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Abstract. The purpose of this article is to consider a special class of
combinatorial problems, the solution of which is realized by constructing
finite sequences of ±1. For example, for fixed p ∈ N, is well known the
existence of np ∈ N with the property: any set of np consecutive natural
numbers can be divided into 2 sets, with equal sums of its pth-powers.
The considered property remains valid also for sets of finite arithmetic
progressions of integers, real or complex numbers. The main observa-
tion here is the generalization of the results for arithmetic progressions
with elements of complex field C to elements of arbitrary associative,
commutative algebra.

1 Morse sequence

For every positive integer m, let us denote with ϑ(m) and %(m) respectively
the number of occurences of digit 1 in the binary representation of m, and the
position of first digit 1 in the binary representation of m. The Morse sequence
{am}∞m=1 is defined by

am = (−1)ϑ(m)+%(m)−2.

The following properties are derived directly:

a2k = (−1)k and a2k+l = −al for l = 1, 2 . . . , 2k; k ∈ N.

The problem of finding a number np, such that the set Anp = {1, 2, . . . , np}
is represented as disjoint union of two subsets, say B and C, with the property:∑

b∈B

bp =
∑
c∈C

cp,

is solved by the sequence {am}∞m=1. Elementary proof is given below1 and np =
2p+1 has the desired property, with

B = {m ∈ Anp
: am = 1}, C = Anp

\B = {m ∈ Anp
: am = −1}.

1 Similar solutions and generalizations of the Prouhet-Tarry-Escot problem are con-
sidered in [2, 3, 5, 6, 8]



This result can be generalized to arbitrary arithmetic progressions of complex
numbers. As example, if a, d ∈ C, d 6= 0 and Anp

= {a+kd : k = 0, 1, . . . , np−1},
then np = 2p+1 and B = {a+ kd ∈ Anp : ak+1 = 1}.

2 Formulation of the main results

Let us define {Hn,m(z)}∞n,m=1, by

Hn,m(z) =

∞∑
l=n

2l∑
k=1

ak (P (z) + k.Q(z))
m
,

where P,Q ∈ C[z] are complex polynomials.

Proposition 1 If m = 0, 1, . . . , n − 1 then Hn,m ≡ 0, while if n = 2t the
following equality is satisfied

Hn,n(z) = n!2
n2−n

2 Qn(z).

Proposition 2 Let n ∈ N be a even number and α1, α2, . . . , αn are complex
numbers, then

2n∑
k=1

ak(α1 + k)(α2 + k) · · · (αn + k) = n!2
n2−n

2 .

Proposition 3 If P ∈ C[z] is a complex polynomial, then

21+deg P∑
k=1

akP (k) = 0.

Proposition 4 Let p and k be positive integers. Then there exist n ∈ N, n ≤
2pdlog2 ke and distinct square-free positive integers xij , i = 1, 2, . . . , k; j =
1, 2, . . . , n with the property:

n∑
j=1

xr1j =

n∑
j=1

xr2j = · · · =
n∑
j=1

xrkj , ∀r = 1, 2, . . . , p.

Proposition 5 Let n and m be positve integers. Then there exists an integer
s = s(n,m) with the property: every s−element subset of Γn, where k runs
through s consequtive integers, can be represented as disjoint union of m subsets,
with equal sums of the elements in each one.

The proof of each of the formulated above propositions2, with the exception
for 5, is based on the following lemma:

2 This paper is continuation of [7], and contains complete proofs of the formulated
propositions



Lemma 1. Set a, d ∈ C, d 6= 0, p ∈ N and A2p+1 = {a+kd : k = 0, 1, . . . , 2p+1−
1}. Then there are sets B ∩ C = ∅, B ∪ C = A2p+1 such that∑

b∈B

bp =
∑
c∈C

cp.

Corollary 1 Under assumptions of lemma 1, it holds∑
b∈B

br =
∑
c∈C

cr, r = 0, 1, . . . , p.

To prove the lemma 1 and its consequence, we define a sequence of poly-
nomials: {Ts,p(z)}∞s=0, through which we will gradually calculate the differences
between the sums of equal powers of the elements in B = {a + kd ∈ A2p+1 :
ak+1 = 1} and C = {a+ kd ∈ A2p+1 : ak+1 = −1}. For s ≥ 0 set

Ts,p(z) =

4s+1−1∑
k=0

ak+1(z + kd)p

and we calculate

Ts,p(z) =
∑

0≤k≤4s+1−1; ak+1=1

(z + kd)p −
∑

0≤k≤4s+1−1; ak+1=−1

(z + kd)p.

When s ≤ p−1
2 , set z = a to obtain

Ts,p(a) =
∑

b≤a+(4s+1−1)d

bp −
∑

c≤a+(4s+1−1)d

cp,

where summation is by b ∈ B, c ∈ C.
Set p = 2m + r, r ∈ {0, 1}. Here and evewhere below the summations are
performed on all b ∈ B and c ∈ C, which satisfy the corresponding inequalities.
When r = 1 we obtain

Tm,p(a) =
∑

b≤a+(4m+1−1)d

bp −
∑

c≤a+(4m+1−1)d

cp =

∑
b≤a+(2p+1−1)d

bp −
∑

c≤a+(2p+1−1)d

cp =
∑
b∈B

bp −
∑
c∈C

cp.

