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Abstract. An algorithm for solving Min-Goguen fuzzy linear systems of equations is presented in this paper. Solving linear
systems of equations is subject of great scientific interest. The authors have developed fast an efficient algorithms over several
algebras. Here we present, relatively simple, fast and efficient algorithm to solve fuzzy linear systems of equations for Min-Goguen
algebra, logically backed by previously developed by the authors algorithms in max-min and min-max algebras.

INTRODUCTION

Inverse problem resolution for fuzzy linear systems is subject of great scientific interest. The main results are published
in [1], [2] and [3]. They demonstrate long and difficult period of investigations for discovering analytical methods
and procedures to determine complete solution set, as well as to develop software for computing solutions, see [3]
and [4]. The first and most essential are Sanchez results [5] for the greatest solution of fuzzy relational equations with
max-min and min-max composition. Sanchez gives formulas that permit to determine the potential greatest solution
in any of these cases, often used as solvability criteria. Universal algorithm and software for solving max-min and
min-max fuzzy relational equations is proposed in [3], [4], and [6]. The relationship with the covering problem is
subject of [7], where two methods for solving such fuzzy linear systems (algebraic and with table decomposition) are
discussed and an algorithm is proposed, realizing table decomposition method.

This paper proposes methodology, unified method and algorithm for inverse problem resolution for Min-Goguen
Implication fuzzy linear systems of equations. The algorithm is backed by a logic similar to the presented in [8] and
[9], but adapted to a not investigated there operation.

It is focused on solving fuzzy linear systems of equations:∣∣∣∣∣∣∣
(a11 →� x1)∧ (a12 →� x2)∧ . . .∧ (a1n →� xn) = b1

(a21 →� x1)∧ (a22 →� x2)∧ . . .∧ (a2n →� xn) = b2

. . .
(am1 →� x1)∧ (am2 →� x2)∧ . . .∧ (amn →� xn) = bm

(1)

where ai j,bi ∈ [0,1], are given and x j ∈ [0,1] marks the unknowns in the system. In this paper for the indices we
suppose i = 1, ...,m, j = 1, ...,n

The system (1) will be presented in matrix form:

A →� X = B (2)

where A = (ai j)m×n is the matrix of coefficients, B = (bi)m×1 holds for the right-hand side vector and X = (x j)1×n is
the vector of unknowns.

The algorithm presented here partially follows the logical structure used in [10] but as the used algebra is different,
a lot of significant adjustments are presented in order to implement that logic for the presented here use-case. The
algorithm is somehow based on the algorithms presented in [10] but instead of using generators [11] or coverings
[12] it uses domination and list operations – that improves the algebraic-logical approach from [10], and make it more
efficient.

In general the algorithm keeps the idea for domination and the algebraic-logical approach from [10] but highly
improves their realization. To achieve this, the algebraic-logical approach is substituted by a highly improved and
simplified procedure presented further. New approach for finding the lowest solution of (1) is also presented further
as well as other small improvements pointed among the lines.

The paper is divided in six sections. Next section gives some basic notions. Then, the theoretical background for
solving the system (1) is given. Then the algorithms are presented. Examples are given after this. Analysis of the
computational complexity and memory complexity of the algorithm as well as some conclusions can be found in the
last two sections.
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The terminology for fuzzy sets is according to [13], for fuzzy equations – as in [1], and [3], for algorithms, compu-
tational complexity and memory complexity – as in [14] and [15].

BASIC NOTIONS

Let a,b ∈ [0,1].
Operation ∨ between a and b is defined as

a∨b = max(a,b) (3)

Operation ∧ between a and b is defined as

a∧b = min(a,b) (4)

Operation � between a and b is defined as the conventional real numbers multiplication.
Operation →� between a and b is defined as

a →� b =

{
1, if a ≤ b
b
a , if a > b

(5)

A matrix A= (ai j)m×n with ai j ∈ [0,1] for each i= 1, ...,m, j = 1, ...,n is called membership matrix. In what follows
’matrix’ is used instead of ’membership matrix’.

