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Abstract: A novel force computation method is implemented in the Finite Element Method 
Magnetics software - the nodal force method. For this purpose supplementary code is 
developed in C++ and added to the FEMM source code. In addition to force computation, 
the extended version of FEMM enables also force visualization that was not possible until 
now. To demonstrate the capabilities of the extended version of FEMM, the forces of three
models are computed and visualized – two current-carrying copper busbars, an AlNiCo 
permanent magnet with steel core and a benchmark non-linear dc electromagnet. A 
comparison is made between the newly implemented nodal force method and the available 
Maxwell’s stress tensor method from the viewpoint of accuracy and visualization
capabilities.
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1. Introduction
Finite Element Method Magnetics 

(FEMM) is a finite element software for solving 
2D problems in low frequency magnetics and 
electrostatics [1]. The program addresses linear and 
nonlinear magnetostatic problems, time harmonic 
magnetic problems and others. FEMM has been 
extensively used in science, engineering, industry
and for teaching electromagnetics in higher 
education [2]. It is a free, open source, accurate and 
low computational cost product. There is no limit 
on the problem size – the maximum number of 
finite elements and nodes is limited only by the 
amount of available memory. This enables to solve 
problems resulting in more than a million elements 
on a personal computer.

The aim of this paper is to extend the 
capabilities of the FEMM software when computing 
and visualizing electromagnetic forces of electrical 
devices. For that purpose the mathematical model of 
a novel electromagnetic force computation method -
the nodal force method, is developed [3, 4]. This 
mathematical model is implemented in the FEMM 
postprocessor by developing a C++ code.

To verify the extended version of FEMM, 
the forces of three models are computed and 
visualized. The models are two current-carrying 
copper buses, an AlNiCo permanent magnet with 
steel core and a benchmark non-linear dc 
electromagnet.

The present paper is organized as follows. 
The derivation and analysis of the nodal force 
method are presented in Section 2. The 
implementation of the nodal force method and the 
force visualization enhancements to FEMM are 
discussed in Section 3. The accuracy of the 
extended version of FEMM is validated numerically 
in Section 4. Finally, conclusions are drawn in 
Section 5.

2. Derivation of the nodal force method
The nodal force method (NFM) is derived 

for the two-dimensional case using first-order nodal 
triangular finite elements. In NFM the work W
performed by electromagnetic force for 
displacement u is [5]:
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Here ik are the Maxwell stress tensor 
components and is the analyzed region.

The Maxwell stress tensor components are 
defined as:
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where 0 is the permeability of air, B is the 
magnetic flux density magnitude and jB )y,xj(
is the magnetic flux density component along the 
two axes.
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The displacement is interpolated by the 
well-known continuous and piecewise-
differentiable shape functions iN of nodal 
triangular elements [6]:
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where n is the number of element nodes and i is 
the shape function number.

Replacing (3) in (1) yields:
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On the other hand, the completed work is 
equal to:
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where nif is the thi component )y,xi( of the 
nodal force acting on node n .

After equating (4) to (5) it is obtained for 
the nodal force:
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Based on (6), the x component of the force 
of node n of one triangular finite element can be 
computed by the 2D finite element method as 
follows:

ekxykxxnx Scbf . (7)
Here kb and kc are the shape functions 

coefficients of the nodal first-order triangle and eS
is its area.

The integration in (6) for a node is 
performed for all elements to which the node 
belongs. The total force acting on a part is obtained 
by summing up the nodal forces of all nodes 
included in the part.

Next the computer implementation of NFM 
will be analyzed. Formula (7) shows that the nodal 
force method uses only quantities that have already 
been computed during the finite element analysis. In 
other words, due to the absence of additional 
arithmetic operations, the NFM needs less CPU 
time as compared to the Maxwell’s stress tensor 
method (MSTM).

To perform (7), no integration contour 
should be defined, as required by the MSTM in 
FEMM. Thus two more advantages are to be 
expected: the NFM can be implemented fully 
automatically in models of arbitrary shape and its 
accuracy is not affected by the choice of the 
integration contour needed by the MSTM [1].

Another important advantage of the NFM is 
that it directly computes the local electromagnetic 
force, i.e. the force acting on every finite element 
node. Therefore, to create vector plots of force, no 
additional post-processing is needed. In contrast, the 
Maxwell’s stress tensor method calculates only 

global force. Local force is often needed for the 
analysis and design of electrical devices and for 
post-processing purposes, as shown below in 
Section 4.

The above-mentioned advantages make the 
NFM very attractive to use. Due to these 
advantages, the NFM has been the method of choice 
to extend the capabilities of the FEMM software.

3. Implementation of the nodal force 
method in the FEMM software
The nodal force method is implemented in 

the Finite Element Method Magnetics software
using object-oriented programming in C++ [7]. To 
visualize the computed force, supplementary code is 
developed and added to the FEMM source code.