When r = 0:

Tm−1,p(a) =
∑

b≤a+(22m−1)d

bp −
∑

c≤a+(22m−1)d

cp =
∑

b≤a+(2p−1)d

bp −
∑

c≤a+(2p−1)d

cp;

On the other hand∑
a+2pd≤b≤a+(2p+1−1)d

bp −
∑

a+2pd≤c≤a+(2p−1)d

cp =
∑

2p≤m≤2p+1−1

am+1(a+md)p =



=

2p−1∑
k=0

a2p+k+1 (a+ (2p + k)d) = −
2p−1∑
k=0

ak+1 (a+ (2p + k)d) =

= −
2p−1∑
k=0

ak+1 ((a+ 2pd) + kd) = −
22m−1∑
k=0

ak+1 ((a+ 2pd) + kd) =

= −Tm−1,p(a+ 2pd).

Therefore, for p = 2m we obtain∑
b∈B

bp −
∑
c∈C

cp = Tm−1,p(a)− Tm−1,p(a+ 2pd).

Summarized:∑
b∈B

bp −
∑
c∈C

cp =

{
Tm,p(a), for p = 2m+ 1

Tm−1,p(a)− Tm−1,p(a+ 2pd), for p = 2m

3 Proof of the main results

Lemma 1 follows directly from :

Proposition 6

Tm−1,p(z) =

{
0, for p = 2m− 1

p!2
p2−p

2 dp, for p = 2m

Proof 1 Let us determine the polynomials {Ts,p(z)}∞s=0 by finding recurrent for-
mula. Since a1 = a4 = 1, a2 = a3 = −1, then

T0,p(z) = (z + 3d)p − (z + 2d)p − (z + d)p + zp

We will prove that for all s ≥ 1 is valid

Ts,p(z) = Ts−1,p(z + 3.4sd)− Ts−1,p(z + 2.4sd)− Ts−1,p(z + 4sd) + Ts−1,p(z)

For example, if s = 1 then:

T1,p(z) =

15∑
k=0

ak+1(z + kd)p =

3∑
k=0

ak+1(z + kd)p +

7∑
k=4

ak+1(z + kd)p+

+

11∑
k=8

ak+1(z+kd)p+

15∑
k=12

ak+1(z+kd)p = T0,p(z)+

3∑
m=0

a22+m+1((z+4d)+md)p+

+

3∑
m=0

a23+m+1((z + 2.4d) +md)p +

3∑
m=0

a23+22+m+1((z + 3.4d) +md)p =



= T0,p(z)−
3∑

m=0

am+1((z + 4d) +md)p −
3∑

m=0

am+1((z + 2.4d) +md)p+

+

3∑
m=0

am+1((z+3.4d)+md)p = T0,p(z)−T0,p(z+4d)−T0,p(z+2.4d)+T0,p(z+3.4d)

The proof is similar in the general case:

Ts,p(z) =

4s+1−1∑
k=0

ak+1(z + kd)p =

4s−1∑
k=0

ak+1(z + kd)p +

2.4s−1∑
k=4s

ak+1(z + kd)p+

+

3.4s−1∑
k=2.4s

ak+1(z + kd)p +

4s+1−1∑
k=3.4s

ak+1(z + kd)p =

= Ts−1,p(z) +

4s−1∑
m=0

a4s+m+1((z + 4sd) +md)p+

+

4s−1∑
m=0

a2.4s+m+1((z + 2.4sd) +md)p +

4s−1∑
m=0

a3.4s+m+1((z + 3.4sd) +md)p =

= Ts−1,p(z + 3.4sd)− Ts−1,p(z + 2.4sd)− Ts−1,p(z + 4sd) + Ts−1,p(z),

whereby the necessary recurrent formula is established.

In the case 1 ≤ s ≤
[
p
2

]
− 1, we prove that Ts,p(z) has the type:

Ts,p(z) =

=

p−2∑
i1=2s

i1−2∑
i2=2(s−1)

i2−2∑
i3=2(s−2)

· · ·
is−2∑
is+1=0

(
p

i1

)(
i1
i2

)(
i2
i3

)
· · ·
(
is
is+1

)
dp−is+1Ls,pz

is+1 ,

where
Ls,p =

= (3p−i1−2p−i1−1)(3i1−i2−2i1−i2−1) . . . (3is−is+1−2is−is+1−1)4i1+i2+···+is−sis+1

Indeed, when s = 0 follows:

T0,p(z) = (z + 3d)p − (z + 2d)p − (z + d)p + zp =

p−2∑
i1=0

(
p

i1

)
(3p−i1 − 2p−i1 − 1)dp−i1zi1 ;

T1,p(z) = T0,p(z)− T0,p(z + 4d)− T0,p(z + 2.4d) + T0,p(z + 3.4d) =

=

p−2∑
i1=0

(
p

i1

)
(3p−i1−2p−i1−1)dp−i1

(
(z + 12d)i1 − (z + 8d)i1 − (z + 4d)i1 + zi1

)
=



=

p−2∑
i1=2

(
p

i1

)
(3p−i1−2p−i1−1)dp−i1

(
(z + 12d)i1 − (z + 8d)i1 − (z + 4d)i1 + zi1

)
=

=
∑p−2
i1=2

(
p
i1

)
(3p−i1 − 2p−i1 − 1)dp−i1

(
zi1 +

∑i1
i2=0

(
i1
i2

)
(3i1−i2 − 2i1−i2 − 1)(4d)i1−i2zi2

)
=

=
∑p−2
i1=2

(
p
i1

)
(3p−i1 − 2p−i1 − 1)dp−i1

(∑i1−2
i2=0

(
i1
i2

)
(3i1−i2 − 2i1−i2 − 1)(4d)i1−i2zi2

)
=

=

p−2∑
i1=2

i1−2∑
i2=0

(
p

i1

)(
i1
i2

)
(3p−i1 − 2p−i1 − 1)(3i1−i2 − 2i1−i2 − 1)4i1−i2dp−i2zi2 =

=

p−2∑
i1=2

i1−2∑
i2=0

(
p

i1

)(
i1
i2

)
dp−i2L1,pz

i2 ,

whereby the assertion is established for s = 1.Suppose that for some s ≥ 2, Ts−1,p(z)
satisfies the recurrent formula and denote

Gs,pi1,i2,...,is+1
=

(
p

i1

)(
i1
i2

)(
i2
i3

)
· · ·
(
is
is+1

)
dp−is+1Ls,p, when s ≥ 1.