Let the matrices A = (ai j)m×p and B = (bi j)p×n be given.
The matrix Cm×n = (ci j) = A →� B is called min−→� product of A and B if

ci j = ∧p
k=1(aik →� bk j) (6)

for each i = 1, ...,m, j = 1, ...,n.
The matrix Cm×n = (ci j) = A�B is called max−� product of A and B if

ci j = ∨p
k=1(aik �bk j) (7)

for each i = 1, ...,m, j = 1, ...,n.
For X = (x j)1×n and Y = (y j)1×n the inequality X ≥ Y holds iff x j ≥ y j for each j = 1, ...,n.
Next notions are according to [4]
A vector X0 = (x0

j)1×n with x0
j ∈ [0,1], j = 1, ...,n, is called solution of the system (2) if A →� X0 = B holds. The

set of all solutions of (2) is called complete solution set and it is denoted by X
0. If X0 	= /0 then the system is called

solvable (or consistent), otherwise it is called unsolvable (or inconsistent).
A solution X0

u ∈ X
0 is called upper solution of A →� X = B if for any X0 ∈ X

0 the inequality X0
u ≤ X0 implies

X0 = X0
u . A solution X0

low ∈ X
0 is called lower solution of A →� X = B if for any X0 ∈ X

0 the inequality X0 ≤ X0
low

implies X0 = X0
low. If the lower solution is unique, it is called lowest (or minimum) solution. The n-tuple (X1, ...,Xn)

with Xj ⊆ [0,1] is called interval solution of the system A →� X = B if any X0 = (x0
j)n×1 with x0

j ∈ Xj for each

j = 1, ...,n implies X0 = (x0
j)n×1 ∈ X

0. Any interval solution of A →� X = B whose components (interval bounds)
are determined by the lowest solution from the left and by an upper solution from the right, is called minimal interval
solution of A →� X = B.

SIMPLIFICATIONS

Lowest solution

It is well known [1], that any solvable min−→� fuzzy linear system of equations has unique lowest solution. In order
to find all solutions of the solvable system, it is necessary to find both its lowest solution and all of its upper solutions.
Finding the lowest solution is relatively simple task often used as a criteria for establishing solvability of the system
[10]. Finding all upper solutions is reasonable only when the lowest solution exists.

Next we follow the terminology and we remind the results from [10].
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Classical approach

The traditional approach to solve (1) is based on the following theorem:
Theorem 1. [10] Let A and B be given matrices and X→� be the set of all matrices such that A →� X = B when

X ∈ X→� . Then

• X→� 	= /0 iff At �B ∈ X→� .

• If X→� 	= /0 then At �B is the lowest element in X→� . �

If the system (1) is solvable, its lowest solution is given by X̌ = (x̌ j) = At �B.
Using this fact, an appropriate algorithm for checking consistency of the system and for finding its lowest solution

is obtained [10]. Its computational complexity is O(m.n2). Nevertheless that it is simple, it is too hard for such a task.

More efficient approach

Here we propose a simpler way to answer both questions, simultaneously computing the lowest solution and estab-
lishing consistency of (1).

The algorithm uses the fact that it is possible to find the value of the unknown x̌ j if only the jth column of the matrix

A is considered. For every i = 1, ...,m, all the ai j coefficients provide a way to satisfy the corresponding ith equation
with ai j →� x j = bi when x j = ai j �bi

For the purposes of the next theorem, b̌ j is introduced as follows:

b̌ j =
m

max
i=1

{ai j �bi} (8)

In other words, for each j = 1, ...,n, b̌ j is equal to the highest value of ai j �bi, i = 1, ...,m.

Theorem 2. [10] A system A →� X = B is solvable iff X̌ = (b̌ j) is its solution. �
Corollary 1. In a solvable system (1), choosing x j < b̌ j for at least one j = 1, ...,n makes the system unsolvable.

