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Abstract. An asymptotic method applied directly to the energy integral of an autonomous oscillating system is used. 

Using a formal method, the formulas for finding the zero and first approximations are derived. Two cases of 

perturbing potentials, of the fourth and third degree, respectively, are considered. The solution in the first 

approximation is found as a power function of the solution in the zero approximation. 

INTRODUCTION 
 

One of the difficulties in finding the solution of a nonlinear ordinary differential equation in analytical form is that 

in most cases this could only be done approximately. A number of asymptotic methods have been developed, based 

on generally divergent series, which, however, provide a good approximation from the point of view of practice [1]. 

Poincaré [2] and Van der Paul [3] made great contributions to this field of mathematics. Poincaré developed techniques 

for finding a periodic solution by decomposing the solution into series by parameter characterizing the system, smaller 

than 1. Van der Paul’s method is to find approximate solutions by averaging, using that the rate of change of the 

amplitude is small, that is, proportional to a small parameter. One of the best developed methods is that of Krylov - 

Bogolyubov - Mitropolski [4] (KBM), which summarizes the ideas of the two scientists. There are methods using the 

presence of a large parameter. One of the most popular is the Wentzel-Kramers-Brillouin method (WKB) [5]. 

In this work, an autonomous oscillating system for which the energy integral is known, is considered. The method 

of the small parameter in a way different from its classical application, is used. Using a formal method, the energy 

integral for finding an approximate solution in the order of the small parameter, is attacked directly. The calculations 

are limited to the first approximation, which is often of the greatest practical importance. 

 

FORMAL METHOD FOR DECOMPOSITION OF THE ENERGY INTEGRAL BY THE 

POWERS OF THE SMALL PARAMETER 
 

Consider a dynamic system whose energy integral can be written as: 

 

 𝐸 =
𝜔2𝑥2+𝑥̇2

2
+ 𝜔2𝑉(𝜀, 𝑥), (1) 

where 𝜀 is a small parameter, 𝜔2 is a constant. Let: 
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 𝑉(0, 𝑥) = 0, 𝑉(𝜀, 0) = 0. (2) 

Let the function 𝑉(𝜀, 𝑥) be continuous and differentiable by 𝑛𝑡ℎ order with respect on both arguments. Consider 

new variable: 

 

 Ω𝑡 = 𝜏,
𝑑

𝑑𝑡
= Ω

𝑑

𝑑𝜏
, Ω = 𝑐𝑜𝑛𝑠𝑡. (3) 

Then: 

 

 ℰ =
𝐸

𝜔2 =
𝑥2+𝜎2𝑥′2

2
+ 𝑉(𝜀, 𝑥), 𝜎2 = (

Ω

𝜔
)

2

. (4) 

 

The quantities that characterize the system into series according to the small parameter are decomposed: 

 

 𝑥 = 𝑥0 + 𝜀𝑥1 + ⋯ +  𝜀𝑛𝑥𝑛 + ⋯, (5) 

 𝜎 = 𝜎0 + 𝜀𝜎1 + ⋯ +  𝜀𝑛𝜎𝑛 + ⋯ , 𝜎0 = 1, (6) 

 ℰ = ℰ0 + 𝜀ℰ1 + ⋯ +  𝜀𝑛ℰ𝑛 + ⋯. (7) 

 

The series are broken up to the 𝑛𝑡ℎ term. Asymptotic approximation to the solution is finding by these series. 

Consider the decomposition of some arbitrary quantity 𝑦 by the powers of the small parameter: 

 

 𝑦 = 𝑦0 + 𝜀𝑦1 + ⋯ +  𝜀𝑛𝑦𝑛 . (8) 

 

Then: 

 

 𝑦|𝜀=0 = 𝑦0 , 

 
𝑑𝑦

𝑑𝜀
|

𝜀=0
= 𝑦𝜀|𝜀=0 = 𝑦1, 

 
𝑑2𝑦

𝑑𝜀2|
𝜀=0

= 𝑦𝜀𝜀|𝜀=0 = 2𝑦2, 

 … … … … … … 

 
𝑑𝑛𝑦

𝑑𝜀𝑛|
𝜀=0

= 𝑦𝜀𝑛|𝜀=0 = 𝑛! 𝑦𝑛. (9) 

 

Thus, the relation between the functions in the expansions can be realized by differentiating the two sides of the 

equality in the equation for 𝐸 by the small parameter, except for the zero approximation. 