Direct calculation shows:

Ts,p(z) = Ts−1,p(z + 3.4sd)− Ts−1,p(z + 2.4sd)− Ts−1,p(z + 4sd) + Ts−1,p(z) =

=

p−2∑
i1=2(s−1)

i1−2∑
i2=2(s−2)

i2−2∑
i3=2(s−3)

· · ·
is−1−2∑
is=0

Gs−1,pi1,i2,...,is
×

×
(
(z + 3.4sd)is − (z + 2.4sd)is − (z + 4sd)is + zis

)
=

=

p−2∑
i1=2(s−1)

i1−2∑
i2=2(s−2)

· · ·
is−1−2∑
is=0

Gs−1,pi1,i2,...,is
×

×

zis +

is∑
is+1=0

(
is
is+1

)
(3is−is+1 − 2is−is+1 − 1)4s(is−is+1)dis−is+1zis+1

 =

=

p−2∑
i1=2s

i1−2∑
i2=2(s−1)

· · ·
is−1−2∑
is=2

Gs−1,pi1,i2,...,is
×

×
is−2∑
is+1=0

(
is
is+1

)
(3is−is+1 − 2is−is+1 − 1)4s(is−is+1)dis−is+1zis+1 =

=

p−2∑
i1=2s

i1−2∑
i2=2(s−1)

· · ·
is−1−2∑
is=2

is−2∑
is+1=0

Gs−1,pi1,i2,...,is

(
is
is+1

)
×

×
(
3is−is+1 − 2is−is+1 − 1

)
4s(is−is+1)dis−is+1zis+1 =



=

p−2∑
i1=2s

i1−2∑
i2=2(s−1)

· · ·
is−1−2∑
is=2

is−2∑
is+1=0

Gs,pi1,i2,...,is+1
zis+1 ,

which prove that Ts,p(z) satisfies the recurrent formula.
Let us determine the degree of Ts,p(z), s ≥ 0. According to the derived formula
we find is+1 ≤ is−2 ≤ is−1−4 ≤ · · · ≤ i1−2s ≤ p−2(s+1), as equality is reached
everywhere. Therefore deg Ts,p(z) = p− 2(s+ 1). If p = 2m+ r, r ∈ {0, 1}, then

deg Tm−1,p(z) = p− 2m = r.

For r = 0 we obtain that Tm−1,p(z) is a constant, equal to p!2
p2−p

2 dp. Indeed

Tm−1,p(z) =

p−2∑
i1=2(m−1)

i1−2∑
i2=2(m−2)

· · ·
im−2−2∑
im−1=2

im−1−2∑
im=0

Gm−1,pi1,i2,...,is+1
zim =

=

2(m−1)∑
i1=2(m−1)

2(m−2)∑
i2=2(m−2)

· · ·
2∑

im−1=2

0∑
im=0

Gm−1,pi1,i2,...,is+1
zim =

= Gm−1,pp−2,p−4,p−6...,2,0 =

(
p

p− 2

)(
p− 2

p− 4

)
· · ·
(

4

2

)(
2

0

)
dpLm−1,p =

p!dp

2m
Lm−1,p =

= p!2
p2−p

2 dp =⇒ Tm−1,p(z) = p!2
p2−p

2 dp, when p = 2m.

In the case r = 1, we will prove that Tm,p(z) = 0:

Tm,p(z) = Tm−1,p(z + 3.4md)− Tm−1,p(z + 2.4md)−

Tm−1,p(z + 4md) + Tm−1,p(z) =

p−2∑
i1=2(m−1)

i1−2∑
i2=2(m−2)

· · ·
im−1−2∑
im=0

Gm−1,pi1,i2,...,im

((z + 3.4md)im − (z + 2.4md)im − (z + 4md)im + zim) = 0,

the last equations is valid, since the summation index im takes values 0 and 1.
Thus the proposition 6 is proved. ut

3.1 Proof of corollary 1

Proof 2 According to 6 for every m ∈ N is valid Tm,2m+1(z) ≡ 0 and Tm−1,2m(z) =

(2m)!22m
2−md2m. Then Tm,2m(z) ≡ 0, due to

Tm,2m(z) = Tm−1,2m(z + 3.4md)− Tm−1,2m(z + 2.4md)−

−Tm−1,2m(z + 4md) + Tm−1,2m(z) = 0.



Using the recurrent formula we obtain:

Ts,2k(z) = Ts,2k+1(z) ≡ 0, for all s ≥ k, i.e.

Ts,k(z) ≡ 0, for all s ≥
[
k

2

]
.