Proof. Suppose b̌ j = ak j �bk. Let we choose x j < ak j �bk. This will make at least one (ak j →� x j) part of the kth

equation lower then bk and because we take the minimum of all those (ak j →� x j) parts, that means that the whole

left-hand side of the kth equation will become lower than bk and this proves the corollary. �
Corollary 2. In a solvable system (1), for every j = 1, ...,n, the lowest admissible value for x j is b̌ j. �
Corollary 3. If the system (1) is solvable its lowest solution is X̌ = (x̌ j) = (b̌ j), j = 1, ...,n. �
Corollary 4. X̌ = (x̌ j) = (b̌ j) and X̌ = At �B are equivalent. �
In general, Theorem 2 and its corollaries shows that instead of calculating X̌ = At �B we can use faster algorithm

to obtain X̌ = (x̌ j) = (b̌ j) (presented further in the paper).

X̌ is only the eventual lowest solution of the system (1), because it can be obtained for any system (1), even if the
system is unsolvable, so the eventual solution should be checked in order to confirm that it is solution of (1). Explicit
checking for the eventual solution will increase the computations complexity of the algorithm. To avoid this in the
next presented algorithm this is done during the generation of the coefficients of the potential lowest solution. For
every obtained coefficient (x̌ j) ∈ X̌ there is check, which equations of (1) can be satisfied with it (hold in the boolean
vector IND). If in the end of the algorithm all the equations of (1) are satisfied (i.e. all the coefficients in IND are set
to T RUE) this means that the obtained solution is the lowest solution of (1), otherwise the system (1) is unsolvable.

Algorithm 1 Lowest solution of (1).

1. Initialize the vector X̌ = (x̌ j) with x̌ j = 0 for j = 1, ...,n.

2. Initialize a boolean vector IND with INDi = FALSE for i = 1, ...,m. This vector is used to store equations what
are satisfied by the eventual lowest solution.

3. For every column j = 1, ...,n in A:

(a) Find b̌ j = maxm
i=1 {ai j �bi}

(b) Correct the value for x̌ j to b̌ j.
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(c) Find all i in the current j, such that ai j �bi = b̌ j and correct the corresponding INDi to T RUE

4. Check if all components of IND are set to T RUE.

(a) If INDi = FALSE for some i the system A →� X = B is unsolvable.

(b) If INDi = T RUE for all i = 1, ...,m the system A →� X = B is solvable and its lowest solution is X̌ .

5. Exit.

Theorem 2 and its corollaries prove that if the system is solvable, X̌ computed by this algorithm is its lowest
solution. This is the first difference between published up to now results and the result presented in this paper. In
existing up to now algorithms (see [10]) consistency of the system is established substituting X̌ = At �B for X in
(2): when A →� (At �B) = B holds, the system is solvable, otherwise it is unsolvable. With Algorithm 1 X̌ can be
obtained in more efficient way thus improving the time complexity. In addition there is no need to substitute X̌ in
order to establish consistency of the system.

IND vector proposed first in [16] here is used for a similar purpose. The algorithm uses this vector to check which
equations are satisfied by the eventual X̌ . At the end of the algorithm if all components in IND are T RUE then X̌ is
the lowest solution of the system, otherwise the system is unsolvable.

Analysis of the computational complexity for Algorithm 1 is given further. In general it is O(m.n).

Upper solutions

It is important that every term (ai j) in the system such that ai j < b̌ j cannot contribute to satisfy its according equation,
so it should not be considered when extracting upper solutions. Also, the value for every component in the solution is
either the value of the corresponding component in the vector b̌ j or some bigger value. Along these lines, the hearth
of the presented here algorithm is to find components ai j in A and to give to Xu j either the value of the corresponding

b̌ j or 1.
Using this, a set of candidate solutions can be obtained. All candidate solutions are of three different types:

• Upper solution;

• Non-upper solution;

• Not solution at all.

