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INTRODUCTION

In the present work we consider Diophantine systems, i.e. systems of polynomial equations of several variables with
rational coefficients. Such a sistem is called locally trivial, if it has a nonzero p-adic rational solution for all primes
p, including p = ∞, or moreover, globally trivial, if it has a nonzero rational solution in Q. From global triviality
follows local triviality, but the converse is not valid by Selmer’s counterexample 3x3 +4y3 +5z3 = 0. An interesting
question is (see [2]): for which classes of Diophantine systems, the notions of local and global triviality are equivalent?
Systems fulfilling this condition are said to satisfy the local-to-global principle. Natural examples of symmetric
Diophantine systems arise in Euclidean Geometry, in problems for integer lengths of elements of geometric figures.
As a result of considering many examples, we formulate conjecture, that any symmetric Diophantine system derived
from Euclidean Geometry, satisfies the local-to-global principle.Below we consider several examples confirming the
conjecture, without formalizing it in general.

BASIC DEFINITIONS AND THEOREMS

In this section are given definitions of affine and projective spaces, elliptic curves over an arbitrary field, and the
structure preserving maps between elliptic curves. The following definitions are necessary ( [1], [3], [4], [7]).

Definition 1 Affine n-space over Q is the set An(Q) = {(x1,x2, . . . ,xn) | xi ∈Q}.

The zero point of An is OAn = (0, . . . ,0), and if A,B are sets then A−B means the set-theoretical subtraction.

Definition 2 Projective n-space over Q, denoted by Pn, is the quotient space (An+1(Q)−OAn+1)/ ∼, where the
factorization by ∼ means that the points (x0, . . . ,xn), (y0, . . . ,yn) ∈ An+1(Q)−OAn+1 are equivalent, if there exists
λ ∈Q∗, such that y0 = λx0, . . . ,yn = λxn. An equivalence class {(λx0, . . . ,λxn) | λ ∈Q∗} is denoted by [x0, . . . ,xn],
and the individual x0, . . . ,xn are called homogeneous coordinates for the corresponding point of Pn.

Thus, the projective space consists of lines through the origin in affine space, with one dimension higher.

Definition 3 Elliptic curve over Q is a smooth projective curve with affine equation

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6, (1)

where ai ∈Q. In general, elliptic curve E over field k is denoted by E/k.

If char(k) 6= 2, the substitution y 7−→ (y− a1x− a3)/2 simplify the equation (1) to y2 = x3 + ax2 + bx + c. The
smoothness condition is equivalent to the condition that the polynomial x3 + ax2 + bx+ c has distinct roots. The
unique point at infinity that lies on the elliptic curve is denoted by O = [0,1,0]. The discriminant of E/k : y2 = f (x)
is defined as ∆E = 16∆ f = 16(−4a3c+a2b2 +18abc−4b3−27c2).

Let E/k be an elliptic curve given by equation y2 = f (x). Therefore E ⊂ P2(k) consists of the points P = (x,y)
satisfying the equation of E, together with the point at infinity O = [0,1,0]. Let l ⊂ P2(k) be a line, then by Bezout’s
theorem, the number of points of intersection for l∩E, taken with multiplicities, is exactly 3, say P,Q,R (need not be
distinct). The definition of composition law ⊕ on elliptic curve E is as follows:

Definition 4 The composition law E×E −→ E (P,Q) 7−→ −R, is denoted by P⊕Q := −R, where the map E −→
E P = (x,y) 7−→ −P = (x,−y) is an orthogonal symmetry with respect to the coordinate axis.



Remark 1 The composition law is in fact a group law, i.e. makes E into an abelian group, with O = [0,1,0] as neutral
element for the group operation, and each element P has inverse −P. By the definition above, it follows that three
points on E have zero sum, if and only if they lie on the same line.

As a notation: E = E(Q) = {(x,y) ∈ A2(Q) | y2 = x3 +ax2 +bx+ c}∪{O}, and for every subfield k ⊂Q denote by
E(k) the set of k-rational points on E:

E(k) = {(x,y) ∈ A2(k) | y2 = x3 +ax2 +bx+ c}∪{O}. (2)

For elliptic curve E/k, the set E(k) is a group, E(k)CE(Q), in particular let k =Q:

Definition 5 The group E(Q) is called the Mordell-Weil group of rational points on E.

