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Abstract: The present study aims to create groups of symmetrical autonomous metro lines that are
united by common features. An integrated six-step methodology which proposes a new aggregated
approach for multi-criteria evaluation of fully autonomous metro systems was proposed. The first
step determines the criteria to assess the autonomous metro system. Eight criteria connected to
the safety, infrastructural and technological development of the autonomous metro system were
chosen. In the second step, 20 fully autonomous metro systems in European countries were selected
as alternatives. The determination of the criteria weights was performed in the third step based on
objective, subjective and combined approaches. For this purpose, the Shannon Entropy method and
BWM (Best Worst method) were applied. The fourth step presents the ranking of the autonomous
metro system by using multi-criteria methods. Three approaches were studied: distance-based, utility-
based and outranking approaches. The distance-based approach includes the TOPSIS (Technique
for Order of Preference by Similarity to Ideal Solution) and EDAS (Evaluation Based on Distance
from Average Solution) methods; the utility-based approach includes MOORA (Multi-Objective
Optimization on the Basis of Ratio Analysis) and COPRAS (COmplex PRoportional Assessment)
methods; the outranking approach includes the PROMETHEE (Preference Ranking Organization
METHod for Enrichment of Evaluations) method. The final ranking based on the new aggregative
approach was carried out in the fifth step. Thus, Laplace’s criterion was applied to the final ranking.
The Hurwitz’s criterion was used to verify the results. In the sixth step, the verification of the results
was performed by applying cluster analysis. In was found that Line 1 in Paris is the best. Line
14 in Paris and Line D in Lyon were ranking in the second and third position, respectively. The
autonomous metro in Brescia, Line C in Rome, and Line M2 in Lausanne were placed at the end of the
ranking. Finally, four clearly formed groups of autonomous metro were proposed. The novelty of this
study and its main advantage entails the elaboration of a new aggregated approach of multi-criteria
methods, evaluation of the autonomous metro systems’ performance and determination for the
groups of symmetrical autonomous lines in European countries.

Keywords: autonomous metro; TOPSIS; EDAS; MOORA; COPRAS; PROMETHEE; cluster analysis;
Shannon Entropy; BWM; Laplace’s criterion; Hurwitz’s criterion

1. Introduction

Symmetry is an important factor in various fields of engineering research. In transport
and logistics, the concept of symmetry could be considered in various fields of application,
such as in transport engineering; between the demand and the supply of transport services;
between transport prices and realized journeys and transported goods; between the de-
livery time and the transport route; between the frequency of service and the available
infrastructure capacity; between infrastructure and rolling stock; between energy efficiency
and environmental friendliness of transport.

This paper presents an application of the concept of symmetry in autonomous metro
transport. The concept of symmetry provides balance and helps all elements exist in
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harmony with each other. In addition, it helps to create conceptual models through the
tools of group theory. In this regard, the present study is aimed at creating groups of
symmetrical autonomous metro lines that are united by common features. It would help to
make decisions on the development of elements of the group in the likeness of another and
also on the transition from one group to another. The multi-criteria analysis is a powerful
tool for detecting and proving symmetry. A balance could be sought here between the
goal and the decision-making criteria; between the criteria and the ranking of the studied
objects; between the experts and their assessments. The concept of symmetry helps to
create patterns, using tools of group theory. In this sense, cluster analysis is also a means of
proving symmetry, by grouping many diverse objects by similarity on certain indicators
into groups.

The autonomous public transport increases the sustainability of transport mobility
in big cities. The implementation of autonomous metro systems allows operators to
increase the average speed of the trains, improve the frequency of service, optimize the
running time of trains, increase the safety and efficiency, reduce the human errors and risks,
increase the energy efficiency, mobility, capacity, availability and flexibility of transport. The
autonomous mobility enhances operations and safety in transport. It makes the journeys
more efficient, accurate and reliable. These systems enable operators to performs better
with less human and risk.

There are four levels of the grade of automation for urban rail transit systems according
to the responsibility of the staff, and of the system itself defined by the International Electro-
Technical Commission, [1], as follows: manual operation with automatic train protection
(GOA 1); semi-automatic train operation (GOA 2); driverless train operation (GOA 3);
unattended train operation (GOA 4). At the lowest level, the automation is through
automatic train protection with the driver. In the second level, the automated trains have
automatic train protection and automatic train operation. There are the drivers, too. The
third level also includes automated door closure. At the highest level of automation, the
trains are driverless and all operations are automated. On the one hand, controls are
installed on the lines and in stations, and on the other hand, each train has on-board
controls. The system is supervised and managed by a central control office from a distance.

