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Abstract. An algorithms for solving Min-Goguen fuzzy linear systems of inequalities is presented in this paper. Based on the
logic for solving fuzzy linear systems of equations, we propose two separate algorithms for solving corresponding types of fuzzy
linear systems of inequalities. Examples as well as analysis of the computational and memory complexity are also given.

INTRODUCTION

Systems of fuzzy relation equations and fuzzy relation inequalities, based on different fuzzy relational compositions
are studied in details see [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], in optimization problems with objective
function subject to the fuzzy relation inequality constraints [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], in fuzzy logic systems with applications [26], in fuzzy mathematical programming [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40] and many other applied subjects.

This paper proposes methodology, unified method and algorithm for inverse problem resolution for Min-Goguen
implication fuzzy linear systems of inequalities A →� X ≤ B (4) and A →� X ≥ B (5). The uniqueness of minimal
solution of these systems is discussed. Then, the relationship between the system of inequalities and the corresponding
fuzzy relation equation system A →� X = B (6) is investigated. An algorithm for the fuzzy relation inequalities is
presented. Simplification operations are given to accelerate the resolution of the problem by removing the components
having no effect on the solution process. Also, an algorithm and some numerical examples are presented to illustrate
the steps of the resolution. The main results are the algorithms for computing the complete solution set to the systems
of fuzzy relation inequalities.

The paper is divided in seven sections. Next section gives some basic notions. Then, we briefly introduce algorithms
for solving the associated system of fuzzy linear equations (6). The algorithms for solving the fuzzy linear systems
of inequalities (4) and (5) are presented. Examples are also given. Analysis of the computational complexity and
memory complexity of the algorithm as well as some conclusions can be found in the last two sections.

The terminology for fuzzy sets is according to [41], for fuzzy equations and inequalities – as in [1], [3], for algo-
rithms, computational complexity and memory complexity – as in [42] and [43].

BASIC NOTIONS

We study:

∣∣∣∣∣∣∣
(a11 →� x1)∧ (a12 →� x2)∧ . . .∧ (a1n →� xn)≤ b1

(a21 →� x1)∧ (a22 →� x2)∧ . . .∧ (a2n →� xn)≤ b2

. . .
(am1 →� x1)∧ (am2 →� x2)∧ . . .∧ (amn →� xn)≤ bm

(1)

and

∣∣∣∣∣∣∣
(a11 →� x1)∧ (a12 →� x2)∧ . . .∧ (a1n →� xn)≥ b1

(a21 →� x1)∧ (a22 →� x2)∧ . . .∧ (a2n →� xn)≥ b2

. . .
(am1 →� x1)∧ (am2 →� x2)∧ . . .∧ (amn →� xn)≥ bm

(2)
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Also, for backing the presentation we will introduce the following fuzzy linear systems of equations:∣∣∣∣∣∣∣
(a11 →� x1)∧ (a12 →� x2)∧ . . .∧ (a1n →� xn) = b1

(a21 →� x1)∧ (a22 →� x2)∧ . . .∧ (a2n →� xn) = b2

. . .
(am1 →� x1)∧ (am2 →� x2)∧ . . .∧ (amn →� xn) = bm

(3)

where ai j,bi ∈ [0,1], are given and x j ∈ [0,1] marks the unknowns in the system. In this paper for the indices we
suppose i = 1, ...,m, j = 1, ...,n

The system (1) will be presented in matrix form:

A →� X ≤ B (4)

The system (2) will be presented in matrix form:

A →� X ≥ B (5)

The system (3) will be presented in matrix form:

A →� X = B (6)

where A = (ai j)m×n is the matrix of coefficients, B = (bi)m×1 holds for the right-hand side vector and X = (x j)1×n is
the vector of unknowns.

Let a,b ∈ [0,1].
Operation ∨ between a and b is defined as

a∨b = max(a,b) (7)

Operation ∧ between a and b is defined as

a∧b = min(a,b) (8)

Operation � between a and b is defined as the conventional real numbers multiplication.
Operation →� between a and b is defined as

a →� b =

{
1, if a ≤ b
b
a , if a > b

(9)

A matrix A= (ai j)m×n with ai j ∈ [0,1] for each i= 1, ...,m, j = 1, ...,n is called membership matrix. In what follows
’matrix’ is used instead of ’membership matrix’.

