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Abstract. In the present publication, which can be considered as a continua-
tion of the paper V. Nenkov, St. Stefanov, H. Haimov, An application of quadrilat-
eral’s geometry in solving competitive mathematical problems, Synergetics and reflec-
tion in mathematics education, Proceedings of the anniversary international scientific
conference, Pamporovo, October 16-18, pp. 121–128, 2020, the application of the ge-
ometry of quadrilateral to the solution of exams is considered. Three examples given
in the magazine “Mathematics and Informatics” have been selected, the solutions of
which illustrate well the benefit of studying the recently discovered properties of con-
vex quadrilaterals. Two solutions to the tasks are presented for comparison. The first,
proposed by participants in the competition, are relatively complex and longer, and
the second—based precisely on elements of the geometry of quadrilateral, are signifi-
cantly simpler and shorter. These solutions are based on properties of quadrilaterals
associated with some of their remarkable points.
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1. Introduction

Unlike the well-studied triangle, an arbitrary convex quadrilateral has re-
mained an understudied geometric figure until now. In a series of papers, signifi-
cant progress was made in the study of convex quadrilaterals. Numerous remark-
able points, lines and circles, and two universal transformations were found. Using
their properties, the classical theorems of Mickel, Gauss, Ober and Steiner on com-
plete quadrilaterals [8] and a theorem of Carnot on triangles [3] were generalized.
A generalization of Steiner’s trapezoid theorem was also found [1], as well as an
addition to Brocard’s inscribed quadrilateral theorem [2]. Two popular theorems
were also transferred from triangles to quadrilaterals: the cosine theorem and the
so-called cotangent theorem [3]. The obtained results proved to be useful in solv-
ing non-standard tasks. We will focus on three tasks from the competition of the
“Mathematics and Informatics” magazine. We will see that knowing even only
a part of the notable points of a quadrilateral can contribute to simplifying and
shortening of solutions of similar problems. We will first introduce these properties
of two remarkable points in a convex quadrilateral, which will help us find short
solutions to the three competition problems in question.
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2. Incenter of an arbitrary quadrilateral

It was proved in [7], that an arbitrary convex quadrilateral ABCD has a
unique point J , for which (Fig. 1):

]JAD + ]JCD =
1
2
(]A + ]C), ]JBA + ]JDA =

1
2
(]B + ]D).

As it is easy to check, in a circumscribed quadrilateral this point (called an incenter)
coincides with the center of its inscribed circle.

Fig. 1. The incenter Fig. 2. Property 3

The incenter has the following properties, that will used here:

Property 1. The following equations hold [7]:

AJ

CJ
=
√

AB ·AD√
BC · CD

,
BJ

DJ
=
√

AB ·BC√
AD ·DC

.

Property 2. The circumcircles of 4AJD and 4BJC touch each other, as
well as those of 4AJB and 4CJD [7].

3. Pseudocenter of a quadrilateral

It was proven in [4] that there is a unique point O in the plane of any convex
quadrilateral, which satisfies the equalities:

AO ·RBCD = BO ·RCDA = CO ·RDAB = DO ·RABC ,

where R4 is the circumradius of triangle 4 (Fig. 2). This point is called the
pseudocenter of the quadrilateral.

It is easy to check that the pseudocenter of an inscribed quadrilateral coincides
with the center of its circumscribed circle. It has the following properties.

Property 3. The orthogonal projections of the pseudocenter O to the lines
that the sides of the quadrilateral lie on, form a parallelogram [4] (Fig. 2).
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Property 4. The following equalities hold [8]:

]AOB = ]ADB + ]ACB, ]DOC = ]DAC + ]DBC,

]AOD = ]ABD + ]ACD, ]BOC = ]BAC + ]BDC.

4. Inverse isogonality

Let ABCD be an arbitrary convex quadrilateral, such that the extensions of
each couple of its opposite sides intersect: AD ∩ BC = U and AB ∩ DC = V .

It is known that the circumcircles of 4ABU ,
4DCU , 4ABV and 4BCV intersect at one
point M , called Mikel’s point (Fig. 3). Let
us assume that the vertex C lies between the
points U and B, and between D and V . The
composition of the symmetry g with the bisec-
tor axis of ]DMB and the inversion I with the
pole M and degree r2 = BM · DM , is called
the inverse isogonality with respect to ABCD
and it is denoted as I◦g(M ; r2) [5].

Fig. 3. Inverse isogonality

Property 5. The incenter of a convex quadrilateral is a fixed point of the
inverse isogonality, i.e. I◦g(J) = J [7].