There are many metro lines using an autonomous system. There are 64 fully automated
metro lines in 42 cities around the world; which are nearly a quarter of the world’s metro
systems [2].

This research examines the full autonomous metro systems in Europe (GOA 4). The
objects of this study are 20 fully automated metro train systems in 15 European cities
where thousands of passengers travel every day. They are located in France, Italy, Spain,
Hungary, Denmark, Switzerland and Germany. The largest number of fully automated
metro networks are located in France and Italy. France is one of the four countries in
which half of the world’s kilometer of fully automated metro lines are concentrated. In
France, they operate in five cities: Paris, Rennes, Toulouse, Lyon and Lille. In Italy, the
automated railway systems operate in four cities: Rome, Milan, Turin and Brescia. The fully
automated train systems are also in Barcelona in Spain, Budapest in Hungary, Copenhagen
in Denmark, Lausanne in Switzerland, and Nuremberg in Germany.

These autonomous metro lines could be analyzed according to different criteria sep-
arately, for example, by length, number of journeys and number of stations. Of interest
is the issue of the efficiency of the different metro lines, whether they could be grouped
based on a set of criteria. The hypothesis that has to be solved in this study is that the
autonomous metro systems’ performance depends on different criteria related to the safety,
infrastructure and technological development.

The methods of multi-criteria analysis and also of multidimensional statistical analysis,
as cluster analysis, are suitable methods for ranking metro systems. In the first case, the
studied alternatives are ranked, while in the second case, they are grouped into clusters.

The purpose of this research is to assess the fully autonomous metro systems and to
form groups of symmetric autonomous metro lines based on the multi-criteria methods and
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multi-measurable statistical method of cluster analysis by considering the criteria related
to the safety, infrastructure and technological development.

The research question for this study aims to address to the following issues:

• How evaluate the performance of autonomous metro lines;
• How to form groups of symmetrical autonomous metro lines;
• How to determine the impact of different criteria on the development of the au-

tonomous metro systems;
• How to reduce subjectivity in evaluating criteria;
• How the results of different multi-criteria methods could be combined to an aggregate

ranking system.

There is symmetry on the one hand, between the subjectivism of the decision maker
when assessing the criteria, and the influence of the criteria for evaluating the metro
systems, and on the other hand, between multi-criteria decision-making methods and the
ranking of the investigated system. The elaboration of a new integrated evaluation for
decision-making permits the symmetry principles to be considered.

The novelty of the proposed evaluation and its main contribution is presented by
determination of groups of symmetrical autonomous metro lines; integration of different
multi-criteria methods into an aggregative approach, which ranks the alternatives and
assesses the criteria. The output of the different multi-criteria methods serves as an input
to an aggregated system for decision making.

The paper is structured as follows. Section 2 provides a literature review. Section 3 ex-
plains the methodology. The experimentation and results are shown in Section 4. Section 5
presents the conclusions. The elaborated methodology is applied for autonomous metro
systems’ performance in the European Countries.

2. Literature review
2.1. Autonomous Metro Systems

The studies of different authors about the development and effectiveness of au-
tonomous metro systems were focused on the following areas:

• Analysis of the autonomous metro lines in different countries [2,3];
• Investigating the demand for an automated metro system [4,5];
• Study the benefits of driverless metro [6–14];
• Study of the factors influencing the development of autonomous metro

lines [2,3,11,12,15–17];
• Classifying metro systems according to the influence of predefined criteria [3,18–21].