Let the matrices A = (ai j)m×p and B = (bi j)p×n be given.
The matrix Cm×n = (ci j) = A →� B is called min−→� product of A and B if

ci j = ∧p
k=1(aik →� bk j) (10)

for each i = 1, ...,m, j = 1, ...,n.
The matrix Cm×n = (ci j) = A�B is called max−� product of A and B if

ci j = ∨p
k=1(aik �bk j) (11)

for each i = 1, ...,m, j = 1, ...,n.
For X = (x j)1×n and Y = (y j)1×n the inequality X ≥ Y holds iff x j ≥ y j for each j = 1, ...,n.
Next notions are according to [4]
A vector X0 = (x0

j)1×n with x0
j ∈ [0,1], j = 1, ...,n, is called solution of the systems (4), (5), and (6) if A →� X0 = B

holds. The set of all solutions of a system is called complete solution set and it is denoted by X
0. If X0 	= /0 then the

system is called solvable (or consistent), otherwise it is called unsolvable (or inconsistent).
A solution X0

u ∈X
0 is called upper solution if for any X0 ∈X

0 the inequality X0
u ≤ X0 implies X0 = X0

u . A solution
X0

low ∈ X
0 is called lower solution if for any X0 ∈ X

0 the inequality X0 ≤ X0
low implies X0 = X0

low. If the lower
solution is unique, it is called lowest (or minimum) solution. The n-tuple (X1, ...,Xn) with Xj ⊆ [0,1] is called interval
solution if any X0 = (x0

j)n×1 with x0
j ∈ Xj for each j = 1, ...,n implies X0 = (x0

j)n×1 ∈X
0. Any interval solution whose

components (interval bounds) are determined by the lowest solution from the left and by an upper solution from the
right, is called minimal interval solution of (4), (5), and (6).
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SOLVING A →� X = B

Methods to solve similar to (6) systems are investigated [1] and [8] where it can be spotted that there is some level
of similarity between a whole class of such a fuzzy linear system of equations. While this similarity is still to be
generalizes in a more universal algorithm, it is still possible to construct an algorithm for (6) based on the general
logical construction of the algorithms in [1] and [8]. As here we are more interested on solving (4) and (5), will not
focus on it here. Example will be partially presented further, in it’s parts which contributes for the fuzzy linear system
of inequalities solution.

It is important that in order to solve fuzzy linear systems of inequalities (4) and (5) we also need methods and
algorithms to solve fuzzy linear systems of equations (6). In this article we proof that there is a direct connection
between the solutions of (6) and the solutions of (4) and (5). Depending on the type of the inequalities (≤ or ≥) we
take one or another part of the algorithms need to solve (6) and then add on top of it to find the full set of interval
solutions for both (4) and 5

SOLVING A →� X ≤ B AND A →� X ≥ B

It is well known [1], [8], that any solvable min−→� fuzzy linear system of equations has unique lowest solution and
can have many upper solutions. In order to find all solutions of the solvable system (6), it is necessary to find both its
lowest solution and all of its upper solutions.

In order to solve (4) and (5) we also need to take into consideration that:
Theorem 1. A solvable system A →� X ≤ B has its lowest solution X̌ = (x̌ j) where x̌ j = 0 for j = 1, ...,n.
Proof. From (9) we can see that for every component ai j →� x j from the system, if we have x j = 0, the whole

component will become 0. From (1) for every inequality from the system, we take minimum between all those
components, which makes the left side of the inequality = 0, which is ≤ b j, because by definition b j cannot be lower
than 0. �

Theorem 2. A solvable system A →� X ≥ B has unique upper solution X̂ = (x̂ j) where x̂ j = 1 for j = 1, ...,n.
Proof. From (9) we can see that for every component ai j →� x j from the system, if we have x j = 1, the whole

component will become 1. From (1) for every inequality from the system, we take minimum between all those
components, which makes the left side of the inequality = 1, which is ≥ b j, because by definition b j cannot be higher
than 1. �

Based on [1], Theorem 1, and Theorem 2, we can now define the following algorithms for solving (4) and (5).

