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a b s t r a c t

We define finite fuzzy machines and investigate their behavior. Algorithm and software are
proposed for computing behavior, for establishing equivalence and redundancy of states
and for solving reduction and minimization problems. Computational complexity of the
algorithm is discussed. Testing examples are supplied. The results are valid for finite
max–min, min–max and max–product fuzzy machines.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Fuzzy machines are proposed by Santos [29,30] and first studied by him [29–32] and by Santos and Wee [33]. During the
period 1968–2000 few references were published, see the monographs [7] by Klir and Yuan, [17] by Mordeson and Malik,
[21] by Peeva and Kyosev.

Recently the interest in this subject has highly increased. Many authors contributed to algebraic approach and introduced
variety of fuzzy machines on suitable algebraic structures (lattices [20,34] or lattice-ordered monoids [8–12,14,16], as well
as formal power series [27], semirings [18], categorical approach [13], homomorphisms [2], etc.) with extension for fuzzy
languages [2,8,15,16,26].

As soon as the concept of fuzzy sequential machine has been introduced, Santos set equivalence, reduction and minimi-
zation problems for finite max–min fuzzy machines [31] and for finite max–product fuzzy machines [32]. In order to inves-
tigate them two types of algebras, called max–min algebra [31] and max–product algebra [32] have been developed. The role
played by these algebras in the theory of max–min and max–product fuzzy machines is the same as that played by linear
algebra in the theory of stochastic machines. But linear algebra, max–min algebra and max–product algebra are completely
unrelated [5,17].

Without doubt, the problems of equivalence, reduction and minimization for fuzzy machines are among the main and
most interesting in this field. Published papers concern theory and some algorithms: for equivalence of states and equiva-
lence of machines [10,18,31,34]; for reduction [2,9–11,18,31,32] and minimization [3,9,11,12,15,16,27,31]. None of them
pretends to present software for obtaining behavior matrix, for establishing equivalence of states, for finding redundant
states, for finding reduced and minimal forms of a fuzzy machine – still open problems for finite fuzzy machines. The main
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obstacle is that fuzzy algebras like max–min algebra, min–max algebra and max–product algebra are different from the tra-
ditional linear algebra. Obviously developing software for solving problems for finite fuzzy machines requires first to develop
theory and software for fuzzy relational calculus [21–24] and then to implement it in software for finite fuzzy machines.

In this paper based on the theory developed in [20,21], and on the software for fuzzy relational calculus from [21–24] we
define finite fuzzy machine over fuzzy algebra, propose algorithms and develop software for computing behavior, for estab-
lishing equivalence of states, for reduction and minimization of finite fuzzy max–min, min–max and max–product machines.
In Section 2 we introduce basic notions from fuzzy relational calculus that are necessary for exposition. Section 3 presents
behavior of finite fuzzy machine as well as illustrative examples for its computing. In Section 4, we give algorithm how to
extract and compute a finite behavior matrix (when possible) from the complete behavior matrix. Section 5 illustrates imple-
mentation of the software for solving equivalence, reduction and minimization problems. Section 6 briefly describes soft-
ware for computing behavior matrix of finite fuzzy machine and its implementation for equivalence, reduction and
minimization. Examples are included in Appendix.

2. Basic notions

2.1. Fuzzy algebra

Partial order relation on a partially ordered set (poset) P is denoted by the symbol 6. By the greatest element of the poset P
we mean an element b 2 P such that x 6 b for all x 2 P. The least element of P is defined dually.

Set I� ¼ h½0; 1�;_;^;�;0;1i, where ½0;1� is the real unit interval, � is the usual product between real numbers and for each
a; b 2 ½0;1� the operations _, ^ are respectively defined by

a _ b ¼maxfa; bg; a ^ b ¼minfa; bg:

The algebraic structure I� ¼ h½0;1�;_;^;�;0;1i is called fuzzy algebra.
I� is a complete lattice with universal bounds 0 and 1.
In I� the operations a, e and } are very often used. For each a; b 2 ½0;1� they are defined as follows:

aab ¼
1 if a 6 b;

b a > b;

�
aeb ¼

b if a < b;

0 a P b;

�
a}b ¼

1; if a 6 b;
b
a ; if a > b:

(

Remark. I� is an example of the so called BL-algebra introduced in [6]. Operation a is also called Gödel implication and is
denoted as!G in Gödel algebra h½0;1�;_;^;�;!G;0;1i [5,25], operation } is denoted as!p in Product (or Goguen) algebra
h½0;1�;_;^;�;!P;0;1i, see [25].