A general overview of the world metro automation has been previously presented [2].
The infrastructure, capacity, signaling technology, rolling stock market, construction model,
platform track protection systems and growth for word regions were presented and ana-
lyzed. The statistics show that fully automated metro lines represent 7% of the world’s
metro infrastructure. It was found that four countries (South Korea, France, Singapore
and Malaysia) concentrate half of the world’s kilometers of fully automated metro lines.
Asia leads in metro automation with 50%, Europe has second position at 30%. In [3],
25 out of the 40 driverless metro lines existing worldwide were analyzed according to the
performance of infrastructure and rolling stock; the reliability and quality of the service;
and the innovation demonstrated by the operators. The performance was graded in five
levels in order to determine for each indicator the relative performance of each network. It
was found that according to the infrastructure and rolling stock, Line A in Toulouse, Line 2
and Line 1 in Lille have big performance (over 4) compared to the other autonomous metro
lines included in the research conducted. Four main categories of infrastructure and rolling
stock performance were proposed, as follows: efficient, beginner, agile and struggling. The
age of infrastructure and rolling stocks were also accounted for. The efficient category
includes infrastructure and rolling stock that are several years old; the beginner category
includes infrastructure and rolling stock that are generally recent and even new; for the
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agile category, the rolling stock is advanced age; for the struggling category, there is ageing
of the infrastructure. Paris Line 14 and Toulouse Line A were classified in the efficient
category, as were Lausanne Line M2 and Paris Line 1 in struggling one.

In [4], the authors conducted the acceptance of fully automated public transport. For
this purpose, an online study was carried out in Nuremberg, Germany. The questionnaire
included the investigation about the attitudes of the participants towards autonomous
public transport. A high willingness to use the autonomous public transport was found.
The autonomous transport according to the user decision-making mobility has previously
been commented on [5].

The challenges of implementing the autonomous metro system were discussed in [6].
The Tyne and Wear Metro were used as a case study. The London Underground Central Line
were analyzed. A discrete event-based simulation modelling was applied to investigate
the benefits of implementing driverless trains. The capacity utilization, dwell time, energy
consumption, journey time and higher performance rolling stock were compared for
both autonomous and conventional metro. A general overview about driverless train
operation was presented in [7]. The authors analyzed safety issues, train control technology,
communication systems, lower operation costs, and emergency situations which are the
challenges of autonomous metro systems. The history and future trend of these systems
were presented. The trends, technologies and challenges in a full automation level in rail
transportation were analyzed in [8]. The authors analyzed 69 studies about user perceptions
and outlook, design and technologies, train controls, applications, main advantages and
challenges from the deployment of autonomous trains. The development of autonomous
trains was studied in [9]. The risks and issues, necessary to be solved for the full deployment
of autonomous trains, were analyzed. The authors found that there is a lack of an overall
vision about the systematic and functional aspects of autonomous trains.

An assessment of the need for autonomous mobility was presented in [10]. A decision-
making framework was elaborated on. It consists of an analysis of traffic flows, the life-
cycle cost and environmental flows, multi-criteria decision-making framework assigning
weightage to cost, energy and emissions. The research was conducted for Abu Dhabi with
user surveys with the aim to improve current or future transport and mobility services.

The determination of the appropriate supplier of an autonomous train was studied
in [11]. The multi-criteria methods for decision making as WSA (Whole-of-System Approach
method), the Scoring method and the TOPSIS method were applied to make decisions.

The user acceptance of autonomous public transport was investigated in [12]. The
authors defined the factors affecting the use of autonomous transport, such as the per-
formance expectancy, effort expectancy, social influence, facilitating conditions, hedonic
motivation, price value, habit, trust and safety, perceived usefulness, perceived risk and
behavioral intention. The age and gender of the users, and frequency of public transport
were also studied. Both online and paper-based surveys were performed to collect the data.
The users from Istanbul took part in these interviews. It was found that the social influence,
performance expectancy, habit, and trust and safety constructs have a significant effect on
people to use autonomous transport.

In [13], the emergency situation in an Unattended Train Operation were studied. The
FAHP (Fuzzy analytic hierarchy process) and enhanced weighted ordered weighted averaging
operator was used as a hybrid decision maker. The criteria safety of passengers, emergency
response time, performance of emergency recovery was applied to evaluate emergency
alternatives. The Line Yan Fang in Beijing and Line 10 in Shanghai were investigated.

A cost-based analysis of autonomous mobility in regard to the economic competitive-
ness of public transport was conducted in [14]. A detailed cost estimation for current and
future transport modes was performed. The research covered line-based mass transit (pub-
lic transport), taxis and private cars. It was found that if the demand increases significantly,
the public transportation in its current form will remain economically competitive.