Elliptic curves have an algebraic structure as abelian groups and a geometric structure as smooth projective curves.
The structure preserving maps between elliptic curves are called isogenies. Let k be a field and E/k be an elliptic
curve, given by equation f (x,y,z) = x3 +ax2z+bxz2 + cz3− y2z = 0.

Definition 6 T he f unction f ield k(E) of elliptic curve E/k consists of rational functions g
h , where

1) g, h ∈ k[x,y,z] are homogeneous polynomials of the same degree,
2) h /∈ ( f ), i.e. h is not divisible by f ,
3) g1

h1
and g2

h2
are considered equivalent whenever g1h2−g2h1 ∈ ( f ).

Definition 7 Let E1/k and E2/k be elliptic curves. A rational map ϕ : E1 −→ E2 is a projective triple ϕ =
[ϕ1,ϕ2,ϕ3] ∈ P2(k(E1)), such that for every point P ∈ E1(k), where ϕ1(P),ϕ2(P),ϕ3(P) are defined, are not all
zero and the projective point [ϕ1(P),ϕ2(P),ϕ3(P)] lies in E2(k). The map ϕ is regular at P if there exists λ ∈ k(E1)

∗,
such that λϕ1,λϕ2,λϕ3 are defined at P and are not all zero at P. Everywhere regular rational map is called a
morphism.

Remark 2 Every rational map between elliptic curves is a morphism and every morphism between smooth projective
curves is either constant or surjective.

Let E1/k and E2/k be elliptic curves.

Definition 8 An isogeny ϕ : E1 −→ E2 is a surjective morphism of curves that induces a group homomorphism
E1(k)−→ E2(k). The elliptic curves E1 and E2 are then said to be isogenous.

Remark 3 For m ∈ N denote by [m]P := P⊕P⊕·· ·⊕P (m - times addition). The map [m] : E −→ E P 7−→ [m]P is
an isogeny. Denote its kernel by E[m]. The elements of E[m] are called m-torsion points of E. For E/k with char k = 0
holds that E[m]∼= Z/mZ

⊕
Z/mZ.

The structure of Mordell-Weil group

Let E/Q be an elliptic curve.

Theorem 1 The Mordell-Weil group E(Q) is finitely generated and abelian.

Theorem 2 Every finitely generated abelian group A is a direct sum of a free subgroup and a torsion subgroup, i.e.
A = A f ree

⊕
Atorsion ∼= Zr⊕Atorsion, where the integer r ≥ 0 is called rank of A and is denoted by rank A = r.

Remark 4 From the theorems above it follows that E(Q)∼= Zr⊕E(Q)tor.

The torsion group E(Q)tor is finite and effectively computable by algorithms as Lutz-Nagell theorem, the reduction
theorem and the general theorem of Mazur.

Theorem 3 (Lutz-Nagell) Let E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6 be an elliptic curve with integer coefficients
and P = (x,y) be a rational torsion point for E, of order not dividing 2. Then x and y are integers.



Theorem 4 (Reduction) Let p be a prime number, m be a positive integer not divisible by p, and E/Qp be an el-
liptic curve. If the reduction modulo p E/Qp −→ Ẽ/Fp gives a nonsingular curve Ẽ/Fp, then the reduction map
E(Qp)[m]−→ Ẽ(Fp) is an injective homomorphism of groups.

Theorem 5 (Mazur) Let E/Q be an elliptic curve. Then the torsion group E(Q)tor is isomorphic to one of the
following fifteen groups:

Z/nZ, 1≤ n≤ 10 or n = 12,

Z/2Z⊕Z/2nZ, 1≤ n≤ 4.

THE MAIN CONJECTURE AND EXAMPLES

In this section we formulate the main conjecture and consider several examples of symmetric diophantine systems
that confirm it. Examples 3 and 4 below are open-ended questions: they are locally trivial systems for which it is not
known whether they have solutions in positive integers.

Conjecture 1 Any symmetric system derived from Euclidean Geometry, satisfies the local-to-global principle.

Example 1 Is there a quadrilateral, without pairs of equal sides, with integer lengths of the sides, diagonals and radii
of the inscribed and circumscribed circle?