2.2. Matrix products

A matrix A ¼ ðaijÞm�n with aij 2 ½0;1� for each i; j;1 6 i 6 m, 1 6 j 6 n, m;n 2 N (N is the set of natural numbers), is called
membership matrix [7]. In what follows we write ‘matrix’ instead of ‘membership matrix’.

Two matrices A ¼ ðaijÞm�p and B ¼ ðbijÞp�n are called conformable, if the number of columns in A coincides with the number
of rows in B.

Several matrix products with conformable matrices may be defined on I�.

Definition 1. Let the matrices A ¼ ðaijÞm�p and B ¼ ðbijÞp�n be given.
The matrix C ¼ ðcijÞm�n, where

(i) C ¼ A � B, is called max–min product of A and B if

cij ¼ _
p

k¼1
ðaik ^ bkjÞ when 1 6 i 6 m; 1 6 j 6 n:

(ii) C ¼ A � B, is called min–max product of A and B if

cij ¼ ^
p

k¼1
ðaik _ bkjÞ when 1 6 i 6 m; 1 6 j 6 n:

(iii) C ¼ A a B, is called min —a product of A and B if

cij ¼ ^
p

k¼1
ðaikabkjÞ when 1 6 i 6 m; 1 6 j 6 n:

(iv) C ¼ A e B, is called max —e product of A and B if

cij ¼ _
p

k¼1
ðaikebkjÞ when 1 6 i 6 m; 1 6 j 6 n:
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(v) C ¼ A � B, is called max —� product of A and B if

cij ¼ _
p

k¼1
ðaik � bkjÞ when 1 6 i 6 m; 1 6 j 6 n:

(vi) C ¼ A } B, is called min —} product of A and B if

cij ¼ ^
p

k¼1
ðaik}bkjÞ when 1 6 i 6 m; 1 6 j 6 n:

Stipulation. For simplicity and compactness of exposition we use the sign � instead of �, � and � and write A � B when the
results are valid for any of the products A � B, A � B, A� B, introduced in Definition 1.

2.3. Direct and inverse problems

If the matrices A ¼ ðaijÞm�p and B ¼ ðbijÞp�n are given, computing their product according to Definition 1 is called direct
problem resolution.

If A ¼ ðaijÞm�p and C ¼ ðcijÞm�n are given, computing the unknown matrix B ¼ ðbijÞp�n such that A � B ¼ C is called inverse
problem resolution.

Theorem 1. Let A ¼ ðaijÞm�p and C ¼ ðcijÞm�n be given matrices and let B� denote the set of all matrices such that A � B ¼ C.
Then

(i) [28] For A � B ¼ C with max–min composition, B� 6¼ ; iff At a C 2 B�.
(ii) [28] For A � B ¼ C with min–max composition, B� 6¼ ; iff At e C 2 B�.

(iii) [4] For A� B ¼ C with max	� composition, B� 6¼ ; iff At } C 2 B�.

We implement Theorem 1 and software from [21–24] in a new algorithm and software for computing behavior of finite fuzzy
machine.

3. Finite fuzzy machines

In this section, we define finite fuzzy machine A over fuzzy algebra I� and describe its complete behavior by suitable ma-
trix TA. It is shown that computing behavior matrix for finite fuzzy machine with the software from [21,22] is tremendous,
which motivated the authors to develop new software for the same purpose.

For a finite set C we denote by jCj its cardinality.

Definition 2 [19]. A finite fuzzy machine (FFM) over the fuzzy algebra I� is a quadruple

A ¼ ðX;Q ;Y;MÞ;

where

(i) X;Q ;Y are nonempty finite sets of input letters, states and output letters, respectively.
(ii) M is the set of transition-output matrices of A, that determines its stepwise behavior. Each matrix Mðx j yÞ ¼
ðmqq0 ðx j yÞÞ 2M is a square matrix of order jQ j and x 2 X; y 2 Y; q; q0 2 Q ;mqq0 ðx j yÞ 2 ½0;1�.

In Definition 2 (ii) we mark by ðx j yÞ the pair ðx; yÞ 2 X � Y to emphasize that x 2 X is the input letter when y 2 Y is the
output response letter. The same stipulation is used in next exposition for input–output pair of words of the same length.

We regard mqq0 ðx j yÞ as the degree of membership for the FFM to enter state q0 2 Q and produce output y 2 Y if the pres-
ent state is q 2 Q and the input is x 2 X.

3.1. Extended input–output behavior of FFM

While M is the set of transition-output matrices that describes operating of A for exactly one step, in this subsection we
will be interested in matrices that describe operating of A for words, i.e. for more than one consecutive steps.