In [15], 29 metro systems were investigated with respect to the factors connected to
their performance. 28 factors for measuring the efficiency of metro systems were proposed,
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such as: number of stations, distances between stations, network length, operational speed,
ticket price, frequency, population density, safety. The factors cover the environmental,
technical, social and economic area, security and safety. Principal component analysis and
multiple regression analysis were applied as a tool to assess the impact of the factors to
improve the performance of the metro system. It was found that there is no one set of
specific standards that could be sufficient to evaluate metro system performance.

The quality of service in the metro system in India was studied in [16]. The paper-
based survey by 12 attributes was performed. The authors applied the TOPSIS (Technique
for Order of Preference by Similarity to Ideal Solution) method and importance satisfaction
analysis to prioritize the attributes. It was found that the metro fare, connection to the
metro and metro frequency are the most important in regard to the overall quality of travel
by metro.

The Barcelona metro network was studied in [17] based on statistical and mathematical
analysis with the aim to assess the metro stations. This network includes 11 metro lines, as
two of them are fully autonomous. The complex network analysis was performed. The
principal component analysis and cluster analysis was applied to classify the metro stations
of Barcelona. The results of this study are helpful in planning transport.

The state of 10 metro systems in big economics were studied in terms of investments
in [18]. The financial and ridership data were compared and analyzed. The metro systems
were ranked by using the following criteria separately: Operating Cash Flow, Operating
Cash Flow Margin, Daily Ridership, Usage and Metro Length per Resident. The overall
ranking was conformed based on an average of the three different ranks. It was found that
Asian countries have invested heavily in the development of the metros.

Forty-four smart cities were ranked in terms of the urban transport by applying
TOPSIS method of multi-criteria analysis in another study [19]. Seven criteria related to
the public transport system such as capacity, light, annual number of public transport
trips per capita, number of personal automobiles per capita, length of bicycle paths and
lanes, transport fatalities and commercial air connectivity were proposed to assess the
studied smart cities. The importance of criteria was determined by using the Entropy
weight method.

The level of metro developments of 35 cities in China was studied in [20] based on the
TOPSIS method. Twenty-five criteria for assessment of metro systems which indicated de-
mand and supply were established. A coupling coordination degree model was combined
with the Entropy weight method to determine the weights of criteria. As a result of this
study, the investigated cities were divided into six categories according to the sustainable
development of the metro system.

The graph theory and cluster analysis were applied to study metro system of 22 Euro-
pean capitals, [21]. Ten criteria connected to the state and the structure of a network were
used for decision making. The metro systems in European capitals were classified into
three groups: complex, simple and with only one line.

Based on the literature review, the following conclusions can be made:

• The main methods that were applied by authors in the studies above for analysis and
evaluation on the development of autonomous metro systems are as follows: multi-
criteria decision-making methods such as TOPSIS [11,16,19], WSA [11], FAHP [13];
principal component analysis and cluster analysis [15]; statistical analysis [2,3,10,17,18];
Entropy weight method [19,20]; cost-based analysis [12]; graph theory [21].

• There are research gaps in the literature about the assessment the autonomous metro
systems’ performance.

• The problem of establishing groups of symmetric autonomous metro lines has also
not been investigated. Solving this task is important from the point of view of es-
tablishing the efficiency of metro lines, and on this basis to make decisions about
their development.
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• According to the research presented above, the commercial speed, distance between
stations, length, headway and passenger safety are the main criteria to assess au-
tonomous metro lines [3,11,12,15–17].

• The multi-criteria decision-making methods which permit to assess the criteria and
alternatives could be used as an important means of evaluating the autonomous metro
systems and establish their symmetry.