The task of the algorithm is to extract all upper solutions and to skip the second and third types (i.e. not upper
solutions). In order to extract all upper solutions a new method, based on the idea of the dominance matrix [3] in
combination with a new technique is used to extract all lower solutions.

Domination

For the purposes of presented here algorithm, a modified version of the definition for domination is given. Original
definition can be found in [10].

Definition 1. Let al and ak be the lth and the kth equations, respectively, in (1) and bl ≥ bk. al is called dominant to
ak and ak is called dominated by al , if for each j = 1, ...,n such that ai j < b̌ j it holds: al j �bl ≤ ak j �bk.

Extracting upper solutions

Algebraic-logical approach is used up to now for finding all upper solutions [10], algorithms are with exponential
memory and time complexity [17]. The new algorithm, proposed here, also has exponential complexity but with a
lower degree. Thereby it needs less number of steps from the other algorithms to obtain all lower solutions, for a
problems with size < ∞. Also, it reduces part of the operations needed on every step (for instance absorption) and
realizes faster approach on the other operations and thereby it is more efficient among now available algorithms.
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Upper solutions are extracted by removing from A the dominated rows. A new matrix is produced and marked with

Ã = (aĩ j) where ĩ = 1, ..., m̃, m̃ < m for obvious reasons. It preserves all the needed information from A to obtain the

solutions.
Extraction introduced here is based on the following recursive principle.

If in the jth column of Ã there are one or more rows (̃i∗) such that ãi j � bĩ∗ = b̌ j, x j should be taken equal to the

biggest ãi j �bĩ∗ and all rows such that ãi j �bĩ∗ < x j should be removed from Ã. The same procedure is repeated for

( j+1)th column of the reduced Ã. "Backtracking" based algorithm using that principle is presented next:

Algorithm 2 Extract the upper solutions from Ã.

1. Initialize solution vector Xu0
( j) = 1, j = 1, ...,n.

2. Initialize a vector rows(̃i), i = 1, ..., m̃ which holds all consecutive row numbers in Ã. This vector is used as a

stopping condition for the recursion. Initially it holds all the rows in Ã. On every step some of the rows there
are removed. When rows is empty the algorithm exits from the current recursive branch.

3. Initialize sols to be the empty set of vectors, which is supposed to be the set of all maximal solutions for current
problem.

4. Check if rows = /0. If so, check if in sols there is another vector > Xu0
, if no such a vector - add Xu0

to sols.
Remove from sols all the vectors < Xu0

and go to step 6.

5. Fix ĩ equal to the first element in rows, then for every j = 1, ...,n

(a) Create a copy of Xu0
and update its jth coefficient to be equal to ãi j � bĩ∗ (if ãi j > 0). Create a copy of

rows.

(b) For all k̃ in rows if jth coefficient of Xu0
< ãi j �bĩ∗ , remove k̃ from the copy of rows.

(c) Go to step 5 with copied in this step rows and Xu0
, i.e. start new recursive branch with reduced rows and

changed Xu0
.

6. Exit.

As this is a recursive algorithm the best explanations for it can be done with an example. A suitable example is
given further in Example 1.

Algorithms overview

The next algorithm is based on the above given Algorithms 1 and 2.
Algorithm 3 Solving A →� X = B.

1. Obtain input data for the matrices A and B.

2. Obtain lowest solution for the system and check it for consistency (Algorithm 1).

3. If the system is unsolvable go to step 6.

4. Obtain the matrix Ã.

5. Obtain all maximal solutions from Ã and B (Algorithm 2).

6. Exit.

Step 5 is the slowest part of the Algorithm 3. Detailed complexity analysis can be found further. In general, this
algorithm has its best and worst cases and this is the most important improvement according to algebraic-logical
approach from [10] (from the time complexity point of view). Algorithm 2 is going to have the same time complexity
as the algorithm presented in [10] only in its worst case.
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EXAMPLES

In the first example we illustrate presented algorithms. The second example shows solving a problem with a software
based on Algorithm 3 and developed by Zl. Zahariev. Execution time is also given.