The free monoid of the words over the finite set X is denoted by X� with the empty word e as the identity element. If X 6¼ ;
then X� is countably infinite. The length of the word u is denoted by juj. By definition jej ¼ 0. Obviously juj 2 N for each u 6¼ e,
N ¼ f1;2; . . .g stands for the set of natural numbers.

For u 2 X� and v 2 Y�, if juj ¼ jvj we write ðu j vÞ 2 ðX j YÞ� to distinguish it from the case ðu; vÞ 2 X� � Y�. We denote by
ðX j YÞ� the set of all input–output pairs of words of the same length:

ðX j YÞ� ¼ fðu j vÞju 2 X�; v 2 Y�; juj ¼ jvjg:
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Definition 3. Let A ¼ ðX;Q ;Y ;MÞ be FFM over the fuzzy algebra I�.
For any ðu j vÞ 2 ðX j YÞ� the extended input–output behavior of A upon the law of composition � is determined by the

square matrix Mðu j vÞ of order jQ j:

MðujvÞ ¼
Mðx1jy1Þ � � � � �MðxkjykÞ;

if ðu j vÞ ¼ ðx1 . . . xk j y1 . . . ykÞ; k P 1;
U; if ðu j vÞ ¼ ðe j eÞ;

8><
>: ð1Þ

where Mðx1jy1Þ � � � � �MðxkjykÞ, for � ¼max — min, min–max or max —�matrix product (see Definition 1) and U ¼ ðdijÞ is the
square matrix of order jQ j with elements dij determined as follows:

� if the composition is max–min or max —�,

dij ¼
1; if i ¼ j;

0; if i 6¼ j:

�

� if the composition is min–max,

dij ¼
0; if i ¼ j;

1; if i 6¼ j:

�

We regard each element mqq0 ðu j vÞ in Mðu j vÞ as degree of membership that A will enter state q0 2 Q and produce output
word v 2 Y� under the input word u 2 X� beginning at state q 2 Q , after juj ¼ jvj consecutive steps.

Definition 3 describes the extended input–output behavior of several types of finite fuzzy machines:

� Finite max–min fuzzy machines, when � ¼ �, first introduced in [29,30];
� Finite min–max fuzzy machines, when � ¼ �, first introduced in [30,33];
� Finite max–product fuzzy machines, when � ¼ �, first introduced in [32].

Example 1 in Appendix illustrates the main notions from this subsection.

3.2. Complete input–output behavior

When we consider FFM as a ‘black box’ we are not interested in the next state q0. This is the essence of the input–output
behavior of A, determined by column-matrices Tðu j vÞjQ j�1 as follows:

Tðu j vÞjQ j�1 ¼ ðtqðu j vÞÞ ¼
Mðu j vÞ � E; if ðu j vÞ 6¼ ðe j eÞ;
E; if ðu j vÞ ¼ ðe j eÞ;

�
ð2Þ

where E is the jQ j � 1 column-matrix with all elements equal to 1 if the composition is max–min or max —� and with all
elements equal to 0 if the composition is min–max.

Each element tqðu j vÞ of Tðu j vÞ in (2) determines the operation of A under the input word u beginning at state q and
producing the output word v after juj ¼ jvj consecutive steps.

For instance, if the FFM is max–min or max–product, the element

tqðu j vÞ ¼ _
q02Q
ðmqq0 ðu j vÞÞ

gives the way of achieving maximal degree of membership under the input word u, beginning at state q and producing the
output word v.

We denote by TA the complete behavior matrix of A. It is semi-infinite matrix with n ¼ jQ j rows and with columns Tðu j vÞ,
ðu j vÞ 2 ðX j YÞ�, computed by (2) and ordered according to the lexicographical order in ðX j YÞ�, see Table 1 (if X 6¼ ; and
Y 6¼ ; then X� and Y� are countably infinite and ðX j YÞ� is lexicographically ordered).

Let us mention that tqðe j eÞ ¼ 1 for i ¼ 1; . . . ;n if FFM is max–min or max–product, tqðe j eÞ ¼ 0 for i ¼ 1; . . . ;n if FFM is
min — max.

Table 1
TA – initial fragment

Tðe j eÞ Tðx1 j y1Þ � � � Tðu j vÞ � � �

q1 tq1
ðe j eÞ tq1

ðx1 j y1Þ � � � tq1
ðu j vÞ � � �

q2 tq2
ðe j eÞ tq2

ðx1 j y1Þ � � � tq2
ðu j vÞ � � �

� � � � � � � � � � � � � � � � � �
qn tqn

ðe j eÞ tqn
ðx1 j y1Þ � � � tqn

ðu j vÞ � � �
length l l ¼ 0 l ¼ 1 � � � l ¼ juj � � �

K. Peeva, Zl. Zahariev / Information Sciences 178 (2008) 4152–4165 4155
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Examples 2 and 4 in Appendix illustrate computing initial fragment from TA for words of length 6 2 for max–min and
max–product FFM.