5. Competitive planimetric problems and different solutions of them
– with and without the quadrilateral’s geometry

Problem 1. Let AB · CD = AD · BC hold in the convex quadrilateral

ABCD. For its interior point O, the following equalities are satisfied:
AO

CO
=

AD

CD
and

BO

DO
=

AB

AD
. If k1, k2, k3 and k4 are the circumcircles of 4ADO, 4ABO,

4BCO and 4CDO, respectively, prove that k1 touches k3 and k2 touches k4

(Fig. 4).
Solution I. Denote the angles at A,B, C and D, respectively, by α, β, γ and δ.

We will prove that the equalities AB ·CD = AD ·BC and
AO

CO
=

AD

CD
lead to the

equality ]ADO+]ABO =
1
2
(β+δ). Indeed, we have

AD

CD
=

AB

CB
and

AD

CD
=

AO

CO
,

and therefore
AD

CD
=

AB

CB
=

AO

CO
= k. Let the points M and N lie on the line AC,

and
AM

CM
=

AN

CN
= k. The points D, B and O lie on the Apollonius circle c of AC

with ratio k (MN is its diameter). As DM is the bisector of ]ADC, then

]CDO − ]ADO = (]CDM + ]ODM)− (]ADM − ]ODM) = 2]ODM,

i.e., ]COD − ]ADO = 2]ODM .
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Fig. 4. Problem 1

Similarly, BM is the bisector of ]ABC and ]ABO−]CBO = 2]OBM . But
]ODM = ]OBM (as inscribed in the Apollonius circle c). Therefore ]CDO −
]ADO = ]ABO − ]CBO, and then

]ADO + ]ABO = ]CDO + ]CBO

=
1
2
(]ADO + ]ABO + ]CDO + ]CBO) =

1
2
(β + δ).

Analogously, from AB·CD = AD·BC and
BO

DO
=

AB

AD
it follows that ]BAO+

]BCO =
1
2
(α + γ). Using the resulting equalities we get

]AOB = 180◦ − ]BAO − ]ABO

= 180◦ −
(α + γ

2
− ]BCO

)
−

(β + δ

2
− ]ADO

)
= ]BCO + ]ADO,

i.e.,

(∗) ]AOB = ]BCO + ]ADO.

Let X1 be an internal point of ]AOB, such that ]AOX1 = ]ADO. Then the
line OX1 touches the circumcircle k1 of 4ADO at the point O. Since from (∗) we
have ]BOX1 = ]AOB − ]AOX1 = ]AOB − ]ADO = ]BCO, therefore OX1

touches at O the circumcircle k3 of 4BOC. Hence, k1 and k3 meet at one point.
Analogously, the same is proved for k2 and k4.

Solution II. What we want to prove in the problem (that the circles k1 and
k3 are tangent, and the circles k2 and k4 are also tangent) tells us that the point O
mentioned in the condition must coincide with the incenter J of the quadrilateral
ABCD (according to property 2). It remains to prove that, for the incenter J the

equality
AJ

CJ
=
√

AD ·AB√
CD ·BC

is fulfilled (from Property 1). But, given the condition
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AB · CD = AD · BC, i.e.
AD

CD
=

AB

BC
, we obtain

√
AD ·AB√
CD ·BC

=
AB

BC
=

AD

BD
and

therefore
AJ

CJ
=

AB

BC
=

AD

CD
. But we also have that

AO

CO
=

AD

CD
(by the condition),

therefore
AJ

CJ
=

AO

CO
. Therefore, both J and O lie on the same Apollonius circle

for the segment AC. Analogously, from
BO

DO
=

AB

AD
it follows that J and O lie on

the same Apollonius circle for BD. Therefore O ≡ J , hence the problem is solved
(according to Property 2).

Problem 2. I is the center of the inscribed circle in the circumscribed quadri-
lateral ABCD. The extensions of its sides AD and BC intersect at point U . If M
is the second common point of the circumcircles of 4ABU and 4DCU , prove that
MI =

√
MB ·MD.

Fig. 5. Problem 2 Fig. 6. Problem 2

Solution I. We will prove the following

Lemma. If k is the circumcircle of 4ABC, the point O is the center of the
inscribed circle of 4ABC and T the second common point of the line CO and k,
then TA = TB = TO.

Proof. CO is the angle bisector of ]ACB. Therefore, T is the midpoint of
the arc AB (Fig. 5), and the chords TA and TB are equal. If ]CAB = 2x and
]ACB = 2y, then we have

]OAT = ]OAB + ]BAT = x + ]BCT = x + y.