The question is equivalent to the solvability of the Diophantine system

a+ c = b+d, r2 =
abcd

(a+ c)2 , R2 =
(ab+ cd)(ac+bd)(ad +bc)

16abcd
, (3)

where (a,b,c,d,R,r,e, f ) are the lengths of the sides, the radii and the diagonals. Let

a+ c = b+d = l, abcd = m2, (ab+ cd)(ac+bd)(ad +bc) = n2,
m
l
∈ Z,

n
4m
∈ Z. (4)

The systems (3) and (4) are equivalent to each other, and their solvability is equivalent to (5), see Appendix A:

(x2 + y2)(z2 + t2)[(xz+ yt)2 +(xt + yz)2] = w2, gcd(x,y) = gcd(z, t) = 1, min{xy,zt}> 1. (5)

Equation (5) is equivalent to each of the following systems (6) and (7):

(x2 + y2)(z2 + t2) = s(u− v)2, xyzt = suv, p2 - s. (6)

x2 + y2

s1

z2 + t2

s2
= (u− v)2,

xy
s2

zt
s1

= uv, p2 - s1s2 = s. (7)

In particular, the substitution s1 = 1, s2 = z2 + t2 leads to

x2 + y2 = (u− v)2, xyzt = (z2 + t2)uv. (8)

Therefore x = m2−n2, y = 2mn, u−v = m2 +n2, gcd(m,n) = 1, and then substitute in the second equation of (8):

(z2 + t2)v2 +(z2 + t2)(m2 +n2)v−2ztmn(m2−n2) = 0. (9)

The discriminant of the last equation needs to be a perfect square D = r2:



r2 = D = (z2 + t2)2(m2 +n2)2 +8zt(z2 + t2)mn(m2−n2). (10)

Set X ′ = m/n, Y ′ = r/n2, α = z2 + t2, β = zt and thus we obtain a two-parameter elliptic family:

Eα,β : Y ′2 = α
2X ′4 +8αβX ′3 +2α

2X ′2−8αβX ′+α
2. (11)

Weierstrass normal form for Eα,β is (see Appendix B)

Eα,β : Y 2 +4βXY −4β (α2−4β
2)Y = X3− (α2−8β

2)X2−4β
2(α2−4β

2)X . (12)

Lemma 1 The rational torsions of Eα,β do not generate a solution of (3), and satisfy

Eα,β (Q)tors ' Z/2Z⊕Z/2nZ, n = 1 or 2.

Proof 1 Let P = (x,y) ∈ Eα,β and denote [m]P = (xm,ym), where (x,y) = (x1,y1). Then by the group law of Eα,β ,
(using duplication formula [3]) one obtains

x2 =
x4 +24β 2(α2−4β 2)x2−32β 2(α2−4β 2)2x+16β 2(α2−3β 2)(α2−4β 2)2

4x3−4(α2−12β 2)x2−48β 2(α2−4β 2)x+16β 2(α2−4β 2)2 , (13)

y2 =
x3 +4β (α2−4β 2)[5βx+ y−4β (α2−4β 2)]− [3x2−2(α2−16β 2)x+4βy−20β 2(α2−4β 2)]x2

2y+4βx−4β (α2−4β 2)
. (14)

Assume that P ∈ Eα,β (Q)[m], i.e. P ∈ Eα,β (Q) with [m]P = O. Then, by theorem 3, it follows that xm and ym are in-
tegers, or P∈Eα,β (Q)[2]. By theorem 5, it follows 1≤m≤ 12 and m 6= 11. We will consider several cases with P 6=O:

1. m = 2. Then [2]P = O⇐⇒ P =−P⇐⇒ (x,y) = (x,−y−4βx+4β (α2−4β 2))⇐⇒ y =−2βx+2β (α2−4β 2).
Substituting in equation 12 we obtain the equation −4β 2[x− (α2−4β 2)]2 = x(x+4β 2)[x− (α2−4β 2)]. Hence the
points (α2− 4β 2,0), (2β (α − 2β ),2αβ (α − 2β )), (−2β (α + 2β ),2αβ (α + 2β )) are all torsions of order 2 for
Eα,β . These three points together with O = [0,1,0] form a group Eα,β (Q)[2] ' Z/2Z⊕Z/2Z. Now using Mazur’s
theorem 5 we obtain that Eα,β (Q)tors ' Z/2Z⊕Z/2nZ, for some n ∈ {1,2,3,4}. We will prove that the possible
values for n are 1 and 2.