2.2. Multi-Criteria Decision-Making Approach

The multi-criteria decision analysis is a powerful tool to assess many criteria and
alternatives. Different multi-criteria methods could be applied for decision making. In
general, it can be summarized that there are pair-wise comparison methods, for example
AHP (Analytic hierarchy process) [22], BWM (Best Worst method) [23,24], FUCOM (Full
Consistency method) [25]; distance-based methods, for example TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution) [26–28], EDAS (Evaluation Based on Dis-
tance from Average Solution) [29], VIKOR (VIseKriterijumska Optimizacija I Kompromisno
Resenje) [30]; utility-based methods, for example WASPAS (Weighted aggregated sum
product assessment) [31], COPRAS (COmplex PRoportional Assessment) [32], MOORA
(Multi-Objective Optimization Method by Ratio Analysis) [33], MULTIMOORA (Multi-
Objective Optimization on the Basis of a Ratio Analysis plus the full MULTIplicative
for) [34], MARCOS (Measurement Alternatives and Ranking according to the COmpromise
Solution) [35]; outranking methods, for example PROMETHEE (Preference Ranking Orga-
nization METHod for Enrichment of Evaluations) [36,37], ELECTRE (ELimination Et Choix
Traduisant la REalité) [38]; methods based on linear programming, for example SIMUS
(sequential interactive model for urban systems method) [39,40]; and integration of two or
more methods. These methods differ in the way the alternatives are ranked. The choice of
the multi-criteria method depends on the problem to be solved, the research objectives, and
also the preferences of the researcher. A part of multi-criteria methods can be applied only
to determine the weights of the criteria; others permit ranking the alternatives, by setting
the weights of the criteria; and a third serve for both criteria and alternatives assessments.

In recent years, quite a few new MCDM (multi-criteria decision-making) methods
have been developed. However, the TOPSIS and PROMETHEE methods have gained quite
a lot of popularity. The TOPSIS method was developed in 1981 [26–28] and PROMETHEE
in 1984 [36,37], and they have been applied in various fields of research. TOPSIS is a
distance-based multi-criteria method which is based on the distance to the best alternative.
PROMETHEE is an outranking method which uses the preference function for each criteria
and net outranking flows to determine the ranking of alternatives. An overview of appli-
cations of these methods was presented in [41,42]. A total of 105 reviewed papers which
applied the TOPSIS method were presented in [41]. A comprehensive literature review
on applications of the PROMETHEE method was presented in [42]. A total of 217 papers
from 100 journals were analyzed about the methodology and utilization of the ROMETHEE
method and promoted the future of research by choosing those methods. The multi-criteria
decision-making methods developed after 2000, including MOORA (Multi-Objective Op-
timization Method by Ratio Analysis) in 2006 [33], COPRAS (COmplex PRoportional
Assessment) in 2013 [32] and EDAS (Evaluation Based on Distance from Average Solution)
in 2015 [29], which have also found widespread use among researchers to solve various
real-life problems in the various areas of science. Various applications of these methods in
the research of scientists around the world were analyzed in [43–45]. A total of 52 EDAS
method applications were summarized in [43]. An overview of applications of MOORA
and its improved version MULTIMOORA (Multi-Objective Optimization on the Basis of a
Ratio Analysis plus the full MULTIplicative form) for multi-criteria decision-making were
conducted in [44]. A survey on COPRAS applications in 59 papers were presented in [45].
It could be concluded that TOPSIS, PROMETHEE, EDAS, COPRAS and MOORA methods
are frequently used in decision making.
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There is no general consensus as to which MCDM method gives the best solution.
Some authors used and compared different multi-criteria methods in their studies. The
results by using different methods could be close, but potentially conflicting ranking could
also be carried out. Other researchers have devoted their efforts to obtain an aggregated
solution to unify the results of the different methods used. In [46], the authors aimed to
propose an approach to resolve disagreements among MCDM methods. They calculated the
weight for each multi-criteria method used for decision making based on the Spearman’s
correlation coefficient. The weights were normalized and the rankings were used as inputs
to produce the secondary rankings. Five MCDM methods, including TOPSIS, ELECTRE III,
GRA (Grey relational analysis), VIKOR, and PROMETHEE II were used with purpose to
experiment the proposed classification technique. In [47] the individual weights of the multi-
criteria methods were determined based on optimization model. Four MCDM methods,
including TOPSIS, VIKOR, PROMETHEE and WSM, were implemented to illustrate the
proposed new approach. The experimental studies covered four public-domain multiclass
datasets from four different applications. In [48], an integration technique that includes an
average rating method, Borda technique and Copeland’s method were used. Finally, the
Poset method was applied to combine the results given by application of the mentioned
techniques. Four MCDM methods including SAW (Simple Additive Weighting), TOPSIS,
VIKOR and Linear assignment were applied. The integration technique was applied to
evaluate Tehran’s 22 districts. A new approach for aggregative solution was proposed
based on the half-quadratic theory, which were used to compute the final ranking [49].
Three MCDM methods (TOPSIS, VIKOR and PROMETHEE) were applied to illustrate the
proposed aggregative ranking method. The weights of the methods were determined using
the minimizer functions based on the half-quadratic theory. The final aggregated ranking
was performed in the form of the weighted sum of the MCDM rankings. The proposed
framework was applied to evaluate ontology alignment systems. A rank classification
algorithm was elaborated in [50]. The authors used four MCDM methods: DEA (Data
envelopment analysis), TOPSIS, ELECTRE and PROMETHEE. The authors proposed a
consensus index and a trust level for the final aggregated ranking. The elaborated approach
was applied to classify algorithms for software defect detection.