4. Behavior matrix of finite fuzzy machine

For any finite fuzzy machine A its complete input–output behavior matrix TA is semi-infinite – it has finite number
of rows (equal to the number of states in Q) and infinite number of columns. Since TA is semi-infinite, one can not
solve traditional problems – equivalence of states, reduction of states, minimization of states, because all of them
explore TA.

In this section, we propose algorithm for extracting a finite matrix BA (called behavior matrix) from the complete behav-
ior matrix TA. BA captures all the properties of TA and also provides solving equivalence, reduction and minimization prob-
lems for FFM.

In order to explain how to compute BA we first provide supplementary information – what is linear combination, how to
establish that a vector is a linear combination of a set of vectors and how we implement this for obtaining BA.

4.1. Linear combination

Let Að1Þ ¼ ðai1Þn�1, Að2Þ ¼ ðai2Þn�1; . . . ;AðkÞ ¼ ðaikÞn�1 be column-vectors.

Definition 4. We say that a column-vector Cn�1 is:

� max–min linear combination of the vectors AðiÞn�1 with coefficients xi 2 ½0;1�, 1 6 i 6 k, if

C ¼ ½Að1Þ ^ x1� _ � � � _ ½AðkÞ ^ xk�;

� min–max linear combination of the vectors AðiÞn�1 with coefficients xi 2 ½0;1�, 1 6 i 6 k, if

C ¼ ½Að1Þ _ x1� ^ � � � ^ ½AðkÞ _ xk�;

� max —� linear combination of the vectors AðiÞn�1 with coefficients xi 2 ½0;1�, 1 6 i 6 k, if

C ¼ ½Að1Þ � x1� _ � � � _ ½AðkÞ � xk�:

Checking whether Cn�1 is a linear combination of Að1Þ; . . . ;AðkÞ requires to solve the system

A � X ¼ C

for the unknown X, if An�k has as columns Að1Þ ¼ ðai1Þn�1, Að2Þ ¼ ðai2Þn�1, . . ., AðkÞ ¼ ðaikÞn�1.
In principle, when the system is consistent (inconsistent, respectively) the right-hand side vector C is (is not, respectively)

linear combination of the vectors forming the matrix of coefficients A.
Example 3 in Appendix illustrates how we solve linear combination problem.
Implementation. The finite behavior matrix BA contains only linearly independent columns from TA. Hence, when com-

puting BA from TA, each column from TA that is a linear combination of the previous columns should be removed.

4.2. Algorithm for computing behavior matrix BA

We denote by TðiÞ the finite submatrix of TA containing the columns TðujvÞ for words of length not greater than i, i 2 N.
Let BðiÞ be a submatrix of TðiÞ obtained by omitting all columns from TðiÞ that are linear combination of the previous
columns.

For arbitrary matrices C and D we write C 
 D, if each column of C is a column of D. If each column in D is a linear com-
bination of columns from C, we write D ffi C. Obviously for each i 2 N, we have [20]:

(1) TðiÞ 
 Tðiþ 1Þ 
 � � � 
 T;
(2) BðiÞ 
 Bðiþ 1Þ 
 � � � 
 B;
(3) BðiÞ 
 TðiÞ.

For any FFM A we can obtain the matrix BðiÞ from TðiÞ for arbitrary i – it suffices to remove all columns from TðiÞ that are
linear combination of the previous columns. This is possible because we have the method and software to solve fuzzy linear
system of equations [21,22], we develop functions for establishing linear dependence or linear independence [23,24] and
here we develop functions for computing BðiÞ.

Definition 5. The matrix BA obtained by omitting all columns from TA that are linear combination of the previous columns
is called behavior matrix of A.
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Theorem 3. For any max–min or min–max FFM A the following statements hold:

(1) There exists k 2 N, such that TðkÞ ffi Tðkþ 1Þ and BðkÞ ¼ BA.
(2) If TðkÞ ffi Tðkþ 1Þ, then:
� TðkÞ ffi Tðkþ pÞ ffi � � � ffi TA for each p ¼ 1; . . .;
� BðkÞ ¼ Bðkþ pÞ ¼ � � � ffi BA for each p ¼ 1; . . .;

(3) BA ffi TA.

The results for max–min FFM are proved in [20], their validity for min–max FFM follows by dualization principle – ð_;^;:Þ is a
dual triple [1]. These statements are not valid for max–product machines.

Algorithm. for computing the behavior matrix BA for max–min or min–max FFM A ¼ ðX;Q ;Y ;MÞ.