2. m = 3. Then [3]P = O⇐⇒ [2]P =−P⇐⇒ (x2,y2) = (x,−y−4βx+4β (α2−4β 2)). Let us denote equation (12)
by Eα,β : h(X ,Y ) = f (X) and we will prove that from x2 = x follows y2 =−y−4βx+4β (α2−4β 2). Indeed we have

h(x,y) = f (x) = f (x2) = h(x2,y2) = h(x,y2)

⇒ h(x,y) = h(x,y2)⇒ (y2− y)[y2 + y+4βx−4β (α2−4β
2)] = 0.

Since P 6= O, then [2]P 6= O and therefore y2 6= y. Finally we have y2 + y+4βx−4β (α2−4β 2) = 0. Consequently
P = (x,y) is a rational 3-torsion point of Eα,β , if and only if the equation x2 = x has an integer solution. Using (13)
this equation is

g(x) = 3x4−4(α2−12β
2)x3−72β

2(α2−4β
2)x2 +48β

2(α2−4β
2)2x−16β

2(α2−3β
2)(α2−4β

2)2 = 0 (15)

Direct calculation shows that g′(x) = [x− (α2−4β 2)][x+(2αβ +4β 2)][x− (2αβ −4β 2)] and g(α2−4β 2) =−α2,
g(−2αβ − 4β 2) < 0, g(2αβ − 4β 2) < 0. Then g(x) = 0 has exactly two real roots x′,x′′, such that x′ < −(2αβ +
4β 2), x′′ > α2−4β 2, and none of them are integers. Therefore rational torsion points of order 3 do not exist, which
means that Eα,β (Q) has no subgroups of order 3.



3. m = 4. Then [4]P = O⇐⇒ [2]P =−[2]P⇐⇒ (x2,y2) =−(x2,y2)⇐⇒ y2 =−y2−4βx2 +4β (α2−4β 2). Hence
[2]P is a 2-torsion point, i.e. [2]P ∈ Eα,β (Q)[2]. From case 1 it follows that

[2]P = (x2,y2) ∈ {(α2−4β
2,0), (2β (α−2β ),2αβ (α−2β )), (−2β (α +2β ),2αβ (α +2β ))}.

We may assume that [2]P = (α2−4β 2,0), hence x2 = α2−4β 2,y2 = 0. Using formulas (13) and (14), the following
system of equations for coordinates (x,y) of P is obtained:

∣∣∣∣ x4−4(α2−4β 2)x3 +4(α2−6β 2)(α2−4β 2)x2 +16β 2(α2−4β 2)2x+16β 4(α2−4β 2)2 = 0
x3−3(α2−4β 2)x2 +2(α2−6β 2)(α2−4β 2)x+4β 2(α2−4β 2)2 = 0

Multiplying by x the second equation of the system and subtracting from it the sum of the two equations of the system,
one obtains x2−2(α2−4β 2)x−4β 2(α2−4β 2) = 0. Using that α =m2+n2,β =mn, for the roots of the equation we
find x = 2m2(m2−n2) and x = 2n2(n2−m2). Substituting x = 2m2(m2−n2) in equation 12, we obtain the equation:

y2 +4mn(m4−n4)y−4m4(m4−n4)2 = 0,

with roots y =−4m(m4−n4)(n∓
√

m2 +n2). Therefore m2 +n2 must be a perfect square and then

P = (x,y) =
(

2m2(m2−n2),−4m(m4−n4)(n∓
√

m2 +n2)
)
, m = γ

2−δ
2, n = 2γδ . (16)

All other possibilities for [2]P, that is [2]P = (2β (α−2β ),2αβ (α−2β )) or [2]P = (−2β (α +2β ),2αβ (α +2β ))
leads to the same result as obtained above: m2 +n2 must be a perfect square and P has the form (16).