Let: 

 

 𝑉(𝜀, 𝑥) = 𝜀 𝑉(𝑥). (10) 

 

The zero approximation is obtained directly by equating the small parameter to 0: 

 

 ℰ|𝜀=0 = ℰ0 =
𝑥0

2+𝑥0′2

2
. (11) 

 

Differentiating the two sides of the equality of the integral ℰ once and equating the small parameter to 0, the first 

approximation is obtained: 

 

 
𝑑ℰ

𝑑𝜀
|

𝜀=0
=

2𝑥𝑥𝜀+2𝜎𝜎𝜀𝑥′2+2𝜎2𝑥′𝑥′𝜀

2
+

𝜕𝜀𝑉

𝜕𝜀
|

𝜀=0
, (12) 

 ℰ1 =
2𝑥0𝑥1+2𝜎0𝜎1𝑥0′2+2𝜎0

2𝑥0′𝑥1′

2
+ 𝑉(𝑥0). (13) 

 

Similarly: 

 2ℰ2 =
2𝑥1

2+4𝑥0𝑥2+2𝜎1
2𝑥0′2+4𝜎0𝜎2𝑥0′2+4𝜎0𝜎1𝑥0′𝑥1′+2𝜎0

2𝑥1′2+4𝜎0
2𝑥0′𝑥2′

2
+

𝜕𝑉(𝑥0)

𝜕𝑥0
𝑥1. (14) 

 



Finding other approximations is becoming more and more technically complex. In practice, due to its complexity, 

further solution of the problem without the use of specialized computer programs is impractical even for a second 

approximation. 

 

USING THE METHOD FOR FINDING A SOLUTION IN CASE OF FOURTH DEGREE 

DISTURBANCE WITH RESPECT TO THE VARIABLE 
 

In order to indicate a specific strategy for completing the task, the function 𝜀 𝑉(𝑥) must be presented in a certain 

form. Let the perturbing potential be: 

 

 𝑉(𝑥) = −
𝑥4

4
. (15) 

 

The expression for ℰ in this case is given by: 

 

 
𝐸

𝜔2 = ℰ =
𝑥2+𝜎2𝑥′2

2
−

𝜀𝑥4

4
. (16) 

 

In addition, let the conditions apply: 

 

 𝑥(0) = 𝑙, 𝑥′(0) = 0. (17) 

 

For the zero approximation: 

 

 ℰ0 =
𝑥0

2+𝑥0′2

2
=

𝑙2

2
. (18) 

 

The first approximation satisfies the conditions: 

 

 ℰ1 =
2𝑥0𝑥1+2𝜎0𝜎1𝑥0′2+2𝜎0

2𝑥0′𝑥1′

2
−

𝑥4

4
. (19) 

 

Let the function 𝑥1 satisfies the conditions: 

 

 𝑥1(0) = 0, 𝑥1′(0) = 0. (20) 

 

In general, the function 𝑥1 has the form: 

 

 𝑥1 =
𝜆1

4
𝑥0

3 +
𝜆2

4
𝑥0

2𝑙 +
𝜆3

4
𝑥0𝑙2 +

𝜆4

4
𝑙3. (21) 

 

In (21) 𝜆𝑖 , 𝑖 = 1,2,3,4 are constants that will be determined later. 