Example 1

Solve

⎛
⎜⎜⎜⎜⎜⎝

0 0.1 0.8 0.3 0 0.5
0.2 0.6 0.48 0 0 0.3

0.05 0.3 0.24 0 0.12 0
0 0 0.48 0.4 0.2 0.1

0.4 0.2 0 0.8 0.48 0.6
0.1 0.3 0.24 0.2 0.12 0.15

⎞
⎟⎟⎟⎟⎟⎠→�

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

0.3
0.5
1

0.5
0.25

1

⎞
⎟⎟⎟⎟⎟⎠

Finding the lowest solution (Algorithm 1)

1. Initialize X̌ = (1.0 1.0 1.0 1.0 1.0)′.

2. Initialize IND = (indi) = FALSE for each i = 1, ...,m.

3. Calculate x̌1 = b̌1 = maxm
i=1 {ai1 �bi}:

x̌1 = b̌1 =
m

max
i=1

⎛
⎜⎜⎜⎜⎜⎝

a11 �b1

a21 �b2

a31 �b3

a41 �b4

a51 �b5

a61 �b6

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0�0.3
0.2�0.5
0.05�1
0�0.5

0.4�0.25
0.1�1

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0
0.1

0.05
0

0.1
0.1

⎞
⎟⎟⎟⎟⎟⎠= 0.1

ai j �bi = 0.1 for i = (2,5,6), so IND2 = T RUE, IND5 = T RUE, IND6 = T RUE

4. Calculate x̌2 = b̌2 = maxm
i=1 {ai2 �bi}:

x̌2 = b̌2 =
m

max
i=1

⎛
⎜⎜⎜⎜⎜⎝

a12 �b1

a22 �b2

a32 �b3

a42 �b4

a52 �b5

a62 �b6

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0.1�0.3
0.6�0.5
0.3�1
0�0.5

0.2�0.25
0.3�1

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0.03
0.3
0.3
0

0.05
0.3

⎞
⎟⎟⎟⎟⎟⎠= 0.3

ai j �bi = 0.3 for i = (2,3,6), IND2 and IND6 are already T RUE, so IND3 = T RUE

5. Calculate x̌3 = b̌3 = maxm
i=1 {ai3 �bi}:

x̌3 = b̌3 =
m

max
i=1

⎛
⎜⎜⎜⎜⎜⎝

a13 �b1

a23 �b2

a33 �b3

a43 �b4

a53 �b5

a63 �b6

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0.8�0.3
0.48�0.5
0.24�1

0.48�0.5
0�0.25
0.24�1

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0.24
0.24
0.24
0.24

0
0.24

⎞
⎟⎟⎟⎟⎟⎠= 0.24

ai j �bi = 0.24 for i = (1,2,3,4,6), IND2, IND3 and IND6 are already T RUE, so IND1 = T RUE, and IND4 =
T RUE. With this all the components of IND are now T RUE, so we can stop checking it.
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6. Calculate x̌4 = b̌4 = maxm
i=1 {ai4 �bi}:

x̌4 = b̌4 =
m

max
i=1

⎛
⎜⎜⎜⎜⎜⎝

a14 �b1

a24 �b2

a34 �b3

a44 �b4

a54 �b5

a64 �b6

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0.3�0.3
0�0.5
0�1

0.4�0.5
0.8�0.25

0.2�1

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0.09
0
0

0.2
0.2
0.2

⎞
⎟⎟⎟⎟⎟⎠= 0.2

7. Calculate x̌5 = b̌5 = maxm
i=1 {ai5 �bi}:

x̌5 = b̌5 =
m

max
i=1

⎛
⎜⎜⎜⎜⎜⎝

a15 �b1

a25 �b2

a35 �b3

a45 �b4

a55 �b5

a65 �b6

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0�0.3
0�0.5
0.12�1
0.2�0.5

0.48�0.25
0.12�1

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0
0

0.12
0.1

0.12
0.12

⎞
⎟⎟⎟⎟⎟⎠= 0.12

8. Calculate x̌6 = b̌6 = maxm
i=1 {ai6 �bi}:

x̌6 = b̌6 =
m

max
i=1

⎛
⎜⎜⎜⎜⎜⎝

a16 �b1

a26 �b2

a36 �b3

a46 �b4

a56 �b5

a66 �b6

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0.5�0.3
0.3�0.5

0�1
0.1�0.5

0.6�0.25
0.15�1

⎞
⎟⎟⎟⎟⎟⎠=

m
max
i=1

⎛
⎜⎜⎜⎜⎜⎝

0.15
0.15

0
0.05
0.15
0.15

⎞
⎟⎟⎟⎟⎟⎠= 0.15

With this the lowest solution of the system is obtained: X̌ = (0.1 0.3 0.24 0.2 0.12 0.15)′. Also, Theorem 2
and its corollaries prove that this is the lowest solution and no more verification is needed.

Finding all upper solutions

1. For the matrix A
From Definition 1, the second vector is dominated by the first, the third vector is dominated by the sixth and the
sixth vector is dominated by the first. As all dominated vectors are redundant they should be removed from the
set.

Ã =

⎛
⎝ 0 0.1 0.8 0.3 0 0.5

0 0 0.48 0.4 0.2 0.1
0.4 0.2 0 0.8 0.48 0.6

⎞
⎠

2. Start with initial vector Xu1
= (1 1 1 1 1)′.

Iterate through the first row of Ã. The first coefficient i from this row where ˜a1 j �b j = b̌ j is i = 3. We update

Xu1
(3) = ˜a13 �b1 = 0.24. As ˜a23 �b2 = ˜a13 �b1 we skip the second row from Ã.

On the third row the first coefficient where ˜a3 j �b j = b̌ j is 1, so we update Xu1
(1) = ˜a31 �b3 = 0.1. With this

we acquire the first upper solution:

Xu1
= (0.1 1 0.24 1 1 1)′

3. Step back in the "backtracking", we continue iterating through the third row. There are three more qualified
coefficients - ˜a34, ˜a35, and ˜a36. From them we extract the next three upper solutions:

Xu2
= (1 1 0.24 0.2 1 1)′

Xu3
= (1 1 0.24 1 0.12 1)′

Xu4
= (1 1 0.24 1 1 0.15)′
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4. Step back in the "backtracking", we are back to continue iterating through the first row. There is one more
qualified coefficient - ˜a16. From if we update Xu5

(6) = ˜a16 �b1 = 0.15. Next we go through the second row of

Ã, and we will entirely skip the third row.

From the second row we have two qualified coefficients - ˜a23 and ˜a24. From the first one we receive (1 1
0.24 1 1 0.15)’, which is already extracted as a solution, so we skip it and from the second coefficient we
extract the last upper solution for this example:

Xu5
= (1 1 1 0.2 1 0.15)′

Example 2

Solve the same system:

⎛
⎜⎜⎜⎜⎜⎝

0 0.1 0.8 0.3 0 0.5
0.2 0.6 0.48 0 0 0.3

0.05 0.3 0.24 0 0.12 0
0 0 0.48 0.4 0.2 0.1

0.4 0.2 0 0.8 0.48 0.6
0.1 0.3 0.24 0.2 0.12 0.15

⎞
⎟⎟⎟⎟⎟⎠→�

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

0.3
0.5
1

0.5
0.25

1

⎞
⎟⎟⎟⎟⎟⎠

using developed by Zl. Zahariev software. This also will demonstrate the efficiency of the presented here algorithm.
The software used in this example as well as instructions can be found in [18].