4. m = 8. Thus [8]P = O⇐⇒ [4]P = −[4]P⇐⇒ (x4,y4) = −(x4,y4) = (x4,−y4− 4βx4 + 4β (α2− 4β 2)). Conse-
quently [4]P is a two-torsion point and [2]P must be a four-torsion. Then by (16), it follows that

x2 = 2m2(m2−n2), y2 =−4m(m4−n4)(n∓
√

m2 +n2), m = γ
2−δ

2, n = 2γδ .

Using (13), the equation x2 = 2m2(m2− n2) is reduced to quartic equation, which have no solutions in integers x.
Therefore rational torsion points of order 8 do not exist.

It remains to prove that the elements of Eα,β (Q)tors do not generate a solution of (3). Let P = (X ,Y ) be a 2-torsion,
then by formulas (33) and (9) it follows that m/n= X ′ =Y/αX ∈ {−1,0,1}. The latter result leads to m= 0 or m= n,
but in both cases it is valid that x = m2−n2 ≤ 0, which is impossible. The case when P is a 4-torsion is analogous.
The proof of lemma 1 is complete.

Remark 5 Summarizing the results: Eα,β (Q)tors ∼=
{

Z/2Z⊕Z/2Z,
√

α /∈Q
Z/2Z⊕Z/4Z,

√
α ∈Q , where α = m2 +n2,β = mn.

Lemma 2 For all positive integers α = m2 +n2,β = mn, the inequality rank Eα,β (Q)≥ 1 holds.

Proof 2 It is sufficient to prove that the point P = (0,0) has infinite order in Eα,β (Q). Straightforward calculation
for [2]P = (x2,y2) shows that [2]P = (α2−3β 2,−β (α2 +β 2)) 6= O, hence P is not a 2-torsion point. Moreover [2]P
is not a 2-torsion point, because

[2]P /∈ Eα,β (Q)[2] = {(α2−4β
2,0), (2β (α−2β ),2αβ (α−2β )), (−2β (α +2β ),2αβ (α +2β )), O}.

Indeed, the following equations have no solutions in nonzero integers: (α2−3β 2,−β (α2 +β 2)) = (α2−4β 2,0),

(α2−3β
2,−β (α2 +β

2)) = (2β (α−2β ),2αβ (α−2β )),

(α2−3β
2,−β (α2 +β

2)) = (−2β (α +2β ),2αβ (α +2β )).

Since [2]P is not a 2-torsion point, it follows that P is not a 4-torsion. Finally P = (0,0) is not a two-torsion or a
four-torsion, now from lemma 1 we obtain that P is not a torsion, which means that it has infinite order.



Remark 6 In lemma 2 it is not necessary to use that 3-torsions and 8-torsions for Eα,β (Q) do not exist. It is enough
to prove that P = (0,0) is not a 3 or 8-torsion point. Indeed, using (15) one obtains g(0) 6= 0, which shows that (0,0)
is not a 3-torsion. Similarly, P has order 8, if and only if [2]P has order 4, which is reduced to x2 = 2m2(m2−n2), or
equivalently (m2 +n2)2−3m2n2 = 2m2(m2−n2) with no nonzero rational solutions.

Lemma 3 Each generator of Eα,β (Q), which is not a torsion, generates an infinite series of solutions to (3).

Proof 3 By lemma 2 one have that, for any positive integers z, t the rank of Ez2+t2,zt(Q) is at least 1. Let P= (X ,Y ) be
a generator of infinite order for Ez2+t2,zt(Q), with Y/αX > 1. By the transformation (33) we obtain the point (X ′,Y ′)
on the curve (11), and we determine positive integers m,n from the equality m/n = X ′. Then set x = m2−n2, y = 2mn,
and using the 4-tuple (x,y,z, t) and the formulas in Appendix B, one obtains integer 8-tuple (a,b,c,d,R,r,e, f ). Let us
denote by (Xn,Yn) for all n ∈ Z the coordinates of [n]P. It remains to prove that there are infinitely many n, for which
Yn/αXn > 1, α = z2 + t2. Finally, for every n ∈ Z at least one of the points ±[n]P,±[n+ 1]P,±[n+ 2]P,±[n+ 3]P
satisfies the desired inequality Y/αX > 1, which completes the proof.

As an example, the minimal integral quadrilateral without equal sides is given below

(a,b,c,d,R,r,e, f ) = (546,1890,1560,216,975,280,1680,750).

