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Abstract. A method for finding periodic solutions of a dynamic system subjected to external periodic influence is 

presented. The solution is developed in series by a small parameter. Expressions for the energy in the different 

approximations are obtained. Non-resonant and resonant cases are considered. The solution in the first 

approximation is constructed as a power function of the solution in the zero approximation. 

INTRODUCTION 
 

Time-dependent dynamic systems are non-autonomous. Dynamic systems are considered, the time-independent 

part of which may have periodic behavior. The addition of external periodic perturbation also gives periodic decisions. 

Poincaré [1] made a major contribution to the existence and nature of such decisions. The theory developed by 

Poincaré is at the heart of the science of Theory of Oscillation [2]. Usually, it is impossible to find the exact solution 

for such systems. Therefore, approximate methods that use a small parameter (relative to 1) are applied. This 

parameter participates in the mathematical structure of the system itself or is related to the initial conditions [3]. In 

general, the resulting series are not convergent, but for a period of time that can be estimated, give a good 

approximation. The presence of external periodic perturbations can also lead to resonance in the system. In terms of 

its nature, two types are possible: powerful and parametric. Due to the way of setting the energy in this work, only the 

case of powerful resonance is considered. 

 

DECOMPOSITION OF ENERGY IN SERIES BY SMALL PARAMETER. 

NONRESONANT MODE 
 

Let the energy of the non-autonomous system be given in the form: 

 

 𝐸 =
𝜔2𝑥2+�̇�2

2
− 𝜀𝜔2 𝑥4

4
− 𝐹 ∫ 𝑐𝑜𝑠 𝑝𝑡 �̇�𝑑𝑡, (1) 

 

where 𝐹 and  𝜔2 are constants, and 𝜀 is a small parameter.  
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Let: 

 𝑝𝑡 = 𝜏.  (2) 

 

For the energy expression (1) is obtained: 

 

 𝐸 =
𝜔2𝑥2+𝑝2𝑥′2

2
− 𝜀𝜔2 𝑥4

4
− 𝐹 ∫ cos 𝜏 𝑥′𝑑𝜏, (3) 

 

where 𝑥′ is the derivative with respect to 𝜏. 

𝑥 is obtained by development in series by the powers of the small parameter: 

 

 𝑥 = 𝑥0 + 𝜀𝑥1 + ⋯ ,. (4) 

 𝑥0 = 𝐵 𝑐𝑜𝑠 𝜏 , 𝐵 = 𝑐𝑜𝑛𝑠𝑡 (5) 

 𝐸 = 𝐸0 + 𝜀𝐸1 + ⋯. (6) 

 

It is easy to see that the members of the series (4) can be formally obtained by differentiation with respect to the 

small parameter: 

 

 𝑥|𝜀=0 = 𝑥0,  

 
𝑑𝑥

𝑑𝜀
|

𝜀=0
= 𝑥𝜀|𝜀=0 = 𝑥1,  

 
𝑑2𝑥

𝑑𝜀2|
𝜀=0

= 𝑥𝜀𝜀|𝜀=0 = 2𝑥2, 

 … … … … … … 

 
𝑑𝑛𝑥

𝑑𝜀𝑛|
𝜀=0

= 𝑥𝜀𝑛|𝜀=0 = 𝑛! 𝑥𝑛. (7) 

 

Thus, formally, the expressions for the different approximations can be obtained by differentiating the expression 

for the energy by the powers of the small parameter: 

In the zero approximation, from the expression (3), it is obtain: 

 

 𝐸0 =
𝜔2𝑥0

2
+𝑝2𝑥0′2

2
−

𝐹

𝐵
∫ 𝑥0 𝑑𝑥0. (8) 

 

Having in mind the relation: 

 

 𝑥0′2 = 𝐵2 − 𝑥0
2, (9) 

 

the expression is easily obtained: 

 

 2𝐸0 = 𝑝2𝐵2 + (𝜔2 − 𝑝2 −
𝐹

𝐵
) 𝑥0

2. (10) 

 

The expression to the right of equality (10) is a constant when the expression in the brackets becomes equal to 0. 

Thus, the quantities 𝐵 and 𝐸0 are finally determined: 

 

 𝐵 =
𝐹

𝜔2−𝑝2, (11) 

 𝐸0 =
𝑝2𝐹2

2(𝜔2−𝑝2)2. (12) 

 

For the first approximation, the formula (13) is obtained: 

 

 𝐸1 = 𝑝2𝑥0′𝑥1′ + 𝜔2𝑥0𝑥1 − 𝜔2 𝑥0
4

4
−

𝐹

𝐵
∫ 𝑥0 𝑥1

′ 𝑑𝜏. (13) 

 

The 𝑥1 function will be in the form: 



 𝑥1 = 𝜇1𝑥0
3 + 𝜇2𝑥0, (14) 

where 𝜇1 and 𝜇2 are constants to be determined. The first derivative of the function with respect to τ is also 

determined: 

 

 𝑥1
′ = 3𝜇1𝑥0

2𝑥0
′ + 𝜇2𝑥0

′ . (15) 