Algorithm 1 Solve (4).

1. Obtain input data for the matrices A and B.

2. Set the lowest solution for the system X̌ = (x̌ j) where x̌ j = 0 for j = 1, ...,n, and check it for consistency.

3. If the system is unsolvable go to step 6.

4. Obtain all maximal solutions for the system (6)

5. Exit.

The number of interval solutions for the system (4) is the same as the number its maximal solutions. They are all
defined by X̌ on the left and one of the upper solutions on the right.

Algorithm 2 Solve (5).

1. Obtain input data for the matrices A and B.

2. Obtain the lowest solution for the system (6)

3. If the system is unsolvable go to step 6.

4. Set a unique maximal solution for the system X̂ = (x̂ j) where x̂ j = 1 for j = 1, ...,n.

5. Exit.

The system (5) has a single interval solution. It is defined by X̌ on the left and X̂ on the right.
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EXAMPLES

In the first example we illustrate presented algorithms. The next examples shows solving problems with a software
based on the presented here algorithms and developed by Zl. Zahariev. Execution time is also given.

Example 1

Using (Algorithm 2), solve

⎛
⎜⎜⎜⎜⎜⎝

0 0.1 0.8 0.3 0 0.5
0.2 0.6 0.48 0 0 0.3

0.05 0.3 0.24 0 0.12 0
0 0 0.48 0.4 0.2 0.1

0.4 0.2 0 0.8 0.48 0.6
0.1 0.3 0.24 0.2 0.12 0.15

⎞
⎟⎟⎟⎟⎟⎠

→�

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎜⎜⎝

0.3
0.5
1

0.5
0.25

1

⎞
⎟⎟⎟⎟⎟⎠

(12)

Finding the lowest solution

The lowest solution for (12) is the same as the lowest solution for the system:

⎛
⎜⎜⎜⎜⎜⎝

0 0.1 0.8 0.3 0 0.5
0.2 0.6 0.48 0 0 0.3

0.05 0.3 0.24 0 0.12 0
0 0 0.48 0.4 0.2 0.1

0.4 0.2 0 0.8 0.48 0.6
0.1 0.3 0.24 0.2 0.12 0.15

⎞
⎟⎟⎟⎟⎟⎠

→�

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0.3
0.5
1

0.5
0.25

1

⎞
⎟⎟⎟⎟⎟⎠

(13)

Using an algorithm for finding the lowest solution of (6), we can obtain the lowest solution of (13). It is:

X̌ = (0.1 0.3 0.24 0.2 0.12 0.15)′

Upper solutions

From Theorem 2 we set a single upper solution Xu1
= (1 1 1 1 1 1)′

Example 2

Solve the same system:

⎛
⎜⎜⎜⎜⎜⎝

0 0.1 0.8 0.3 0 0.5
0.2 0.6 0.48 0 0 0.3

0.05 0.3 0.24 0 0.12 0
0 0 0.48 0.4 0.2 0.1

0.4 0.2 0 0.8 0.48 0.6
0.1 0.3 0.24 0.2 0.12 0.15

⎞
⎟⎟⎟⎟⎟⎠

→�

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎠

≤

⎛
⎜⎜⎜⎜⎜⎝

0.3
0.5
1

0.5
0.25

1

⎞
⎟⎟⎟⎟⎟⎠

using developed by Zl. Zahariev software. This also will demonstrate the efficiency of the presented here algorithm.
The software used in this example as well as instructions can be found in [44].
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Solving the problem

1. Input matrix A and B

2. Declare A and B as fuzzy matrices. FuzzyMatrix is a MATLAB class holding some crucial operations for a
fuzzy matrices ([22])

�� ��������	
������ ��������	
������

3. Create the system object with ’goguen’ composition, empty matrix X, an option for finding all upper solutions
set to ’true’, and an option to solve the ≤ type of system set as a inequalities =−1