There are two cases, first case: p = 2m+ 1 and 0 ≤ r ≤ p− 1. Then

∑
b∈B

br −
∑
c∈C

cr =

2p+1−1∑
k=0

ak+1(a+ kd)r =

4m+1−1∑
k=0

ak+1(a+ kd)r = Tm,r(a)

If r = 2r1, then 2r1 ≤ 2m =⇒ r1 ≤ m and consequently Tm,r(z) = Tm,2r1(z) = 0.
When r = 2r1 + 1, then 2r1 + 1 ≤ 2m =⇒ r1 < m and again Tm,r(z) =
Tm,2r1+1(z) = 0.
The second case p = 2m and 0 ≤ r ≤ 2m− 1. Then

∑
b∈B

br−
∑
c∈C

cr =

22m+1−1∑
k=0

ak+1(a+kd)r =

4m−1∑
k=0

ak+1(a+kd)r+

2.4m−1∑
k=4m

ak+1(a+kd)r =

= Tm−1,r(a) +

4m−1∑
k=0

a22m+k+1((a+ 4md) + kd)r = Tm−1,r(a)− Tm−1,r(a+ 4md)

If r = 2r1, then 2r1 ≤ 2m − 1 =⇒ r1 ≤ m − 1 and therefore Tm−1,r(z) =
Tm−1,2r1(z) = 0.
If r = 2r1 + 1, then 2r1 + 1 ≤ 2m − 1 =⇒ r1 ≤ m − 1 and again Tm−1,r(z) =
Tm−1,2r1+1(z) = 0, thus corollary 1 is proved. ut

3.2 Proof of proposition 1

It is clear from the proof of 1 that the constants a and d can be replaced by
elements of an arbitrary field, having characteristic 0. We will consider the field
of rational functions with complex coefficients, replacing a and d with rational
functions P (z) and Q(z). Set Rk(z) = P (z) + kQ(z) and when n = 2s, m =
0, 1, . . . , 2s− 1, then simple calculation gives

Hn,m(z) = H2s,m(z) =

∞∑
l=2s

2l∑
k=1

ak (P (z) + k.Q(z))
m

=

∞∑
l=2s

2l−1∑
k=0

ak+1R
m
k+1(z) =

=

∞∑
l=s

22l−1∑
k=0

ak+1R
m
k+1(z) +

22l+1−1∑
k=0

ak+1R
m
k+1(z)

 =

=

∞∑
l=s

Tl−1,m(R1(z)) +

22l−1∑
k=0

ak+1R
m
k+1(z) +

22l+1−1∑
k=22l

ak+1R
m
k+1(z)

 =



=

∞∑
l=s

2Tl−1,m(R1(z)) +

22l−1∑
k=0

a22l+k+1R
m
22l+k+1(z)

 =

=

∞∑
l=s

(2Tl−1,m(R1(z))− Tl−1,m(R22l+1(z))) = 0,

since l − 1 ≥ s− 1 =

[
2s− 1

2

]
≥
[m

2

]
In the case n = 2s+ 1, m = 0, 1, . . . , 2s, we have

Hn,m(z) = H2s+1,m(z) =
∞∑

l=2s+1

2l−1∑
k=0

ak+1R
m
k+1(z) =

=

∞∑
l=s

22(l+1)−1∑
k=0

ak+1R
m
k+1(z) +

22l+1−1∑
k=0

ak+1R
m
k+1(z)

 =

=

∞∑
l=s

Tl,m(R1(z)) +

22l−1∑
k=0

ak+1R
m
k+1(z) +

22l+1−1∑
k=22l

ak+1R
m
k+1(z)

 =

=

∞∑
l=s

2Tl,m(R1(z)) +

22l−1∑
k=0

a22l+k+1R
m
22l+k+1(z)

 =

=

∞∑
l=s

(2Tl,m(R1(z))− Tl,m(R22l+1(z))) = 0,

since l ≥ s ≥
[m

2

]
Now set n = m = 2s. According to calculations above and proposition 6, we

have

Hn,m(z) = H2s,2s(z) =

∞∑
l=s

(2Tl−1,2s(R1(z))− Tl−1,2s(R22l+1(z))) =

= 2Ts−1,2s(R1(z))− Ts−1,2s(R22s+1(z)) = (2s)!22s
2−sQ2s(z) = n!2

n2−n
2 Qn(z),

thus 1 is proved. ut



3.3 Proof of proposition 2

Let n = m = 2s and set γn = n!2
n2−n

2 . According to proposition 1 we have

Hn,n(z) = γnQ
n(z) =⇒ d

dz
Hn,n(z) = nγnQ

n−1(z)Q′(z) =⇒

=⇒ γnQ
n−1(z)Q′(z) =

∞∑
l=2s

2l∑
k=1

akR
n−1
k (z)R′k(z) =

∞∑
l=s

22l∑
k=1

akR
n−1
k (z)R′k(z) =

=

22s∑
k=1

akR
n−1
k (z)R′k(z).

and by induction, we prove that

γnQ(z)Q′(z)Q′′(z) . . . Q(n−1)(z) =

22s∑
k=1

akRk(z)R′k(z)R′′k(z) . . . R
(n−1)
k (z) =⇒

=⇒ γn =

22s∑
k=1

ak

(
P (z)

Q(z)
+ k

)(
P ′(z)

Q′(z)
+ k

)(
P ′′(z)

Q′′(z)
+ k

)
. . .

(
P (n−1)(z)

Q(n−1)(z)
+ k

)
The last equality holds for all polynomials P and those Q for which degQ ≥

n − 1. For arbitrary α1, α2, . . . , αn ∈ C, we can choose P and Q, such that for
fixed z0 to satisfy the equalities:

P (z0)− α1Q(z0) = P ′(z0)− α2Q
′(z0) = P ′′(z0)− α3Q

′′(z0) = · · · =

= P (n−1)(z0)− αnQ(n−1)(z0) = 0,

where Q(i)(z0) 6= 0, i = 0, 1, . . . , n− 1. Therefore

γn =

2n∑
k=1

ak(α1 + k)(α2 + k) · · · (αn + k).

Remark 1. For even n and arbitrary rational functions S1(z), S2(z), . . . , Sn(z) is
valid:

γn =

2n∑
k=1

ak(S1(z) + k)(S2(z) + k) · · · (Sn(z) + k),

which is stronger than proved above.

