measuredangle A O B-\measuredangle A O X_{1}=\measuredangle A O B-\measuredangle A D O=\measuredangle B C O$, therefore $O X_{1}$ touches at O the circumcircle k_{3} of $\triangle B O C$. Hence, k_{1} and k_{3} meet at one point. Analogously, the same is proved for k_{2} and k_{4}.

Solution II. What we want to prove in the problem (that the circles k_{1} and k_{3} are tangent, and the circles k_{2} and k_{4} are also tangent) tells us that the point O mentioned in the condition must coincide with the incenter J of the quadrilateral $A B C D$ (according to property 2). It remains to prove that, for the incenter J the equality $\frac{A J}{C J}=\frac{\sqrt{A D \cdot A B}}{\sqrt{C D \cdot B C}}$ is fulfilled (from Property 1). But, given the condition
$A B \cdot C D=A D \cdot B C$, i.e. $\frac{A D}{C D}=\frac{A B}{B C}$, we obtain $\frac{\sqrt{A D \cdot A B}}{\sqrt{C D \cdot B C}}=\frac{A B}{B C}=\frac{A D}{B D}$ and therefore $\frac{A J}{C J}=\frac{A B}{B C}=\frac{A D}{C D}$. But we also have that $\frac{A O}{C O}=\frac{A D}{C D}$ (by the condition), therefore $\frac{A J}{C J}=\frac{A O}{C O}$. Therefore, both J and O lie on the same Apollonius circle for the segment $A C$. Analogously, from $\frac{B O}{D O}=\frac{A B}{A D}$ it follows that J and O lie on the same Apollonius circle for $B D$. Therefore $O \equiv J$, hence the problem is solved (according to Property 2).

Problem 2. I is the center of the inscribed circle in the circumscribed quadrilateral $A B C D$. The extensions of its sides $A D$ and $B C$ intersect at point U. If M is the second common point of the circumcircles of $\triangle A B U$ and $\triangle D C U$, prove that $M I=\sqrt{M B \cdot M D}$.

Fig. 5. Problem 2

Fig. 6. Problem 2

Solution I. We will prove the following
Lemma. If k is the circumcircle of $\triangle A B C$, the point O is the center of the inscribed circle of $\triangle A B C$ and T the second common point of the line $C O$ and k, then $T A=T B=T O$.

Proof. $C O$ is the angle bisector of $\measuredangle A C B$. Therefore, T is the midpoint of the arc $A B$ (Fig. 5), and the chords $T A$ and $T B$ are equal. If $\measuredangle C A B=2 x$ and $\measuredangle A C B=2 y$, then we have

$$
\measuredangle O A T=\measuredangle O A B+\measuredangle B A T=x+\measuredangle B C T=x+y
$$

Therefore, $\triangle O A T$ is isosceles, with $O T=A T$. Hence $T A=T B=T O$.

Let us go back to the problem's solution. Denote $\measuredangle A U B=\gamma, \measuredangle M U A=\varphi$ (Fig. 6), the circumcircles' radii of $\triangle A B U$ and $\triangle D C U$ with R and r, and with K and P, respectively, the second intersection points of these circles with $U I$. Let O be the the center of the inscribed circle of $\triangle D C U$. From the previous lemma it follows that $K I=K A$ and $P O=P C=P D$. Then P is the circumcenter of $\triangle O C D . D I$ and $D O$ are bisectors of adjacent angles, and therefore $\measuredangle O D I=90^{\circ}$.