�� � � ��������
������������ �� �� ������	
����� 
���� ���

4. Solve the system

�� ������� ���������
	�� �

��������
�� !�
" #��#��
���$
%��#���
���$ ��������

	$ &'(' ������	
��)
*$ &'(� ������	
��)
$ &�(� �
��%
)

����$ �
���+�	��
���$ ��

5. The member variable x is a stricture which holds all the solutions of the system. We can inspect it and see that
among the other information it holds one lower solution (x.low) and 5 upper solution (x.gr)

�� ��
	�� �

�
��%
 !�
" ����,�$
��!�$ '
%���$ '
"��#$ &-(' ������	
��)
��!$ &'(� ������	
��)
��,$ &'(� ,��*��)

���
$ �
,����	
�,$ &. - ')
"��# ��!�$ -

��$ &'(/ ������	
��)

�� �����!
	�� �

'(� ������	
��$
,��*�� ,	
	$

0
0
0
0
0
0

�� �����
	�� �
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��� ������	
���
������ �	
	�

������ ������ ������ ������ ������
������ ������ ������ ������ ������
������ ������ ������ ������ ������
������ ������ ������ ������ ������
������ ������ ������ ������ ������
������ ������ ������ ������ ������

Example 3

Solve the same system:

⎛
⎜⎜⎜⎜⎜⎝

0 0.1 0.8 0.3 0 0.5
0.2 0.6 0.48 0 0 0.3

0.05 0.3 0.24 0 0.12 0
0 0 0.48 0.4 0.2 0.1

0.4 0.2 0 0.8 0.48 0.6
0.1 0.3 0.24 0.2 0.12 0.15

⎞
⎟⎟⎟⎟⎟⎠

→�

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎜⎜⎝

0.3
0.5
1

0.5
0.25

1

⎞
⎟⎟⎟⎟⎟⎠

Solving the problem

1. Input matrix A and B

2. Declare A and B as fuzzy matrices. FuzzyMatrix is a MATLAB class holding some crucial operations for a
fuzzy matrices ([22])

�� ��������	
������ ��������	
������

3. Create the system object with ’goguen’ composition, empty matrix X, an option for finding all upper solutions
set to ’true’, and an option to solve the ≥ type of system set as a inequalities = 1

��  � ����� �!
�"�#$�$��%#& �& �& ������	
����& 
���& ��

4. Solve the system

��  �!��'�(�%'��!���
	%! �

����� �!
�" )�
* +��+��
��!�
,�"+�!�
��%� #$�$��%#

	� -��� ������	
��.
�� -��� ������	
��.
� -��� !
��,
.

����� �
�%�/�	��
��!� �

5. The member variable x is a stricture which holds all the solutions of the system. We can inspect it and see that
among the other information it holds one lower solution (x.low) and one upper solution (x.gr)

��  �
	%! �

!
��,
 )�
* �����!�
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����� �
����� �
	
��� ��� ������������
���� ��� ������������
���� ��� �����
�


����� �
��� ��� ������������

�� �������
���  

�� ������������
�����
 �����

!��!!!
!�"!!!
!�#$!!
!�#!!!
!��#!!
!��%!!

�� ������
���  

�� ������������
�����
 �����

�
�
�
�
�
�

Execution time

On a test computer Example 2 was solved with the presented above software in about 0.001 seconds, Example 3 took
only 0.0007 seconds.

COMPUTATIONAL AND MEMORY COMPLEXITY

In this section the terminology for computational complexity and for memory complexity is according to [42].

Solving (4) (Algorithm 1) has exponential time complexity. However, it’s order depends not on the size of the
system, but on the number of the solutions.

Solving (5) (Algorithm 2) has time complexity O(m.n) and memory complexity for this part of the O(m.n+m+n).

CONCLUSION

Presented here algorithms and software are fast and reliable way to find all solution of Min-Goguen fuzzy linear
systems of inequalities. More information about the developed software can be found at [44], [45].
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