Corollary 2 For every polynomial P ∈ C[z] from even degree n = degP and
leading coefficient α is valid

2deg P∑
k=1

akP (k) = α.n!2
n2−n

2



3.4 Proof of proposition 3

We can describe a proof based on the results obtained above for the sequence
{Hn,m(z)}, but we prefer another approach. Let us introduce the polynomial

sequence {T̃s,p(z1, . . . , zp)} by:

T̃s,p(zi) = T̃s,p(z1, z2, . . . , zp) =

4s+1−1∑
k=0

ak+1

p∏
i=1

(zi + kd),

which is generalization of {Ts,p(z)}. The following recurrent formula is de-
rived similarly as above:

T̃s,p(zi) = T̃s−1,p(zi + 3.4sd)− T̃s−1,p(zi + 2.4sd)− T̃s−1,p(zi + 4sd) + T̃s−1,p(zi)

We will prove that T̃k,p(z1, z2, . . . , zp) ≡ 0, for k ≥
[
p
2

]
, while in the case

1 ≤ k ≤
[
p
2

]
− 1 is valid

T̃k,p(z1, z2, . . . , zp) =

=

p−2∑
i1=2k

i1−2∑
i2=2(k−1)

· · ·
ik−2∑
ik+1=0

∑
σ(k+1)⊂σ(k)⊂···⊂σ(1)

Lk,pd
p−ik+1zσ1(k+1) . . . zσik+1

(k+1)

and Lk,p is defined as above, and set zσ0(k+1) equal to 1.
Assuming that zi0 = 1 and calculate

T̃0,p(zj) = z1z2 . . . zp +

p∑
s=0

∑
0≤j1<···<js≤p

(3p−s − 2p−s − 1)dp−szj1zj2 . . . zjs =

=

p−2∑
s=0

∑
0≤j1<···<js≤p

(3p−s − 2p−s − 1)dp−szj1zj2 . . . zjs =

=

p−2∑
i1=0

∑
σ(1)

(3p−i1 − 2p−i1 − 1)dp−i1zσ1(1)zσ2(1) . . . zσi1
(1).

In the case k = 1 we get

T̃1,p(zj) =

p−2∑
i1=2

i1−2∑
i2=0

∑
σ(2)⊂σ(1)

L1,pd
p−i2zσ1(2)zσ2(2) . . . zσi2

(2),

whereby the statement is established for k = 1. Assume that, for some k ≥
2, T̃k−1,p(zj) satisfies the recurrent formula and denote

Gl,pj1,j2,...,jl+1
= dp−il+1Ll,p when l ≥ 1.



Then

T̃k,p(zi) = T̃k−1,p(zi+3.4kd)−T̃k−1,p(zi+2.4kd)−T̃k−1,p(zi+4kd)+T̃k−1,p(zi) =

=

p−2∑
i1=2(k−1)

i1−2∑
i2=2(k−2)

· · ·
ik−1−2∑
ik=0

∑
σ(k)⊂σ(k−1)⊂···⊂σ(1)

Lk,pd
p−ikΨ(zσ1(k)zσ2(k) . . . zσik

(k))

where

Ψ(zσ1(k)zσ2(k) . . . zσik
(k)) =

ik∏
i=1

(zσi(k)+3.4kd)−
ik∏
i=1

(zσi(k)+2.4kd)−
ik∏
i=1

(zσi(k)+4kd)+

+zσ1(k)zσ2(k) . . . zσik
(k) = zσ1(k)zσ2(k) . . . zσik

(k)+

+

ik∑
t=0

∑
j1<···<jt

(3ik−t − 2ik−t − 1)4k(ik−t)dik−tzj1 . . . zjt ,

here 0 ≤ j1 < j2 < · · · < jt ≤ p and {j1, j2, . . . , jt} runs over all t-element subsets
of {σ1(k), σ2(k), . . . , σik(k)}, for all t = 1, 2, . . . , ik. We write σ(k + 1) ⊂ σ(k)
to denote the aforementioned inclusion of sets, and put ik+1 = t. For every l let
σ(l) be the il-member subsets of {1, 2, . . . , p}. Therefore

Ψ(zσ1(k) . . . zσik
(k)) =

ik−2∑
ik+1=0

∑
σ(k+1)⊂σ(k)

(3ik−ik+1−2ik−ik+1−1)4k(ik−ik+1)dik−ik+1zσ1(k+1) . . . zσik+1
(k+1)

whence it immediately follows that T̃k,p(z1, z2, . . . , zp) has the desired form.

Let us determine the degree of T̃k,p(z), k ≥ 0. According to the formula above,
one has ik+1 ≤ ik − 2 ≤ ik−1 − 4 ≤ · · · ≤ i1 − 2k ≤ p − 2(k + 1), as equality

holds everywhere. Thus deg T̃k,p(z) = p− 2(k + 1).
Let p = 2m+ r, r ∈ {0, 1}, then

deg T̃m−1,p(z) = p− 2m = r.

In the case r = 0 we obtain that T̃m−1,p(z1, z2 . . . , zp) is a constant:

T̃m−1,p(z1, z2 . . . , zp) = T̃m−1,p(0, 0, . . . , 0) =

4m−1∑
j=0

aj+1

p∏
i=1

jd =

4m−1∑
j=0

aj+1j
pdp =

= Tm−1,p(0) = p!2
p2−p

2 dp, p = 2m.

When r = 1, analogous to the proof for Tm,2m+1(z) = 0, we can prove

T̃m,2m+1(z1, z2 . . . , z2m+1) ≡ 0.



Therefore

T̃m,2m(z1, z2 . . . , z2m) = T̃m,2m+1(z1, z2 . . . , z2m+1) = 0.