Analogously, $\measuredangle O C I=90^{\circ}$. Hence the quadrilateral $O D I C$ is inscribed in a circle of center P. Hence, $P I=P D$. Now from the sine theorem for the triangles $M P U, M K U, D P U, A K U$ and $M B U$, we obtain:

$$
\begin{gathered}
M P=2 r \sin \left(\varphi+\frac{\gamma}{2}\right), \quad M K=2 R \sin \left(\varphi+\frac{\gamma}{2}\right), \quad P I=D P=2 r \sin \frac{\gamma}{2} \\
K I=K A=2 R \sin \frac{\gamma}{2}, \quad M D=2 r \sin \varphi, \quad M B=2 R \sin (\varphi+\gamma)
\end{gathered}
$$

From these equalities, it follows that $M P: M K=P I: K I=r: R$. Therefore, $M I$ is an angle bisector in $\triangle M K P$. Now we express the bisector in the following way:

$$
\begin{aligned}
M I^{2} & =M P \cdot M K-P I \cdot K I=4 r \cdot R \sin ^{2}\left(\varphi+\frac{\gamma}{2}\right)-4 r \cdot R \sin ^{2} \frac{\gamma}{2} \\
& =4 r \cdot R \sin \varphi \sin (\varphi+\gamma)=M D \cdot M B
\end{aligned}
$$

This proves the required statement.
Solution II. The center I of the inscribed circle in $A B C D$ is its incenter (Fig. 6), and the common point M of the circumcircles of $\triangle A B U$ and $\triangle D C U$ is its Mikel point. By definition, the pole of the inverse isogonality $I \circ g\left(M ; r^{2}\right)$ with respect to the quadrilateral $A B C D$ is M. Its degree is $r^{2}=M D \cdot M C$. The incenter I is a fixed point for $I \circ g\left(M ; r^{2}\right)$, i.e. $I \circ g(I)=I$ (according to Property 5). Therefore, $r^{2}=M I \cdot M(I \circ g(I))=M I \cdot M I$, i.e., $r^{2}=M I^{2}$. Thus we obtain the equality $M I^{2}=M D \cdot M C$, that we had to prove.

Problem 3. H is the orthocenter and R is the radius of circumscribed circle about an acute-angled $\triangle A B C$, for which $\measuredangle C A B=\alpha$ and $\measuredangle A B C=\beta$. If D is the point in the half-plane with the border line $A B$, not containing the triangle, for which $\measuredangle A D C=180^{\circ}-2 \beta$ and $\measuredangle B D C=180^{\circ}-2 \alpha$, prove that $H D=R$.

Solution I. If $\measuredangle B C A=\gamma$, then $\measuredangle A D B=\measuredangle A D C+\measuredangle B D C=2 \gamma$ (Fig. 7). We obtain easily: $A H=$ $2 R \cos \alpha, B H=2 R \cos \beta$ and $C H=$ $2 R \cos \gamma$. Let us prove that the orthogonal projections M, N, P and Q of H, respectively, on the lines $A D, D B, B C$ and $C A$ form a parallelogram.

Fig. 7. Problem 3

We have

$$
\begin{aligned}
Q M & =A H \sin \measuredangle Q A M=2 R \cos \alpha \cdot \frac{C D}{A C} \sin \measuredangle A D C \\
& =\frac{C D}{\sin \beta} \cos \alpha \sin 2 \beta=2 C D \cos \alpha \cos \beta .
\end{aligned}
$$

Analogously, we obtain $P N=2 C D \cos \alpha \cos \beta$. Hence, $Q M=P N$.
On the other hand, we have

$$
\begin{aligned}
\measuredangle A Q M+\measuredangle B P N & =\measuredangle A H M+\measuredangle B H N=\measuredangle A H B-\measuredangle M H N \\
& =\left(180^{\circ}-\gamma\right)-\left(180^{\circ}-2 \gamma\right)=\gamma,
\end{aligned}
$$

i.e., $\measuredangle A C B=\measuredangle A Q M+\measuredangle B P N$.