Solving the problem

1. Input matrix A and B

2. Declare A and B as fuzzy matrices. FuzzyMatrix is a MATLAB class holding some crucial operations for a
fuzzy matrices ([22])

�� ��������	
������ ��������	
������

3. Create the system object with ’goguen’ composition, empty matrix X and option for finding all upper solutions
set as ’true’

�� � � ��������
����������������
������	
����� 
�����

4. Solve the system

�� �����������������
	�� �

��������
�� �	� ��
!��"��
���#

$��"���
���# ��������
	# %&& ������	
��'
(# %&) ������	
��'
# %)) �
��$
'

����# )
���*�	��
���# +

��
�� �� ,���
�� ��"��$�	����
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5. The member variable x is a stricture which holds all the solutions of the system. We can inspect it and see that
among the other information it holds one lower solution (x.low) and 5 upper solution (x.gr)

�� ���
��� �

�	
��	 �	� �������

��� �
����� �
����� ���� �������	
���
��� ���� �������	
���
���� ���� ��� ���

����	� �
��!���	��� �" � ��
����#
��� �

$
� ���% �������	
���

�� ������
��� �

��� �������	
���
��� �� ��	��

&��&&&
&��&&&
&�"'&&
&�"&&&
&��"&&
&��%&&

�� ����$

��� �

��% �������	
���
��� �� ��	��

&��&&& ��&&&& ��&&&& ��&&&& ��&&&&
��&&&& ��&&&& ��&&&& ��&&&& ��&&&&
&�"'&& &�"'&& &�"'&& &�"'&& ��&&&&
��&&&& &�"&&& ��&&&& ��&&&& &�"&&&
��&&&& ��&&&& &��"&& ��&&&& ��&&&&
��&&&& ��&&&& ��&&&& &��%&& &��%&&

Execution time

On a test computer this example was solved with the presented above software in about 0.001 seconds.

COMPUTATIONAL AND MEMORY COMPLEXITY

In this section the terminology for computational complexity and for memory complexity is according to [14].
The problem has exponential computational complexity [17]. It actually depends on the the number of the lower

solutions and if the system has a solution at all.
For obtaining X̌ the algorithm needs to iterate through all the elements in the matrix A, so the time complexity is

O(m.n). Since there is need to keep information about the greatest solution, as well as IND vector, memory complexity
for this part of the problem is O(m+n).

The most complicated part of the problem is to obtain the upper solutions. Its computational complexity hardly
depends on the number of non-dominated vectors. From Definition 1 it is easy to see that for a system in n unknowns
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and m equations, the maximal number of non-dominated vectors is less than or equal to 2n − 1. The components of
these vectors should be iterated with backtracking based Algorithm 4 with exponential time complexity.

Checking for domination has complexity from a lower class and for this reason it is not discussed. But an extracted
solution can be not upper or can be duplicated, and therefore it should be checked against all other extracted solution.
This operation has the same computational complexity as the extraction of all upper solutions.

CONCLUSION

Presented algorithm is a simple and straightforward way to solve fuzzy →� systems of linear equations. It gives fast
and reasonable approach. The software, created by Zl. Zahariev, implements Algorithm 4. This software is about only
120 lines of MATLAB code, which just demonstrates algorithm simplicity. It is free distributed under BSD license
agreements. Comparison with other software packages can be found in [19].

Based on the presented here algorithm and software, a new software package is created by Zl. Zahariev. The
package is called Fuzzy Calculus Core (FC2ore) [18], [20]. It supports operations with fuzzy matrices and solves
fuzzy linear systems of equations and inequalities in various algebras. Up to now six types of systems can be solved
with FC2ore according to the used algebra: max−min, min−max, max− product, Gödel, Goguen and Łukasiewicz.

It is important that all six types of systems are solved with algorithms very close to the algorithm presented in this
paper.

This software also proposes solving fuzzy optimization problems as well as obtaining, reducing and minimizing
complete behavior matrix for fuzzy machines in all mentioned above algebras. It is also supposed that this software
will be useful for fuzzy reasoning, pattern recognition and in graph theory for finding irredundant coverings.

FC2ore is free distributed under BSD license agreements [18].
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