Using the recurrent formula again

T̃k,p(zi) = T̃k−1,p(zi + 3.4kd)− T̃k−1,p(zi + 2.4kd)− T̃k−1,p(zi + 4kd) + T̃k−1,p(zi)

we obtain T̃k,p(z1, z2 . . . , zp) ≡ 0 for k ≥
[p

2

]
.

From the results above, the proposition 3 easily follows. Indeed, let degP = n,
P (z) = α(z − α1)(z − α2) . . . (z − αn) and set d = 1 in the definition of T̃k,p.
In the case n = 2m+ 1:

21+deg P∑
k=1

akP (k) =

22m+2∑
k=1

akP (k) =

22m+2−1∑
k=0

ak+1P (k + 1) =

= α.

22m+2−1∑
k=0

ak+1

2m+1∏
i=1

(1− αi + k) =

= α.T̃m,2m+1(1− α1, 1− α2, . . . , 1− α2m+1) = 0.

In the case n = 2m analogously

21+deg P∑
k=1

akP (k) =

22m+1−1∑
k=0

ak+1P (k+1) =

4m−1∑
k=0

ak+1P (k+1)+

2.4m−1∑
k=4m

ak+1P (k+1) =

= α.T̃m−1,2m(1− α1, 1− α2, . . . , 1− α2m) +

4m−1∑
k=0

a4m+k+1P (4m + k + 1) =

= α.n!2
n2−n

2 −
4m−1∑
k=0

ak+1P (4m + k + 1) =

= α.n!2
n2−n

2 − α.T̃m−1,2m(4m + 1− α1, 4
m + 1− α2, . . . , 4

m + 1− α2m) = 0,

which completes the proof. The calculations above show that

2deg P∑
k=1

akP (k) = α.T̃m−1,2m(1− α1, 1− α2, . . . , 1− α2m) = α.n!2
n2−n

2 ,

when degP = n = 2m,

which proves the proposition 2. Therefore for arbitrary complex variables

z1, z2, . . . , z2m,

we will have
2n∑
k=1

ak(z1 + k)(z2 + k) · · · (zn + k) = n!2
n2−n

2 .

ut



3.5 Proof of proposition 4

Let l = dlog2 ke. We will use the following result: for every fixed m ∈ N, there
is a m-member arithmetic progression of prime numbers. Let q1, q2, . . . , ql.2p+1

to be l.2p+1−member arithmetic progression of prime numbers and let us define
the sets:

Ai = {q(i−1)2p+1+1, q(i−1)2p+1+2, . . . , qi.2p+1 , }, for i = 1, 2, . . . , l.

Applying corollary 1 to each of the sets Ai:

∃Bi, Ci ⊂ Ai : Bi ∩ Ci = ∅, Bi ∪ Ci = Ai, |Bi| = |Ci| =
|Ai|

2
= 2p and

(∗)
∑
q∈Bi

qr =
∑
q∈Ci

qr, r = 0, 1, . . . , p; i = 1, 2, . . . , l.

Define the number

N(p, k, r) =

l∏
i=1

∑
q∈Bi

qr

 =

∑
q∈B1

qr

∑
q∈B2

qr

 · · ·
∑
q∈Bl

qr


It is straightforward that N(p, k, r) is equal to sum of 2pl numbers of the

type (qj1qj2 . . . qjl)
r, i.e.

(∗∗) N(p, k, r) =
∑

j1,j2,...,jl

(qj1qj2 . . . qjl)
r,

where the summation is taken on all j1, j2, . . . , jl with qjk ∈ Bk, 1 ≤ k ≤
l, 1 ≤ jk ≤ 2p.

According to (∗) the number N(p, k, r) can be represented in the form (∗∗),
where the summation is taken on all j1, j2, . . . , jl, but qjk ∈ Bk or qjk ∈ Ck, 1 ≤
k ≤ l. Consequently N(p, k, r) is represented at least in 2l different ways as sum
of r-powers of different square-free positive integers (exactly 2pl in number).
On the other hand 2l = 2dlog2 ke ≥ 2log2 k = k and n = 2pl = 2pdlog2 ke. It
is now clear how to dermine the numbers xij with the required property. Let
σ(i) = (σ1(i), σ2(i), . . . , σl(i)), i = 1, 2, . . . 2l be all 2l in number l-member
sequences of 0 and 1. For all i, k, jk : 1 ≤ i ≤ 2l, 1 ≤ k ≤ l, 1 ≤ jk ≤ 2p

we define qjk,σk(i) ∈ Bk when σk(i) = 0, and qjk,σk(i) ∈ Ck when σk(i) = 1.
Therefore

N(p, k, r) =
∑

j1,j2,...,jl

(
qj1,σ1(1)qj2,σ2(1) . . . qjl,σl(1)

)r
=

=
∑

j1,j2,...,jl

(
qj1,σ1(2)qj2,σ2(2) . . . qjl,σl(2)

)r
=

= · · · =
∑

j1,j2,...,jl

(
qj1,σ1(2l)qj2,σ2(2l) . . . qjl,σl(2l)

)r
, ∀r = 0, 1, . . . p.



For each fixed i, leaving k and jk to run over 1, 2, . . . , l and 1, 2, . . . , 2p re-
spectively, the numbers qj1,σ1(i)qj2,σ2(i) . . . qjl,σl(i) are n = 2pl in number and we
can rearrange them in ascending order (because there are two by two distinct).
For fixed i, we define the number xij as j-th of the largest among the num-
bers qj1,σ1(i)qj2,σ2(i) . . . qjl,σl(i), for j = 1, 2, . . . , 2pl. Performing this procedure

for i = 1, i = 2, . . . , i = 2l we obtain numbers xij satisfying the equations in
proposition 4. ut

4 Arithmetic progression theorem

4.1 Product of arithmetic progressions

Let {bi}∞i=0 and {di}∞i=0 be arbitrary sequences of complex numbers. We define
the sets

γm = {bm + kdm | k ∈ Z} and Γn = γ1γ2 . . . γn =

{
n∏
i=1

(bi + kdi) | k ∈ Z

}
,

where n is a positive integer.