It could be concluded that the authors used different approaches to aggregate the
results of application of different multi-criteria methods. The multi-criteria methods that
apply different decision-making approaches were usually chosen. Most authors applied
PROMETHEE and TOPSIS methods [46–50] as a basis for aggregation. These methods use
outranking and distance-based approaches, respectively. The aggregation formed on the
utility-based multi-criteria methods was not presented. It could be summarized that the
aggregation of multi-criteria methods permits the increase in the accuracy of the decision
based on the advantages of different multi-criteria methods used.

It could be concluded that there are research gaps in the literature about the aggrega-
tion of multi-criteria methods. There is not enough research in this area. The principle by
which to choose multi-criteria method for aggregation is not specified. The authors used
different techniques to combine the rankings. In most cases, the aggregation is based on
the determination for the weights of the methods.

In this study, based on the literature review, three multi-criteria approaches were
studied: distance-based, utility-based and outranking approaches. The distance-based
approach includes TOPSIS and EDAS methods the utility-based approach includes MOORA
and COPRAS methods and the outranking approaches includes PROMETHEE method.
All these methods were selected as they are among the most popular for making decisions.
They were applied to ranking autonomous metro lines in European countries. These
approaches were perceived as strategies and their scores as the benefits. So, the results of
the application of multi-criteria approaches were used as an input to the Laplace’s criterion
for decision making to determine the final ranking. The Hurwitz’s criterion for decision
making was used to verify the results. So, a new aggregated system for decision making
was formed. The results given by the new aggregative approach were verified by cluster
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analysis. The cluster analysis also permits the establishment of the groups of symmetric
autonomous metro lines.

The differences between this study and other studies in related areas lies in the problem
solving and decision-making approach. The novelty of this study and its main advantages
are as follows:

• The evaluation of the autonomous metro systems’ performance and determination of
the groups of symmetrical autonomous lines in European countries;

• The integration of the distance-based, utility-based and outranking multi-criteria
approaches in an aggregative approach for decision making;

• The combining an objective and subjective approach to determine the importance of
the decision criteria.

3. Materials and Methods

The methodology of the research includes the following steps:
Step 1: Determination of the criteria to assess the autonomous metro system;
Step 2: Determination of the alternatives–autonomous metro in European countries.

Twenty autonomous metro systems were included in this research;
Step 3: Determination of the criteria weights. For this purpose, the following ap-

proaches were proposed: objective, subjective and combined approaches. The objective
approach uses the Shannon Entropy method to calculate the criteria weights. This method
is based on the information from the criteria data and does not apply expert judgment. The
subjective approach uses the experts’ assessments by predetermined scale and the results
are used to determine the weights. This study applies the BWM multi-criteria method for
subjective approach. Its advantage is that the expert evaluations are applied in a linear
optimization model for determining the weights. Both the Entropy method and BWM
method were applied in a combined approach.

Step 4: Ranking the autonomous metro system by using multi-criteria methods.
Three multi-criteria decision-making approaches for ranking the alternatives were studied:
distance-based, utility-based and outranking approaches. The first approaches include
TOPSIS and EDAS methods, the second approach uses MOORA and COPRAS methods,
the third approach apply PROMETHEE methods. The results of criteria weights are applied
in this step. The application of different ranking methods makes it possible to compare and
verify the results. Spearman Rank correlation coefficient is applied to compare the ranking
by different methods.

Step 5: Determination the final ranking based on the new aggregative approach. The
ranking is carried out based on the three multi-criteria approaches taken together, based on
a new aggregative technique proposed in this study, which applied the Laplace’s criterion
and the Hurwitz’s criterion for decision making.