(1) Enter the set of matrices M.
(2) Find k 2 N, such that TðkÞ ffi Tðkþ 1Þ.
(3) Obtain BðkÞ ¼ BA excluding all linear combinations from TðkÞ.
(4) End.

It is established in [20] that the behavior matrix BA is finite for max–min FFM A ¼ ðX;Q ;Y ;MÞ and the time complexity
function for computing BA is exponential. The same is valid for min–max FFM.

Computing behavior matrix using this algorithm is given in Examples 2 and 5 in Appendix.

5. Equivalence of states, reduction, minimization

Various equivalence problems and their algorithmical solvability are theoretically investigated in [20]. We demonstrate
in this section how the software for finding TA and BA can be implemented for solving them.

Let the FFM A ¼ ðX;Q ;Y;MÞ be given. The states qi 2 Q and qj 2 Q are called equivalent [17,20] if the input–output
behavior of A when beginning with initial state qi is the same as its input–output behavior when beginning with initial state
qj. As proved in [20], it means that the ith and jth rows are identical in TA and in BA (see Appendix, Examples 2 and 5). Since
TA is semi-infinite, we can not derive equivalence of states from it. In order to solve this problem we first have to extract BA

from TA and then to find identical rows in BA.
FFM A ¼ ðX;Q ;Y;MÞ is in reduced form if there does not exist equivalent states in Q.
Example 2 in Appendix illustrates equivalence of states and whether a FFM is in reduced form.
An FFM A ¼ ðX;Q ;Y;MÞ is not in minimal form if the input–output behavior of A when it begins with initial state qi is

the same as its input–output behavior when it begins with initial distribution over Q, isolating the state qi. Formally it means
that the ith row of TA is a linear combination of the other rows. Since BA preserves all properties of TA with respect to min-
imal forms, we transform the problem: if the ith row of BA is a linear combination of the other rows of BA, the FFM A is not
in minimal form. Hence for any FFM A ¼ ðX;Q ;Y ;MÞwith known behavior matrix BA, it is algorithmically solvable whether
A is in minimal form [20].

Remark. All other equivalence, reduction and minimization problems as introduced in [20] are solved by suitable functions
developed by the authors. We give here illustration only for some fundamental ones. The reason is that the theoretical background
for these problems is tremendous, see [17,20] and this will embarrass the reader. The essence is that we propose software (under
the request to the authors) for finding behavior matrix and solving equivalence, reduction and minimization problems for FFM.

6. Brief software description

The main functionality of the software is concentrated in find_t (computing TA) and find_b (computing BA) functions.
The substantial difference between them is that find_t computes complete behavior matrix for a given fuzzy machine
and therefore it does not remove the columns that are linear combination of the other columns, while find_b removes these
columns. Function find_b can also reduce or minimize the computed behavior matrix, while find_t does not do this. Their
parameters are described below.

For find_t they are:

� m – a cell array with all matrices from M representing FFM behavior for words of length 1.
� composition – the composition law for the type of FFM. It can be one of ‘maxmin’, ‘minmax’ or ‘maxprod’.
� word length – the maximum word length for which we compute the complete behavior matrix.

The function find_t returns the complete behavior matrix Tk, where k is the desired word length.
The parameters for find_b are:

K. Peeva, Zl. Zahariev / Information Sciences 178 (2008) 4152–4165 4157
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� m – as above
� composition – as above
� cond – this parameter can be one of ‘none’, ‘minimize’ or ‘reduce’. It defines if we want: to find behavior matrix (‘none’), to

make minimization (‘minimize’) or reduction (‘reduce’).
� word length – the default value is ‘	1’ which is used for ‘unlimited’. In this case the function returns behavior matrix for

the given fuzzy machine.

The function find_b returns the behavior matrix Bk when k is the desired word length or B for ‘unlimited’. In case of reduc-
tion or minimization the answer is behavior matrix of reduced (minimized, respectively) form machine.

This algorithm has exponential time complexity and exponential memory complexity. If we have jXj input letters and jYj
output letters, we produce ðjXj � jYjÞk matrices, where k is the length of the word.

7. Conclusions

In this paper we define finite fuzzy machines over fuzzy algebra and propose algorithm and software for solving open
problems, namely, given FFM:

� to compute initial fragment of its complete behavior matrix;
� to compute its behavior matrix (when possible);
� to establish equivalence of states;
� to obtain its reduced form behavior matrix;
� to obtain its minimal form behavior matrix.