Theorem 1. Each m-element subset Γm,n of Γn, where 2n+1|m and k runs
through m consecutive integers, can be represented as disjoint union of two sub-
sets, with equal sums of the elements.

Proof 3 Applying the proposition 3 for P (z) = (d1z+b1)(d2z+b2) . . . (dnz+bn)
leads to

0 =

2n+1∑
k=1

akP (k) =

2n+1∑
k=1

ak

n∏
i=1

(bi + kdi),

which proves the statement m = 2n+1. The general case m = s.2n+1 follows
directly.

We realize a second proof throughsequence of polynomials {ts,n}s,n≥1, defined by

ts,n(z1, z2, . . . , zn) =

4s+1−1∑
k=0

ak+1

n∏
i=1

(zi + kdi).

The relation between the polynomials ts,n and T̃s,n is given by

ts,n(z1, z2, . . . , zn) =
d1d2 . . . dn

dn
T̃s,n

(
z1d

d1
,
z2d

d2
, . . . ,

znd

dn

)
,

from which it follows that

ts,n(z1, z2, . . . , zn) ≡ 0 when s ≥
[n

2

]
.

The statement follows easily, by considering two cases depending on the parity
of n. ut



4.2 Generalization of arithmetic progression theorem

Theorem 2. Let n and m be positive integers. Then there exists a positive in-
teger s = s(n,m) with the property: each s-element subset of Γn, where k runs
through s consecutive integers, can be represented as disjoint union of m subsets,
with equal sums of elements for any such subset.

We will prove a special case of theorem 2, which is obtained for

γ1 = γ2 = · · · = γn = γ and Γn = γn = {(a+ kd)n : k ∈ Z},

and any positive integer s, that is divisible by 2[n−1
2 ]+1md

n−1
2 e+1 has the desired

property. For p ∈ N we define the sequence of maps {ϕn,m(z)}n,m≥1 by

ϕn,m : C −→ Cm

z
ϕ0,m−−−−→ (A1,2(z), A2,3(z), . . . , Am−1,m(z), A1,m(z)),

where for l = 1, 2, . . . ,m− 1 we put

Al,l+1(z) = (z+ (l− 1)d)p− (z+ l.d)p− (z+ (2m− l− 1)d)p + (z+ (2m− l)d)p,

A1,m(z) =

m−1∑
l=1

Al,l+1(z).

We will prove that for the set Γp = γp = {(a + kd)p : k ∈ Z}, the number

s = 2[ p−1
2 ]+1md

p−1
2 e+1 has the desired property.

Let e1, e2, . . . , em be a basis for Cm and define τ ∈ Hom(Cm) by:

τ(e1) = e2, τ(e2) = e3, . . . , τ(em−2) = em−1; τ(em−1) = −em, τ(em) = −e1.

A direct calculation shows that τm = idCm and put

ϕ2s,m(z) =

m−1∑
j=0

τ j ◦ (ϕ2s−2,m(z + 2smsj.d) + ϕ2s−2,m(z + 2sms(2m− 1− j)d)) , s ≥ 1;

ϕ2s+1,m(z) =

m−1∑
j=0

τ j ◦ ϕ2s,m(z + 2s+1ms+1j.d), s ≥ 0.

A straightforward calculation gives:

ϕ0,m(z) =

m−1∑
l=1

Al,l+1(z)(el + em) =



m−1∑
l=1

p∑
k=0

r(k, l)zk(el + em) =

m−1∑
l=1

p−2∑
k=0

r(k, l)zk(el + em)

=⇒ ϕ0,m(z) =

m−1∑
l=1

p−2∑
k=0

r(k, l)zk(el + em),

where

r(k, l) =

(
p

k

)(
(l − 1)p−k − lp−k − (2m− l − 1)p−k + (2m− l)p−k

)
dp−k.

Since the coordinate functions of ϕn,m are polynomials of z of the same degree,
depending on n (i.e. degAl,l+1 = degA1,m for all l), then we can use the notion
for the degree of the map ϕn,m, by setting degϕn,m to be equal to the the degree
of its coordinate functions. We will prove that

degϕn,m = p− n− 2, for n ≤ p− 2,

ϕn,m(z) ≡ 0, for n ≥ p− 1.

For n = 0 according to calculations above we have degϕ0,m = p− 2. For n = 1
we put Qk(z, t) = (z + 2m.d.t)k and calculate

ϕ1,m(z) =

m−1∑
j=0

τ j◦ϕ0,m(z+2m.j.d) =

m−1∑
j=0

τ j◦
m−1∑
l=1

p−2∑
k=0

r(k, l)(z+2m.j.d)k(el+em)

=

m−1∑
j=0

τ j◦
m−1∑
l=1

p−2∑
k=0

r(k, l)(Qk(z, j)−zk)(el+em)+

m−1∑
j=0

τ j◦
m−1∑
l=1

p−2∑
k=0

r(k, l)zk(el+em)

=⇒ ϕ1,m(z) =

m−1∑
j=0

τ j ◦
m−1∑
l=1

p−2∑
k=0

r(k, l)(Qk(z, j)− zk)(el + em), since

(∗)
m−1∑
j=0

τ j ◦
m−1∑
l=1

p−2∑
k=0

r(k, l)zk(el + em) = 0.

Therefore degϕ1,m(z) = deg(Qp−2(z, j)− zp−2) = p− 3. We define

ψ =

m−1∑
j=0

τ j , K = {a1e1 + a2e2 + · · ·+ am−1em−1 +

m−1∑
j=1

ajem : aj ∈ C}.