In order for the initial conditions (17) to be satisfied, the unknown constants 𝜆𝑖 , 𝑖 = 1,2,3,4 must satisfy the 

condition: 

 

 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 0. (22) 

 

From (18) it follows that: 

 

 𝑥0′2 = 𝑙2 − 𝑥0
2. (23) 

 

After substitution in the equation, for the first approximation, it gets: 

 



ℰ1 = (
𝜆1

4
−

3𝜆1

4
−

1

4
) 𝑥0

4 + (
𝜆2

4
𝑙 −

𝜆2

4
𝑙) 𝑥0

3 + (
3𝜆1

4
𝑙2 − 𝜎1) 𝑥0

2 + (
𝜆4

4
𝑙3 +

𝜆2

4
𝑙3) 𝑥0 + 𝜎1𝑙2 + +𝜆3

𝑙4

4
. (24) 

 

For ℰ1 to be a constant, all expressions in the brackets, which multiply 𝑥0and its powers, must be equals to 0. 

Therefore:  

 

 𝜆1 = −
1

2
 (25) 

 𝜎1 = −
3

8
𝑙2 (26) 

 

For full determination of the desired feature, let: 

 

 𝜆4 = 𝜆2 = 0, (27) 

 𝜆3 =
1

2
. (28) 

 

It can be immediately determined that: 

 

 ℰ1 = −
𝑙4

4
, (29) 

 

as should be expected. 

Referred to the physical side of the task, the oscillating motion in the first approximation is performed by law: 

 

 𝑥 = 𝑥0 + 𝜀 [−
𝑥0

3

8
+

𝑙2𝑥0

8
], (30) 

 

where 𝑥0 = 𝑙cos Ω𝑡 with period 
2𝜋

Ω
, and: 

 

 Ω = 𝜔 (1 −
3

8
𝜀𝑙2). (31) 

 

USING THE METHOD FOR FINDING A SOLUTION IN CASE OF THIRD DEGREE 

DISTURBANCE WITH RESPECT TO THE VARIABLE 
 

Let the perturbing potential be in the form: 

 

 𝑉(𝑥) = −
𝑥3

3
. (32) 

 

Let: 

 

 𝑥(0) = 𝑙, 𝑥′(0) = 0. (33) 

 

The zero approximation has the form: 

 

 ℰ0 =
𝑥0

2+𝑥0′2

2
=

𝑙2

2
. (34) 

 

The function 𝑥1 has the form: 

 

 𝑥1 =
𝜆1

3
𝑥0

2 +
𝜆2

3
𝑥0𝑙 +

𝜆3

3
𝑙2. (35) 

Let again: 

 



 𝑥1(0) = 0, 𝑥1′(0) = 0.  (36) 

 

Condition (36) leads to the relation between the constants 𝜆𝑖 , 𝑖 = 1,2,3 which must be determined: 

 

 𝜆1 + 𝜆2 + 𝜆3 = 0. (37) 

 

Substituting the expression for 𝑥1 in the equation for the first approximation (35), it turns out: 

 

 ℰ1 = (
𝜆1

3
−

2𝜆1

3
−

1

3
) 𝑥0

3 + (
𝜆3

3
𝑙2 +

2𝜆1

3
𝑙2) 𝑥0 + 𝜎1𝑙2 − 𝜎1𝑥0

2+𝜆2
𝑙3

3
. (38) 

 

All expressions in the brackets, which multiply 𝑥0and its powers, must be equals to 0. Then: 

 

 𝜆1 = −1, (39) 

 𝜆3 = 2, (40) 

 𝜎1 = 0. (41) 

 

From the relation (37), it gets that: 

 

 𝜆2 = −1. (42) 

 

The correction in the first approximation to ℰ is: 

 

 ℰ1 = −
𝑙3

3
. (43) 

 

The solution of the problem in the first approximation is: 

 

 𝑥0 = 𝑙cos 𝜔𝑡, (44) 

 𝑥 = 𝑥0 + 𝜀 [−
𝑥0

2

3
−

𝑙𝑥0

3
+

2𝑙2

3
]. (45) 

 

CONCLUSION 
 

The technique used to find an approximate solution makes it possible to work with the energy integral, not with 

the differential equation, as in the classical approach. In sense, this complicates the task, but the application of a formal 

order decomposition technique simplifies the calculations, despite the complexity of the resulting expressions. The 

proposed way to finding higher approximations, through the power function of the solution in the zero approximation, 

leads to quick finding of the required functions. The hypothesis that this is appropriate in all cases where the 

disturbance is a power function of the variable can be said. 
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