Step 6: Verification the results by applying cluster analysis. Two clustering approaches
are investigated: hierarchical cluster analysis and K-means. The results were compared
with ranking by using multi-criteria decision-making approaches.

Figure 1 represents the scheme of methodology.
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3.1. Step 1: Determination the Criteria to Assess the Autonomous Metro System

In the first step, the criteria for assessment of the autonomous metro system were
proposed. Based on the research presented in the literature review, it was found that the
criteria: commercial speed, distance between stations, length, headway, passenger safety
and daily ridership are important to assess metro lines [3,11,12,15–17]. Considering this,
the following criteria were proposed:

• C1–Safety Satisfaction Rate. The safety of a metro line depends on the surrounding
environment. The values of this criterion are between 0 and 1 and were determined
in [3]. This criterion takes also into account the security of the transport.

• C2–Average headways, min. This criterion indicates the level of the passenger’s service.
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• C3–Length of the autonomous metro lines, km. This criterion shows the level of
infrastructure development of autonomous metro lines.

• C4–Number of stations. This criterion shows the level of transport accessibility.
• C5–Average distance between stations, km. This criterion is relevant to the commercial

speed and the service of the deferent regions in the city.
• C6–Average commercial speed, km/h. Commercial speed depends on the density of

sections on a given line.
• C7–Number of passengers per day, pass./day. It is a measure of transport efficiency.
• C8–Intensity of day trips, pass./km. This indicator shows the number of passengers

per day for a kilometer of the automated metro lines.

These criteria assess the safety, infrastructural and technological development of the
autonomous metro system.

3.2. Step 2: Determination of the Alternatives

In this study, the full autonomous metro systems operating in France, Italy, Spain,
Hungary, Denmark, Switzerland and Germany were examined. The alternatives include
20 fully automated metro train systems in 15 European cities, as follows: A1–Copenhagen,
Line 1; A2–Copenhagen, Line 2; A3–Barcelona, Line 9; A4–Barcelona, Line 10; A5–Turin,
M0; A6–Rome, Line C; A7–Milan, Line 5; A8–Brescia; A9–Paris, Line 1; A10–Paris, Line
14; A11- Rennes, Line A; A12–Toulouse, Line A; A13–Toulouse, Line B; A14–Lile, Line A;
A15–Lile, Line B; A16–Lyon, Line D; A17- Nuremberg, Line U2; A18–Nuremberg, Line U3;
A19–Budapest, Line 4; A20–Lausanne, Line M2.

3.3. Step 3: Determination of the Weights of the Criteria

First, the decision matrix
(

xij
)

mxn was formed which contains the data of the criteria
for the studied alternatives, i = 1, . . . , n is the number of criteria, j = 1, . . . m is the number
of alternatives.

Two different ways, as an objective and a subjective approach, were used to determine
the weights of the criteria. The objective weighting is based on the Shannon Entropy
method according to the information provided by the data. The BWM is applied as a
subjective method. It uses the opinion of experts who know the research problem to
calculate the weights of the criteria. Finally, the combined approach based on these two
methods was applied to calculate the weights.

3.3.1. Shannon Entropy Method

This method uses information entropy for each criterion Cj to determine the weights.
The information entropy is determined as follows [51]:

Ej = −
∑n

i=1 pijlnpij

lnn
, (1)

0 ≤ Ej ≤ 1, (2)

where: pij is the normalized values of decision matrix
(
xij
)

nxm, i = 1, . . . , n number of
alternatives, j = 1, . . . m is the number of criteria.

The normalized values pij are calculated as follows:

pij =
xij

∑n
i=1 xij

(3)

The values of the parameter Dj are determined as follows:

Dj = 1− Ej (4)
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The parameter Dj is used to determine the weights, as follows:

wE
j =

Dj

∑n
i=1 Dj

(5)

The following conditions are valid:

0 ≤ wE
j ≤ 1, ∑m

j=1 wE
j = 1 (6)

3.3.2. BWM Method

The methodology of BWM (Best Worst method) is based on a pairwise comparison of
the decision criteria, [23,24]. The decision maker selects two criteria: the best criterion and
the worst criterion. The best criterion is the most important according to the opinion of the
decision maker. The worst criterion is the least important. The experts use a predefined
scale of pairwise comparison, including the numbers from 1 to 9 to determine the preference
of the best criterion over all the other criteria and the preference of each of the other criteria
over the worst criterion. The scores are, as follows [23,24]: equally important (1); equal to
moderately more important (2); moderately more important (3); moderately to strongly
important (4); strongly more important (5); strongly to very strongly important (6); very
strongly more important (7); very strongly to extremely more important (8); extremely
more important (9). The score of 1 shows some importance. The value 9 presents the
extreme importance.