The described software may be extended for other types of finite machines – weighted, probabilistic, deterministic, non-
deterministic, over semiring, over Łukasiewicz algebra (using corresponding new composition).
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Appendix A

Example 1. Compute Mðxxjy1y2Þ if the max–product FFM A ¼ ðX;Q ;Y;MÞ is given with the following data:

X ¼ fxg; Y ¼ fy1; y2g; Q ¼ fq1; q2g;

m1 ¼ Mðx j y1Þ ¼
0:3 0:7

0:5 0:2

 !
; m2 ¼ Mðx j y2Þ ¼

0:4 0:6

0:2 0:8

 !
:

Its input–output behavior for ðxx j y1y2Þ according to (1) is

Mðxx j y1y2Þ ¼ Mðx j y1Þ �Mðx j y2Þ ¼
0:3 0:7

0:5 0:2

 !
�

0:4 0:6

0:2 0:8

 !
¼

0:14 0:56

0:2 0:3

 !
:

Obviously, computing input–output behavior of the FFM implements direct problem resolution from fuzzy relational calcu-
lus [21,22]. Hence, the functions for direct problem resolution fuzzy_maxmin [21], fuzzy_minmax [21], fuzzy_maxprod
[22] may be used to compute MðujvÞ for arbitrary ðujvÞ 2 ðX j YÞ�. For instance, calculation for Mðxx j y1y2Þ with fuzzy_max-
prod results:

� m12 ¼ fuzzy maxprodðm1;m2Þ
m12 ¼
0:1400 0:5600

0:2000 0:3000

We give example for computing TA for words of fixed length. Computations are made by two different computational
ways: with software from [21,22] or with a new software developed by the authors.

Example 2. Compute initial fragment from TA for words of length 6 2, find the behavior matrix, find equivalent states and
the behavior matrix of reduced FFM if the max–min FFM A ¼ ðX;Q ;Y;MÞ is given with the following data:
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X ¼ fx1; x2g; Y ¼ fy1; y2g; Q ¼ fq1; q2; q3g;

m1 ¼ Mðx1 j y1Þ ¼
0 0:6 0:5

0:6 0:1 0:5

0:2 0:1 0:2

0
BB@

1
CCA; ðA:1Þ

m2 ¼ Mðx1 j y2Þ ¼
0 0 0

0 0 0

0:2 0:1 0:1

0
BB@

1
CCA; ðA:2Þ

m3 ¼ Mðx2 j y1Þ ¼
0:4 0:2 0:1

0:3 0:4 0:1

0 0 0

0
BB@

1
CCA; ðA:3Þ

m4 ¼ Mðx2 j y2Þ ¼
0 0:3 0:2

0:3 0:1 0:2

0:1 0 0:1

0
BB@

1
CCA: ðA:4Þ

� First we compute initial fragment from TA for words of length 6 2.

I way. We implement expressions (1) and (2) and software from [21].

(a) Input the matrices (A.1)–(A.4) and E in MATLAB workspace
�m1=[0 0.6 0.5; 0.6 0.1 0.5; 0.2 0.1 0.2]

�m2=[0 0 0; 0 0 0; 0.2 0.1 0.1]

�m3=[0.4 0.2 0.1; 0.3 0.4 0.1; 0 0 0]

�m4=[0 0.3 0.2; 0.3 0.1 0.2; 0.1 0 0.1]

�E=[1 1 1]

(b) Calculate the corresponding columns from TA for words of length 1. Let

T1 ¼ Tðx1 j y1Þ; T2 ¼ Tðx1 j y2Þ; T3 ¼ Tðx2 j y1Þ; T4 ¼ Tðx2 j y2Þ:

From (A.1)–(A.4), applying (2) and the function fuzzy_maxmin from [21], we compute the behavior of the max–min FFM
A ¼ ðX;Q ;Y;MÞ for the words of length 1. In this case the function fuzzy_maxmin results in the maximal element in each
row of the matrices (A.1)–(A.4):

�T1=fuzzy_maxmin(m1,E0)
T1=

0.6000

0.6000

0.2000

�T2=fuzzy_maxmin(m2,E0)
T2=

0

0

0.2000

�T3=fuzzy_maxmin(m3,E0)
T3=

0.4000

0.4000

0

�T4=fuzzy_maxmin(m4,E0)
T4=

0.3000

0.3000

0.1000

(c) Multiplying (A.1)–(A.4) by two’s and applying (2), we obtain the behavior of the max–min FFM A ¼ ðX;Q ;Y;MÞ for
words of length 2.
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(c1) An initial fragment of computations, by expression (1), is presented below:

m11 ¼ Mðx1x1 j y1y1Þ ¼ Mðx1 j y1Þ �Mðx1 j y1Þ ¼
0:6 0:1 0:5
0:2 0:6 0:5
0:2 0:2 0:2