Remark 7 Quadrilateral is inscribed in a circle and circumscribed around another circle. If the lengths of the
sides and the radii are rational numbers, then the lengths of the diagonals are also rational. Thus each rational
6-tuple (a,b,c,d,R,r), up to homothety, generates a unique integer 8-tuple (a,b,c,d,R,r,e, f ). Applying the de-
scribed method, we obtain an infinite series of integral quadrilaterals, without pairs of equal sides, none of which are
homothetic, and for which (a,b,c,d,R,r,e, f ) ∈ N8.

Remark 8 From lemma 2 follows that there are infinitely many non-equivalent solutions for system (3) and moreover,
equation (5) has infinitely many solutions for each pair (x,y) of positive integers. In table I below are given some
solutions of equation (5). The proof of lemma 3 describes an algorithm for obtaining integral quadrilaterals through
these solutions. The corresponding quadrilaterals are given in table II, such that k-th row of table I corresponds to
k-th row of table II.

TABLE I: Integral quadrilaterals (a,b,c,d,R,r) via (x,y,z, t,w)

(z, t) P = (X ,Y ) [n]P = (Xn,Yn) (m,n) (x,y,z, t,w)

(2,1) (−16,0) [3]P =
(

3344
841 , 543400

24389

)
(65,58) (861,7540,2,1,312856525)

(3,1) (−36,1200) [−3]P =
(

227484
11881 , 553544400

1295029

)
(730,327) (425971,477420,3,1,5172025730050)

(4,1) (56,520) * (28,11) (663,616,4,1,16877345)

(4,3) (21/4,525/8) * (31,2) (957,124,4,3,25972975)

(5,2) (702,9918) P+(0,0) (25099,6279) (590533960,315193242,5,2,16297119093004699156)



TABLE II: Integral quadrilaterals (a,b,c,d,R,r)

a b c d R r

27450402 139670960 120195140 7974582 312856525/4 12983880

2374657551903 2514093242580 887156644020 747720953343 2586012865025/2 610101224460

8292804 8052352 1926232 2166684 16877345/4 1633632

12888876 2083200 1252524 12058200 25972975/4 1424016

8140611413220274000 5646775632112163640 1737997051478698920 4231832832586809280 4074279773251174789 1861323133634983200

In table III are given higher rank curves in the elliptic family Eα,β . It is an interesting question to find an upper-
bound for the rank of Eα,β .

TABLE III: Higher rank curves in the elliptic family Eα,β

(α,β ) rank Eα,β generators of Eα,β

(442,21) 3 (0,0)

(−17000,3978000)

(−154052/9,368297792/27)

(1768,84) 3 (−28224,0)

(6594500,−12959511400)

(155648,894353408)

(442k2,21k2) 3 (0,0)

∗

∗



Example 2 Find all N ∈ N, such that there exist N numbers with the properties
(i) all numbers are perfect squares of positive integers,
(ii) the sum of any two numbers is a perfect square.

The question for N = 3 is equivalent to the solvability of the Diophantine system

x2 + y2 = u2, y2 + z2 = v2, z2 + x2 = w2. (17)

The system (17) is equivalent to each of the following systems (18) and (19):

x = (k2− l2)d1, y = 2kld1, z = (m2−n2)d2,y = 2mnd2, z = 2std3, x = (s2− t2)d3 (18)

(k2− l2)d1 = (s2− t2)d3, kld1 = mnd2, (m2−n2)d2 = 2std3. (19)

The elimination of di’s from system (19) leads to the following equivalent equations (20) - (24):

m2−n2

2mn
s2− t2

2st
=

k2− l2

2kl
. (20)

2mnstk2− l(m2−n2)(s2− t2)k−2mnstl2 = 0. (21)

The discriminant of the last equation needs to be a perfect square D = r2:

r2 = D = l2 [(m2−n2)2(s2− t2)2 +(4mnst)2] . (22)

Therefore

(m2−n2)(s2− t2) = (a2−b2)c, 2stmn = abc, (m,n) = (s, t) = (a,b) = 1. (23)

m2−n2

c2

s2− t2

c1
= a2−b2, 2

mn
c1

kl
c2

= ab, c = c1c2. (24)