Therefore, 4OAT is isosceles, with OT = AT . Hence TA = TB = TO.
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Let us go back to the problem’s solution. Denote ]AUB = γ, ]MUA = ϕ
(Fig. 6), the circumcircles’ radii of 4ABU and 4DCU with R and r, and with
K and P , respectively, the second intersection points of these circles with UI. Let
O be the the center of the inscribed circle of 4DCU . From the previous lemma
it follows that KI = KA and PO = PC = PD. Then P is the circumcenter of
4OCD. DI and DO are bisectors of adjacent angles, and therefore ]ODI = 90◦.

Analogously, ]OCI = 90◦. Hence the quadrilateral ODIC is inscribed in a
circle of center P . Hence, PI = PD. Now from the sine theorem for the triangles
MPU , MKU , DPU , AKU and MBU , we obtain:

MP = 2r sin
(
ϕ +

γ

2

)
, MK = 2R sin

(
ϕ +

γ

2

)
, P I = DP = 2r sin

γ

2
,

KI = KA = 2R sin
γ

2
, MD = 2r sin ϕ, MB = 2R sin(ϕ + γ).

From these equalities, it follows that MP : MK = PI : KI = r : R. Therefore,
MI is an angle bisector in 4MKP . Now we express the bisector in the following
way:

MI2 = MP ·MK − PI ·KI = 4r ·R sin2
(
ϕ +

γ

2

)
− 4r ·R sin2 γ

2
= 4r ·R sinϕ sin(ϕ + γ) = MD ·MB.

This proves the required statement.

Solution II. The center I of the inscribed circle in ABCD is its incenter
(Fig. 6), and the common point M of the circumcircles of 4ABU and 4DCU
is its Mikel point. By definition, the pole of the inverse isogonality I◦g(M ; r2) with
respect to the quadrilateral ABCD is M . Its degree is r2 = MD ·MC. The in-
center I is a fixed point for I◦g(M ; r2), i.e. I◦g(I) = I (according to Property 5).
Therefore, r2 = MI ·M(I◦g(I)) = MI ·MI, i.e., r2 = MI2. Thus we obtain the
equality MI2 = MD ·MC, that we had to prove.

Problem 3. H is the orthocenter and R is the radius of circumscribed cir-
cle about an acute-angled 4ABC, for which ]CAB = α and ]ABC = β. If D
is the point in the half-plane with the
border line AB, not containing the tri-
angle, for which ]ADC = 180◦ − 2β
and ]BDC = 180◦ − 2α, prove that
HD = R.

Solution I. If ]BCA = γ, then
]ADB = ]ADC + ]BDC = 2γ
(Fig. 7). We obtain easily: AH =
2R cosα, BH = 2R cosβ and CH =
2R cos γ. Let us prove that the orthog-
onal projections M,N, P and Q of H,
respectively, on the lines AD,DB, BC
and CA form a parallelogram.

Fig. 7. Problem 3
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We have

QM = AH sin ]QAM = 2R cos α · CD

AC
sin ]ADC

=
CD

sin β
cos α sin 2β = 2CD cosα cosβ.

Analogously, we obtain PN = 2CD cos α cos β. Hence, QM = PN .

On the other hand, we have

]AQM + ]BPN = ]AHM + ]BHN = ]AHB − ]MHN

= (180◦ − γ)− (180◦ − 2γ) = γ,

i.e., ]ACB = ]AQM + ]BPN .

Now let CS ‖ QM . From ]PCS = ]ACB − ]ACS = ]ACB − ]AQM =
]BPN , it follows that CS ‖ PN , and therefore QM ‖ PN , which proves that
MNPQ is a parallelogram and MN = QP . We get

HD =
MN

sin ]MDN
=

QP

sin 2γ
=

CH · sin γ

sin 2γ
=

2R cos γ sin γ

2 sin γ cos γ
= R.

With that, the problem is solved.

Solution II. We will prove that the orthocenter H of 4ABC coincides with
the pseudocenter O1 of ADBC. From Property 4 of the pseudocenter, we have

]CO1B = ]CAB + ]CDB = α + (180◦ − 2α) = 180◦ − α.

But also ]CHB = 180◦−α, and so ]CO1B = ]CHB. Therefore the pseudocenter
O1 and the orthocenter H lie on the same arc of a circle with endpoints B and C.
Analogously, it is proved that they also lie on the same arc of a circle with endpoints
A and C. Therefore O1 ≡ H. From Property 3 of the pseudocenter, we can now
conclude that the orthogonal projections M, N, P and Q of H, respectively on the
lines AD, DB,BC and CA, form a parallelogram. Therefore MN = QP and the
proof can be finished as in the previous solution.

6. Conclusion

The geometry of the quadrilateral also helps to make easier solving problems
given in various other competitions, including problems from International Mathe-
matical Olympiads. However, they require an even more detailed knowledge of it,
so we postpone the consideration of these tasks to some other paper.
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