First a base ForceAlgorithm class is created
which defines the common attributes and member 
functions of all descendent algorithms [7]. The 
NodalForce class inherits the ForceAlgorithm 
characteristics and specifies additional methods 
related to the implementation of the nodal force 
algorithm. This enables to easily add other classes 
such as the VirtualWorkForce in the future.

The ForceAlgorithm class defines a virtual 
function solve(). This means that all derived 
algorithm classes from this class must provide their 
own implementation of the function, thus defining a 
common pattern of usage. As a child of 
ForceAlgorithm, the NodalForce class contains the 
code needed to actually perform the calculation in 
solve(). The implementation details of the above 
algorithm are hidden by abstraction in the 
ForceAlgorithm class.

The class ForceAlgorithm stands at the base 
of the class hierarchy. It contains methods and 
attributes which are common to the different 
algorithms. They include parameters of one finite 
element such as the magnetic flux density 
components and magnetic permeabilities along the 
two axes. A MeshNode array is created containing 
the element node coordinates. Memory is allocated 
dynamically in the constructor of ForceAlgorithm 
for the result returned from solve(). The destructor 
of ForceAlgorithm cares for memory deallocation.

The NodalForce class is a subclass of 
ForceAlgorithm and inherits all attributes from the 
parent class. The forces acting on the three nodes of 
one finite element are calculated in solve(). For this 
purpose the Maxwell stress tensor components in 
(2), the shape function coefficients and the force 
components in (7) are computed and assigned to 
variables. Then the method solve() returns the force 
vectors in the three nodes of the finite element 
being analyzed.

The invocation of the nodal force algorithm 
is done in the Block Integrals section of the code.
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The Block Integral is applied over the 
selected integration areas from the model. After the 
integration areas are selected, invocation of the 
nodal force algorithm can be done.

The method add_vector_result performs the 
integration in (6). This integration is carried out by 
summing up the force components along the two 
axes on the nodes of the selected finite elements. 
The reference passing avoids duplication of objects 
in memory while calculating the nodal force.

Due to the extension of FEMM by the nodal 
force method, the original Block Integrals dialog for 
invoking the Nodal Force algorithm is modified by 
adding one more entry (Nodal Force) to the drop-
down list. The modified dialog of the extended 
version of FEMM is shown in Fig. 1.

Fig. 1. Modified dialog for the
Nodal Force algorithm

As shown in Section 2, an important 
advantage of the nodal force method is that it 
computes local force. To utilize this advantage, the 
visualization capabilities of FEMM are enhanced by 
developing supplementary code in C++ and adding 
it to the source code. The original View context 
menu is modified by adding one more entry (Force 
vectors) to the drop-down list in Fig. 2.

Fig. 3 shows the entirely new dialog 
designed for the purposes of force visualization.

The local forces acting on the finite 
elements nodes are displayed as vectors whose 
direction coincides with the direction of force. The 
length of these vectors is obtained by scaling the 
magnitude of forces using the Choose scale slider at 
the top of the dialog in Fig. 3. The value in the 
Maximum length edit box shows the longest vector 
length when the slider is set to the rightmost 
position.

The vectors of computed forces are drawn 
as arrows. As seen in Fig. 3, several options for the 
head angle, length and colour of arrows are 

provided. Applications of the developed 
visualization enhancements are given in the next 
section.

Fig. 2. Modified context menu for the 
Nodal Force visualization

Fig. 3. New dialog for the 
Nodal Force visualization

The above described extensions to the 
Finite Element Method Magnetics source code are 
made according to the Document/View Architecture 
(MFC) [8].

Copyright by Technical University - Sofia, Plovdiv branch, Bulgaria

 77 



4. Accuracy validation and visualization by
the extended version of FEMM 
In this section the accuracy of the extended 

version of FEMM is validated by comparing the 
implemented nodal force method with the 
Maxwell’s stress tensor method, available in the 
conventional FEMM. For that purpose three models
are analyzed and their electromagnetic forces are 
visualized by the new FEMM capabilities.

The first model consists of two copper 
busbars carrying currents of 100 kA in the same 
direction [9]. The geometry is shown in Fig. 4. The 
dimensions are in centimeters. The finite element 
mesh has 25427 nodes and 50295 triangles.

Fig. 4. Geometry of the copper busbars

Table 1 shows the total x-axis 
electromagnetic forces between the busbars when 
the currents flow in the same direction. The forces
are computed analytically, by the Maxwell stress 
tensor method and by the nodal force method.

Table 1. Forces between the busbars

Analytical [N] MSTM [N] NFM [N]
6333 6328 6336

The vector plot of the local forces acting on 
the finite element nodes is shown in Fig. 5. The plot 
is generated using the visualization enhancements to 
FEMM described in the previous section.

The plot in Fig. 5 confirms the theory that 
conductors carrying currents of the same directions 
attract each other. As expected, the nodal forces act 
only in the current-carrying regions. Due to the 
nature of the nodal force method, the local force 
vectors originate from the finite elements nodes.