Now let $C S \| Q M$. From $\measuredangle P C S=\measuredangle A C B-\measuredangle A C S=\measuredangle A C B-\measuredangle A Q M=$ $\measuredangle B P N$, it follows that $C S \| P N$, and therefore $Q M \| P N$, which proves that $M N P Q$ is a parallelogram and $M N=Q P$. We get

$$
H D=\frac{M N}{\sin \measuredangle M D N}=\frac{Q P}{\sin 2 \gamma}=\frac{C H \cdot \sin \gamma}{\sin 2 \gamma}=\frac{2 R \cos \gamma \sin \gamma}{2 \sin \gamma \cos \gamma}=R .
$$

With that, the problem is solved.
Solution $I I$. We will prove that the orthocenter H of $\triangle A B C$ coincides with the pseudocenter O_{1} of $A D B C$. From Property 4 of the pseudocenter, we have

$$
\measuredangle C O_{1} B=\measuredangle C A B+\measuredangle C D B=\alpha+\left(180^{\circ}-2 \alpha\right)=180^{\circ}-\alpha .
$$

But also $\measuredangle C H B=180^{\circ}-\alpha$, and so $\measuredangle C O_{1} B=\measuredangle C H B$. Therefore the pseudocenter O_{1} and the orthocenter H lie on the same arc of a circle with endpoints B and C. Analogously, it is proved that they also lie on the same arc of a circle with endpoints A and C. Therefore $O_{1} \equiv H$. From Property 3 of the pseudocenter, we can now conclude that the orthogonal projections M, N, P and Q of H, respectively on the lines $A D, D B, B C$ and $C A$, form a parallelogram. Therefore $M N=Q P$ and the proof can be finished as in the previous solution.

6. Conclusion

The geometry of the quadrilateral also helps to make easier solving problems given in various other competitions, including problems from International Mathematical Olympiads. However, they require an even more detailed knowledge of it, so we postpone the consideration of these tasks to some other paper.

Acknowledgements

The authors express gratitude to the referee whose suggestions helped in improving the paper.

REFERENCES

[1] H. Haimov, A generalization of Steiner's theorem, Mathematics, 6 (1996), 9-15.
[2] H. Haimov, The Brocardians - notable points in the quadrilateral, Mathematics and Informatics, 6 (2001), 17-23.
[3] H. Haimov, H. Cosine and cotangent theorems for quadrilateral and polygon. Generalization of a Carnot theorem, Mathematics Plus, 1 (2022), 52-64.
[4] V. Nenkov, St. Stefanov, H. Haimov, Pseudocenter and orthocenter - notable points in the quadrilateral, Mathematics and Informatics, 6 (2016), 614-625.
[5] V. Nenkov, St. Stefanov, H. Haimov, Geometry of the quadrilateral. Miquel's point. Inverse isogonality, Mathematics and Informatics, 1 (2017), 81-93.
[6] V. Nenkov, St. Stefanov, H. Haimov, An application of quadrilateral's geometry in solving competitive mathematical problems. Synergetics and reflection in mathematics education, Proceedings of the anniversary international scientific conference, Pamporovo, October 1618, 2020, pp. 121-128.
[7] St. Stefanov, Incenter of a quadrilateral, Mathematics and Informatics, 4 (2018), 338-351.
[8] St. Stefanov, Investigatory approach in the coaching talented competitors for mathematics contents and concourses, PhD Dissertation, Faculty of Mathematics and Informatics, Shumen's University "Episkop Konstantin Preslavsky", 2020.
J.T.: Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, Sofia 1113, "Acad. Georgi Bonchev" str. 8, Bulgaria

E-mail: tabov@math.bas.bg
A.V.: Technical University of Sofia, Faculty of Applied Mathematics and Informatics, Sofia 1756, bul. "Kliment Ohridski" 8, Studentski Kompleks, Bulgaria

E-mail: asen_v@abv.bg
R.A.: Sofia University "Kliment Ohridski", bul. "Tsar Osvoboditel" 15, 1504 Sofia Center, Sofia, Bulgaria

E-mail: alraina@abv.bg
S.Ts.: University of Architecture, Civil Engineering and Geodesy, bul. "Hristo Smirnenski"

1, 1046 g.k. Lozenets, Sofia, Bulgaria
E-mail: sevdalinski@yahoo.com
Received: 22.03.2023, in revised form 10.05.2023
Accepted: 17.05.2023