 

Substitute 𝑥1 and 𝑥1
′  in the expression for 𝐸1 and using the relation: 

 

 𝑥0′2 = 𝐵2 − 𝑥0
2, (16) 

 

the expression (17) is obtained: 

 

 𝐸1 = (−3𝜇1𝑝2 + 𝜔2𝜇1 −
𝜔2

4
−

3𝐹

4𝐵
𝜇1) 𝑥0

4 + (3𝜇1𝑝2𝐵2 − 𝑝2𝜇2 + 𝜔2𝜇2 −
𝐹

2𝐵
𝜇2) 𝑥0

2 + 𝜇2𝑝2𝐵2. (17) 

 

In order for 𝐸1 to be a constant, the expressions in the brackets must be equal to 0. Then: 

 

 𝜇1 =
𝜔2

−9𝑝2+𝜔2, (18) 

 𝜇2 = −
6𝑝2𝜔2

−9𝑝2+𝜔2 .
𝐹2

(𝜔2−𝑝2)3, (19) 

 𝐸1 = −
6𝑝4𝜔2

−9𝑝2+𝜔2 .
𝐹4

(𝜔2−𝑝2)5. (20) 

 

Expressions (18), (19) and (20) for the first approximation are applicable when 9𝑝2 − 𝜔2 and 𝜔2 − 𝑝2 are large 

enough in absolute value, i.e., the system is far from resonant. The use of larger approximations will lead to the 

possibility of obtaining other types of resonances, so in principle this approach excludes between the frequencies there 

are relationships of the type:  

 

 𝑛𝑝 + 𝑚𝜔~0;  𝑛, 𝑚 ∈ ℤ.  

 

RESONANCE MODE 
 

Assume that the natural frequency is close to that of the periodic frequency: 

 

 𝜔 = 𝑝 + 𝜀𝑝𝑝1 . (21) 

 

Let also the energy be expressed by the formula: 

 

 𝐸 =
𝜔2𝑥2+�̇�2

2
− 𝜀𝜔2 𝑥4

4
− 𝜀𝐹0 ∫ 𝑐𝑜𝑠 𝑝𝑡 �̇�𝑑𝑡. (22) 

 

Let: 

 

 𝑝𝑡 = 𝜏. (23) 

 

The expression for the energy (22) takes the form: 

 

 𝐸 =
𝑝2𝑥2+𝑝2𝑥′2

2
+ 𝜀𝑝𝑝1𝑥2 − 𝜀𝑝2 𝑥4

4
− 𝜀𝐹0 ∫ cos 𝜏 𝑥′𝑑𝜏. (24) 

 

The zero approximation is: 

 

 𝑥0 = 𝐵 𝑐𝑜𝑠 𝜏 , 𝐵 = 𝑐𝑜𝑛𝑠𝑡. (25) 



The solution is sought has the form: 

 

 𝑥 = 𝑥0 + 𝜀𝑥1, (26) 

 𝐸 = 𝐸0 + 𝜀𝐸1. (27) 

 

For the energy in zero approximation: 

 

 𝐸0 =
𝑝2𝐵2

2
. (28) 

 

The energy in the first approximation satisfies the equation: 

 

 𝐸1 = 𝑝2𝑥0′𝑥1′ + 𝑝2𝑥0𝑥1 + 𝑝𝑝1𝑥2 − 𝑝2 𝑥0
4

4
−

𝐹

𝐵
∫ 𝑥0 𝑑𝑥0. (29) 

 

The function 𝑥1 has a form: 

 

 𝑥1 = 𝜆𝑥0
3, 𝜆 = 𝑐𝑜𝑛𝑠𝑡. (30) 

 

Substituting 𝑥1 in the formula for 𝐸1 yields: 

 

 𝐸1 = 0, (31) 

 𝜆 = −
1

8
, (32) 

 −
3

8
𝑝2𝐵3 + 𝑝𝑝1𝐵 −

𝐹

2
= 0. (33) 

 

From the equation (33), the relation between the quantities 𝑝1, 𝐵 and 𝐹 can be investigated. Such an analysis has 

been made, for example, in [4]. 

 

CONCLUSION 
 

The aim of the present work is to demonstrate how the approximate periodic solution of a non-autonomous system 

can be found by directly applying a formal asymptotic decomposition to the expression for energy. The aim of the 

present work is to demonstrate how the approximate periodic solution of a non-autonomous system can be found by 

directly applying a formal asymptotic decomposition to the expression for energy. The results obtained by the 

proposed method completely coincide with the results obtained by the asymptotic method applied to the differential 

equation describing the dynamical system [2,3,5]. Briefly, the steps that apply are: 1) decomposition of the expression 

for energy by differentiation with respect to the small parameter; 2) finding the solution of the zero approximation; 3) 

finding the next approximations, looking in the form of a power function of the zero approximation, in the case when 

the small parameter participates as a multiplier in the power function in the basic equation for energy. 

Calculations have been made to the first approximation, and according to the indicated scheme, they can be 

continued. 
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