Fig. 5. Vector plot of the forces on the busbars

The second model is a non-linear AlNiCo 
permanent magnet with steel core [9]. The 
dimensions in centimeters are shown in Fig. 6. The 
finite element mesh has 71394 nodes and 141915 
triangles. 

Fig. 6. Geometry of the AlNiCo
magnet with steel core

Table 2 shows the total y-axis force acting 
on the steel armature, computed by the MSTM and 
NFM. The computed forces by the two methods are 
very close which confirms the accuracy of the 
built-in nodal force method.

Table 2. Forces on the steel armature
MSTM [N] NFM [N]

1290 1293 N

The vector plot of the forces acting on the 
steel and on the permanent magnet is shown in 
Fig. 7. The plot is generated using the new 
visualization capabilities of FEMM.

Fig. 7. Vector plot of the forces on the magnet
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The third model is a non-linear dc 
electromagnet. This is a benchmark model used for 
evaluating the accuracy of the methods for force 
computation as well as for validation of computer 
programs [10].

The electromagnet has complex geometry, 
very small air gaps and uneven magnetic flux 
distribution. To saturate the steel, the excitation 
current is varied within a wide range.

The geometry of the model is shown in 
Fig. 8. The electromagnet is comprised of a steel 
yoke 1, coil 2 and a central pole 3. The yoke and the 
central pole are made of steel. The coil has 381 
turns and is fed by dc current. The reluctivity curve 
of steel is given in [10]. To analyze the steel 
saturation effect, the total current in the coil has 
values 1000, 2000, 3000, 4000 and 5000 ampere
turns. The finite element mesh has 81225 nodes and 
162145 first order triangles.

Fig. 8. Geometry of the benchmark electromagnet

Table 3 shows the y-axis forces acting on 
the central pole. They are computed by the newly 
implemented NFM and the standard MSTM in 
FEMM. The relative error in force by the NFM and 
the MSTM is determined by the formula:

MSTMMSTMNFMr F/)FF( , (8)
where NFMF and MSTMF are the forces by the NFM 
and MSTM, respectively.

The force by the MSTM is used as 
reference in (8) instead of the measured values in
[10], since the benchmark model analyzed in this 
paper is two-dimensional.

The absolute values of the relative errors in 
force are given in Table. 3. They show that the 
NFM, implemented in FEMM, has excellent 
accuracy, the maximum relative error in force being
less than 1%.

Table 3. Y-axis forces acting on the 
central pole and relative error

current [A] NFM [N] MSTM [N] r [%]
1000 324.5 326.9 0.73
2000 1363.6 1369.5 0.43
3000 3170.4 3186.3 0.50
4000 5727.8 5741.5 0.24
5000 8693.8 8721.7 0.32

The vector plot of the nodal forces on the 
pole and yoke at current 1000 A is shown in Fig. 9.
The plot is generated using the visualization 
enhancements to FEMM.

Fig. 9. Forces on the pole and yoke 

A zoomed-in view of the force distribution 
in the upper left corner of the pole is given in 
Fig. 10.

Fig. 10. Forces on the upper left corner of pole

Fig. 11 shows the forces on the lower left 
half of the pole and yoke. 
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Fig. 11. Forces on the lower left half
of the pole and yoke

The results from Figures 9, 10 and 11 show 
that the force has complex distribution and attracts 
the pole to the yoke. As expected, in the upper part 
of the pole the force is directed both along the x and 
y axes, while in the lower part it is mostly along the 
y axis. Due to the different mesh sizes in the yoke 
and central pole, the magnitudes of the force vectors 
on both sides of the air gap in Fig. 11 are different.

The results from Tables 1, 2 and 3 confirm 
the accuracy of the extended version of the Finite 
Element Method Magnetics software. There is a 
very good agreement between the forces computed 
by the NFM and the MSTM.

5. Conclusion
The capabilities of the FEMM software are 

enhanced by adding a novel method for force 
computation and visualization - the nodal force 
method. The NFM is implemented using object-
oriented programming in C++.

The extended version of FEMM is validated 
by comparing the added-on nodal force method 
with the Maxwell’s stress tensor method. The forces 
of three models are computed and visualized. The 
results show that the NFM has excellent accuracy.

The visualization capabilities of FEMM are 
also enhanced by developing supplementary code in 
C++ and adding it to the source code. Vector plots 
of the electromagnetic forces of the three models
are created. The plots yield reasonable results.

Based on these plots it can be concluded, 
that nodal forces are localized only on the surface 
nodes of the steel and on all nodes of the current-
carrying coil. This coincides well with the real 
physical situation where force acts only on the 
surface of magnetic materials, while the force in 
electric conductors manifests itself as a volumetric 
force (Lorentz force).

The extended version of the Finite Element 
Method Magnetics software can be used for 
research and design purposes, as well as for 
teaching numerical methods in electromagnetism
and CAD systems at higher schools.
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