0
@

1
A;

m12 ¼ Mðx1x1 j y1y2Þ ¼ Mðx1 j y1Þ �Mðx1 j y2Þ ¼
0:2 0:1 0:1
0:2 0:1 0:1
0:2 0:1 0:1

0
@

1
A;

m13 ¼ Mðx1x2 j y1y1Þ ¼ Mðx1 j y1Þ �Mðx2 j y1Þ ¼
0:3 0:4 0:1
0:4 0:2 0:1
0:2 0:2 0:1

0
@

1
A; . . .

We apply (2) to the last three matrices and obtain:

T11 ¼ T11j11 ¼ Tðx1x1 j y1y1Þ ¼
0:6
0:6
0:2

0
@

1
A;

T12 ¼ T11j12 ¼ Tðx1x1 j y1y2Þ ¼
0:2
0:2
0:2

0
@

1
A;

T13 ¼ T11j21 ¼ Tðx1x1 j y2y1Þ ¼
0:4
0:4
0:2

0
@

1
A; . . .

(c2) These results, but from software session with the function fuzzy_maxmin from [21], are displayed below:

� m11 ¼ fuzzy maxminðm1;m1Þ
m11 ¼
0:6000 0:1000 0:5000

0:2000 0:6000 0:5000

0:2000 0:2000 0:2000

� T11 ¼ fuzzy maxminðm11;E0Þ
T11 ¼
0:6000

0:6000

0:2000

� m12 ¼ fuzzy maxminðm1;m2Þ
m12 ¼
0:2000 0:1000 0:1000

0:2000 0:1000 0:1000

0:2000 0:1000 0:1000

� T12 ¼ fuzzy maxminðm12;E0Þ
T12 ¼
0:2000

0:2000

0:2000

� m13 ¼ fuzzy maxminðm1;m3Þ
m13 ¼
0:3000 0:4000 0:1000

0:4000 0:2000 0:1000

0:2000 0:2000 0:1000

� T13 ¼ fuzzy maxminðm13;E0Þ
T13 ¼
0:4000

0:4000

0:2000
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It is obvious that this method of computation is tremendous even for words having fixed small length. This motivated us to
develop functions for computing TA, as explained in the next II way.II way. We develop software for computing the initial
fragment Tk of the matrix TA for words with fixed length 6 k for finite fuzzy machines. The function (briefly described in
Section 6) is:find_t(m, composition, word_length) where

� m are the initial data matrices from the set M of the FFM.
� composition is the composition used for the type of the FFM. It can be one of ‘maxmin’, ‘minmax’ or ‘maxprod’.
� word_length is the desired word length k. It also gives the number of executive steps for finding Tk.

Function find_t is developed using theoretical results for finite fuzzy machines as given in this paper. It implements
functions from [21,22] and automatizes all operations as described in the I way of Example 2.

The function find_t(m,‘maxmin’,2) results (compare with Table A.1) in:

� find tðm; ‘maxmin’;2Þ

step ¼ 1;time ¼ 0:0013616;

t ¼

1:0000 0:6000 0 0:4000 0:3000

1:0000 0:6000 0 0:4000 0:3000

1:0000 0:2000 0:2000 0 0:1000

step ¼ 2;time ¼ 0:0003087;

t ¼

Columns 1 through 7

1:0000 0:6000 0 0:4000 0:3000 0:6000 0:2000

1:0000 0:6000 0 0:4000 0:3000 0:6000 0:2000

1:0000 0:2000 0:2000 0 0:1000 0:2000 0:2000

Columns 8 through 14

0:4000 0:3000 0 0 0 0 0:4000

0:4000 0:3000 0 0 0 0 0:4000

0:2000 0:2000 0:2000 0:1000 0:2000 0:2000 0

Columns 15 through 21

0:1000 0:4000 0:3000 0:3000 0:2000 0:3000 0:3000

0:1000 0:4000 0:3000 0:3000 0:2000 0:3000 0:3000

0 0 0 0:1000 0:1000 0:1000 0:1000
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� Compute the behavior matrix for the given max–min FFM. The function find_b if composition=‘maxmin’ results in
Tð1Þ ¼ Tð2Þ, and hence B ¼ Tð1Þ:

� find bðm; ‘maxmin’Þ

step ¼ 1;time ¼ 0:0011988;

t ¼

1:0000 0:6000 0 0:4000

1:0000 0:6000 0 0:4000

1:0000 0:2000 0:2000 0

step ¼ 2;time ¼ 0:0044941;

t ¼

1:0000 0:6000 0 0:4000

1:0000 0:6000 0 0:4000

1:0000 0:2000 0:2000 0

ans ¼

1:0000 0:6000 0 0:4000

1:0000 0:6000 0 0:4000

1:0000 0:2000 0:2000 0

� Find equivalent states and behavior matrix of the reduced FFM.