In particular, set c1 = 1, c2 = m2−n2 and thus we obtain

s2− t2 = a2−b2, 2mnst = (m2−n2)ab. (25)

s2− t2 = a2−b2, ab = 2mnh, st = (m2−n2)h (26)

In particular, the substitution a = 2mnh1h2, b = h3h4, s = h1h4, t = (m2−n2)h2h3, leads to

[
(2mnh1)

2 +(m2−n2)2h2
3
]

h2
2 = (h2

1 +h2
3)h

2
4 (27)

h2
1 +h2

3 = rh2
2, (2mnh1)

2 +(m2−n2)2h2
3 = rh2

4 (28)



Put r = 1 in (28), therefore h1 = 2UV, h3 =U2−V 2 and (28) is equivalent to

U4 +V 4 +ρU2V 2 =W 2, where ρ =

(
4mn

m2−n2

)2

−2, W =
h4

m2−n2 . (29)

Consequently, the problem for N = 3 is reduced to finding a non-trivial rational point on quartic surface U4 +V 4 +
ρU2V 2 = W 2S2. From [5], page 4, it follows that the problem is equivalent to finding ρ , such that the elliptic curve
Eρ : Y ′2 = X ′3 +ρX ′2 +X ′ has rank greater or equal to 1. Using transformation formulas from [5], i.e.

X ′ =
(

V
U

)2

, X = q2X ′, Y = q3Y ′, (30)

and substitute p = 16m2n2−2(m2−n2)2,q = m2−n2,ρ = p
q2 , we obtain isomorphic elliptic curves Eρ ' Ep,q where

Ep,q : Y 2 = X3 + pX2 +q4X . We use Magma software [6] to find the generators of Mordell-Weil group for the elliptic
curves in tables I, III and below.

Set m= 4,n= 3, then p= 2206,q= 7 and rank E2206,7(Q)= 1. The point
( 121

9 , 17776
27 ,1

)
is a generator for E2206,7(Q).

By the formulas (30) it follows that
(V

U

)2
= X ′ = X/q2 =

( 11
21

)2⇒U = 21,V = 11

(h1,h2,h3,h4) = (320,562,462,11 312),

(a,b,s, t) = (6 231 456, 3 619 840, 5 226 144,1 258 880),

x = (s2− t2)d3, y = 2mnd2 = 2mn
2std3

m2−n2 = 2d3
2mnst

m2−n2 = 2abd3, z = 2std3.

Putting d3 = 1 and dividing by 210.72 leads to solution

(x,y,z,u,v,w) = (512 751 161, 899 110 080, 262 240 440, 1 035 042 361, 936 573 000, 575 919 961).

Remark 9 The described method gives an infinite series of non-equivalent solutions to example 2, in the case N = 3.
We will consider the case N ≥ 4 and the examples below, as well as the formalization of the main conjecture in our
next publications.

Example 3 x2 + y2 = u2, y2 + z2 = v2, z2 + x2 = w2, x2 + y2 + z2 = s2.

Example 4 x2 + y2 = u2, y2 + z2 = v2, z2 + x2 = w2, x2 + y2 + z2 = s2, x2y2 + y2z2 + z2x2 = t2.

APPENDIX A

We will find parametric description for all two by two different integers a,b,c,d, for wich

(∗) a+ c = b+d = l, abcd = m2, (ab+ cd)(ac+bd)(ad +bc) = n2.

Then we separate these (a,b,c,d) having the property: m ≡ 0 mod l, n ≡ 0 mod 4m. Let gcd(a,b,c,d) = k, then
l
k ,

m
k2 ,

n
k3 are integers, and we can consider the system (∗) by changing (l,m,n) 7−→ ( l

k ,
m
k2 ,

n
k3 ) and gcd(a,b,c,d) = 1.

Therefore, we can assume that gcd(a,b,c,d) = 1. Let gcd(a, l) = la,gcd(b, l) = lb, easily showing that the following
equalities are valid:

gcd(a, l) = gcd(c, l) = gcd(a,c), gcd(b, l) = gcd(d, l) = gcd(b,d),



gcd(la, lb) = gcd(gcd(a,c),gcd(b,d)) = gcd(a,b,c,d) = 1.