We will prove that K ⊂ Kerψ, from which immediately follows the equality (∗).
We calculate

ψ(e1) = ψ(e2) = · · · = ψ(em−1) = −ψ(em) = −em +

m−1∑
j=1

ej



⇒ ψ(a1e1+a2e2+· · · am−1em−1) =

m−1∑
j=1

ajψ(e1) = −
m−1∑
j=1

ajψ(em)⇒ K ⊂ Kerψ.

For n = 2 we obtain:

ϕ2,m(z) =

m−1∑
j=0

τ j ◦ (ϕ0,m(z + 2mj.d) + ϕ0,m(z + 2m(2m− 1− j)d)) =

m−1∑
j=0

τ j ◦
m−1∑
l=1

p−2∑
k=0

r(k, l)(Qk(z, j) +Qk(z, 2m− 1− j))(el + em) =

m−1∑
j=0

τ j◦
m−1∑
l=1

p−2∑
k=0

r(k, l)(Qk(z, j)+Qk(z, 2m−1−j)−2zk−2kdm(2m−1)zk−1)(el+em),

since

m−1∑
j=0

τ j ◦
m−1∑
l=1

p−2∑
k=0

r(k, l)(2zk + 2kdm(2m− 1)zk−1)(el + em) = 0.

Therefore

degϕ2,m(z) = deg(Qp−2(z, j)+Qp−2(z, 2m−1−j)−2zp−2−2kdm(2m−1)zp−3) =

p− 4.

Let degϕ2s,m(z) = p− 2− 2s be valid for some s <
[
p−2
2

]
. Then ϕ2s,m has the

form

ϕ2s,m(z) =

p−2−2s∑
k=0

m−1∑
i=1

αk,iz
p−2−2s−kβi(ei + em), α0, βi 6= 0.

We calculate:

ϕ2s+1,m(z) =

m−1∑
j=0

τ j ◦ ϕ2s,m(z + 2s+1ms+1j.d) =

m−1∑
j=0

τ j ◦
p−2−2s∑
k=0

m−1∑
i=1

αk,i(z + 2s+1ms+1j.d)p−2−2s−kβi(ei + em) =

m−1∑
j=0

τ j◦
p−2−2s∑
k=0

m−1∑
i=1

(
αk,i(z + 2s+1ms+1j.d)p−2−2s−k − αk,izp−2−2s−k

)
βi(ei+em),

where the last equality is due to

m−1∑
j=0

τ j ◦
p−2−2s∑
k=0

m−1∑
i=1

αk,iz
p−2−2s−kβi(ei + em) = 0.

Therefore

degϕ2s+1,m = deg(α0,i(z + 2s+1ms+1j.d)p−2−2s − α0,iz
p−2−2s) = p− 3− 2s.



We put t = p− 2− 2s and calculate

ϕ2s+2,m(z) =

m−1∑
j=0

τ j ◦
(
ϕ2s,m(z + 2s+1ms+1j.d) + ϕ2s,m(z + 2s+1ms+1(2m− 1− j)d)

)
=

∑m−1
j=0 τ j ◦

∑t
k=0

∑m−1
i=1 αk,i

(
(z + 2s+1ms+1j.d)t−k + (z + 2s+1ms+1(2m− 1− j)d)t−k

)
βi(ei + em) =

m−1∑
j=0

τ j◦
t∑

k=0

m−1∑
i=1

αk,i (Qt−k(z, 2smsj) +Qt−k(z, 2sms(2m− 1− j)))βi(ei+em) =

m−1∑
j=0

τ j◦
t∑

k=0

m−1∑
i=1

αk,i
(
Rt−k(z, j)− 2zt−k − 2smsd(2m− 1)(t− k)zt−k−1

)
βi(ei+em),

where Rt−k(z, j) = Qt−k(z, 2smsj) +Qt−k(z, 2sms(2m− 1− j)).
Finally

degϕ2s+2,m = deg
(
Rt(z, j)− 2zt − 2smstd(2m− 1)zt−1

)
= t− 2 = p− 4− 2s.

Consequently degϕp−2,m = 0 and

ϕp−2,m(z) =

m−1∑
i=1

βi(ei + em) and ϕp−3,m(z) = z

m−1∑
i=1

γi(ei + em) =⇒

ϕp−1,m(z) =

=

m−1∑
j=0

τ j◦
(
ϕp−3,m(z + 2

p−1
2 m

p−1
2 j.d) + ϕp−3,m(z + 2

p−1
2 m

p−1
2 (2m− 1− j)d)

)
=

m−1∑
j=0

τ j ◦
m−1∑
i=1

(
2z + 2

p−1
2 m

p−1
2 (2m− 1)d

)m−1∑
j=0

γi(ei + em) = 0, when p− 1 = 2s.

Let us consider the case p− 1 = 2s+ 1:

ϕp−1,m(z) =

m−1∑
j=0

τ j ◦ ϕp−2,m(z + 2
p
2m

p
2 j.d) =

m−1∑
j=0

τ j ◦
m−1∑
i=1

βi(ei + em) = 0,

which completes the proof of theorem 2 in the considered special case. ut

Corollary 3 Let m and n be positive integers, Γ = {a + kd | k ∈ Z} is an
arithmetic progression of complex numbers. Then any subset of Γ ′ ⊂ Γ consisting

of 2[n+1
2 ]md

n−1
2 e+1 consecutive elements of Γ can be divided to m subsets, with

equal sums of r−powers of elements (for any such subset), for r = 1, 2, ..., n.

The proof follows directly from ϕn,m(z) ≡ 0, when n ≥ p− 1, as the last result
is derived in the proof of theorem 2.
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