Function find_b establishes equivalence of states and whether the max–min, min–max or max —� FFM is in reduced
form, if cond=‘reduce’.

The max–min machine is not in reduced form:

� find bðm; ‘maxmin’; ‘reduce0Þ

step ¼ 1;time ¼ 0:0013407;

t ¼

1:0000 0:6000 0 0:4000

1:0000 0:6000 0 0:4000

1:0000 0:2000 0:2000 0

step ¼ 2;time ¼ 0:0044715;

t ¼

1:0000 0:6000 0 0:4000

1:0000 0:6000 0 0:4000

1:0000 0:2000 0:2000 0

Table A.1
An initial fragment from TA , Example 2 – I way of computation

T0 T1 T2 T3 T4 T11 T12 T13 � � �

q1 1 0.6 0 0.4 0.3 0.6 0.2 0.4 � � �
q2 1 0.6 0 0.4 0.3 0.6 0.2 0.4 � � �
q3 1 0.2 0.2 0 0.1 0.2 0.2 0.2 � � �
l l ¼ 0 l ¼ 1 l ¼ 2
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Since the first and the second row in BA are identical, the states q1 and q2 are equivalent and A ¼ ðX;Q ;Y;MÞ is not in
reduced form. The behavior matrix of the reduced form FFM follows:

ans ¼
1:0000 0:6000 0 0:4000

1:0000 0:2000 0:2000 0

Example 3. With data in Example 2, the vector T4 is max–min linear combination of the vectors T2 and T3, because

T4 ¼ ðT2 ^ 0:1Þ _ ðT3 ^ 0:3Þ:

For checking whether C is a linear combination of AðiÞ, 1 6 i 6 k, we implement software for inverse problem resolution from
[21,22] for solving fuzzy linear system of equations. For instance using software from [21] for the system formed by T2 and
T3 as matrix of coefficients A and with right hand side T4

0 0:4
0 0:4
0:2 0

0
B@

1
CA � X ¼

0:3
0:3
0:1

0
B@

1
CA;

we obtain that the system is consistent with solution x1 ¼ 0:1, x2 ¼ 0;3, i.e. T4 is a max–min linear combination of T2 and T3.

Example 4. Find Tð2Þ for max–product FFM with the same data as in Example 2.
We obtain Tð2Þ after calling the function find_t if composition=‘maxprod’ and word_length=2:

� find tðm; ‘maxprod0;2Þ

step ¼ 1;time ¼ 0:00012152;

t ¼

1:0000 0:6000 0 0:4000 0:3000

1:0000 0:6000 0 0:4000 0:3000

1:0000 0:2000 0:2000 0 0:1000

step ¼ 2;time ¼ 0:00022964;

t ¼

Columns 1 through 7

1:0000 0:6000 0 0:4000 0:3000 0:3600 0:1000

1:0000 0:6000 0 0:4000 0:3000 0:3600 0:1000

1:0000 0:2000 0:2000 0 0:1000 0:1200 0:0400

Columns 8 through 14

0:2400 0:1800 0 0 0 0 0:2400

0:2400 0:1800 0 0 0 0 0:2400

0:0800 0:0600 0:1200 0:0200 0:0800 0:0600 0

Columns 15 through 21

0:0200 0:1600 0:1200 0:1800 0:0400 0:1200 0:0900

0:0200 0:1600 0:1200 0:1800 0:0400 0:1200 0:0900

0 0 0 0:0600 0:0200 0:0400 0:0300

Using matrix Tð2Þ we see that the first and the second rows in Tð2Þ are identical, the states q1 and q2 are equivalent for
words of length no longer than 2.
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Example 5. With the same data as in Example 2, but for min–max FFM we obtain B after calling the function find_b if com-
position=‘minmax’. The result is Tð1Þ ¼ Tð2Þ and hence B ¼ Tð1Þ:

� find bðm; ‘minmax’Þ

step ¼ 1;time ¼ 0:0015471;

t ¼

0 0 0 0:1000

0 0:1000 0 0:1000

0 0:1000 0:1000 0

step ¼ 2;time ¼ 0:0070741;

t ¼

0 0 0 0:1000

0 0:1000 0 0:1000

0 0:1000 0:1000 0

ans ¼
0 0 0 0:1000

0 0:1000 0 0:1000

0 0:1000 0:1000 0

Using this behavior matrix, we establish that the min–max machine is not in reduced form – the first and the second rows
in BA are identical, the states q1 and q2 are equivalent.
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