Then a = a1la, b = b1lb, l = lalbL, m = lM and from ab(l−a)(l−b) = m2 we obtain

a1b1(lbL−a1)(laL−b1) = L2M2.

Since gcd(a1, lbL) = gcd(b1, laL) = 1, then gcd(a1b1(lbL− a1)(laL− b1),L) = 1 and therefore L = 1. Thus l = lalb
and a1b1(lb−a1)(la−b1) =M2. Let gcd(a1,b1) = u, gcd(lb−a1, la−b1) = v, a1 = ua2, b1 = ub2, then gcd(a2,b2) =
gcd(u,v) = 1 and M = uvM1, with the equality

a2b2
lb−ua2

v
la−ub2

v
= M2

1 .

From gcd(a2b2,v) = gcd(a2
la−ub2

v ,b2
lb−ua2

v ) = 1 it follows that M1 = αβ and the following equations are valid

a2
la−ub2

v
= α

2, b2
lb−ua2

v
= β

2.

We represent a2,b2 in the form a2 = α1α2
2 , b2 = β1β 2

2 , hence α = α1α2A, β = β1β2B, gcd(α1α2A,β1β2B) = 1,
p2 - α1β1, and thus we obtain the equalities

la = vα1A2 +uβ1β
2
2 , lb = vβ1B2 +uα1α

2
2 .

We express a,b,c,d and replace in the third equation of (∗)

a = uα1α
2
2 (vα1A2 +uβ1β

2
2 ), b = uβ1β

2
2 (vβ1B2 +uα1α

2
2 ),

c = vβ1B2(vα1A2 +uβ1β
2
2 ), d = vα1A2(vβ1B2 +uα1α

2
2 ),

ab+ cd = α1β1lalb[(uα2β2)
2 +(vAB)2],

ac+bd = uvα1β1[(α2laB)2 +(β2lbA)2],

ad +bc = uvlalb[(α1α2A)2 +(β1β2B)2].

After substitution, we find that n = uvα1β1lalbN, for some positive integer N. Therefore

[(uα2β2)
2 +(vAB)2][(α2laB)2 +(β2lbA)2][(α1α2A)2 +(β1β2B)2] = N2. (31)

To simplify the above equation, set α2 = A,β2 = B and replace in (31):

(u2 + v2)(l2
a + l2

b)[(α1A2)2 +(β1B2)2] =

(
N

A2B2

)2

.

Then N = A2B2N1 and set x = a2 = α1A2,y = b2 = β1B2,z = u, t = v,w = N1, thus la = vx+uy, lb = ux+ vy and the
equation is transformed in the form

(x2 + y2)(z2 + t2)[(xz+ yt)2 +(xt + yz)2] = w2. (32)



APPENDIX B

Using the notation and results of appendix A, one obtains that each solution of equation (5) corresponds to a rational
6-tuple (a,b,c,d,R,r) in the form

a = xz(xt + yz), b = yz(xz+ yt),

c = yt(xt + yz), d = xt(xz+ yt),

R =
w
4
, r = xyzt.

In the case when (a,b,c,d,R,r) is rational, it is a straightforward to prove that the diagonals are also rational, since

e =
(ad +bc)(ac+bd)

4rR(a+ c)
, f =

(ab+ cd)(ac+bd)
4rR(a+ c)

.

Then we multiply (a,b,c,d,R,r,e, f ) by the least common multiply of the denominators to obtain an integer 8-tuple.

Now we describe the birational isomorphism between the curves (11) and (12), ( [1], p35). For any positive integers
α = m2 +n2,β = mn,m 6= n, the quartic curve Eα,β defined by (11) is nonsingular and contains a rational point, for
example (0,±α), therefore Eα,β is birational equivalent to an elliptic curve defined by (12). The isomorphism is
given by

(X ′,Y ′) 7−→ (X ,Y )

X =
1
2
(
α

2X ′2 +αY ′2 +4αβX ′+α
2−8β

2) , Y =
αX ′

2
(
α

2X ′2 +αY ′2 +4αβX ′+α
2−8β

2) .
The inverse transformation is given by

X ′ =
Y

αX
, Y ′ =

1
α

(
2X− Y 2

X2 −4β
Y
X
− (α2−8β

2)

)
. (33)
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