Two vectors of pairwise comparisons are used as inputs for a linear optimization
problem, which give the optimal solution for the weights of the criteria.

The Best-to-Others vector is as follows:

AB = (aB1, aB2, . . . , aBn) (7)

where aBj–preference of the best criterion B over criterion j. In this case, aBB=1.
The Others-to-Worst vector is as follow:

AW = (a1W , a2W , . . . , anW)T (8)

where ajW–preference of the criterion j over the worst criterion W. In this case, aWW=1.
The optimization minimax model is formulated to determine the weights. This mathe-

matical model transfers it to linear optimization model as follows:

minξL (9)∣∣wB − aBj.wj
∣∣ ≤ ξL, for all j (10)∣∣wj − ajW .wW
∣∣ ≤ ξL, for all j (11)

n

∑
j=1

wj = 1 (12)

wj ≥ 0, for all j = 1, . . . , n (13)

where: ξL is the consistency ratio.
The solution of this linear model is the optimal weights

(
w∗1 , w∗2 , . . . , w∗n

)
and optimal

value ξ∗. The value ξ∗ is the optimal consistency ratio of the system. Best consistency has
the solution with value of ξ∗ closer to zero.

3.3.3. Weights of the Criteria

Both the Schanon Entropy method [51] and BWM method [23,24] were applied in a
combined approach. This approach permits the consideration of both information and
expert assessment. Thus, it reduces the subjectivity in decision-making and permits to do a
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sensitivity analysis of results. A similar approach was used for an integrated procedure
based on the CRITIC (CRiteria Importance Through Inter-criteria Correlation) and WASPAS
methods in [52]. So, the weights of the criteria are determined as follows, [52]:

wj = α.wE
j + (1− α).wBWM

j (14)

0 ≤ α ≤ 1 (15)

where: wj are the weights of criteria, α is a parameter representing the weights of the
utilized method.

3.4. Step 4: Ranking the Autonomous Metro System

In this step, according to the methodology, three multi-criteria decision-making ap-
proaches were applied for ranking the alternatives: distance based, utility-based and
outranking approaches.

3.4.1. Distance Based Approach

The first approach includes two desistance based multi-criteria methods: TOPSIS and
EDAS, [26–29].

The main concept of the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) is that the best alternative should have the shortest geometric distance
from the positive ideal solution and farthest geometric distance from the negative ideal
solution [26–28]. First, the normalized decision matrix (rij)nxm is determined.

rij =
xij√

∑n
i=1 x2

ij

, i = 1, . . . , n; j = 1, . . . , m (16)

The weighted normalized matrix (vij)nxm are calculated, as follows

vij = rij.wj;
m

∑
j=1

wj = 1 (17)

where: i = 1, . . . , n is the number of alternatives; j = 1, . . . , m is the number of criteria, wj
is the weight of criterion j.

The ideal best v+j and ideal worst v−j value for each criterion j are:

v+j = min
i

vij for non-benefits criteria; v+j = max
i

vij for benefits criteria

v−j = max
i

vij for non-benefits criteria; v−j = min
i

vij for benefits criteria

The ranking of the alternatives is based on the Performance Score Ci. This score
presents the relative closeness of each alternative i with reference to negative ideal measure
D−i as follow:

Ci =
D−i

D+
i + D−i

; 0 ≤ Ci ≤ 1 (18)

where: D+
i is the Euclidean distance from the ideal best solution; D−i is the Euclidean

distance from the ideal worst solution

D+
i =

√
∑m

j=1

(
vij − v+j

)2
; D−i =

√
∑m

j=1

(
vij − v−j

)2
(19)

The main concept of the EDAS method is that the best alternative should have the
higher distance from the nadir solution and lowest distance from the ideal solution [29].
First, the average solution AVj according to all criteria is calculated:

AVj =
∑n

i=1 xij

n
(20)
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The positive
(

PDAij
)

and the negative distance
(

NDAij
)

from average matrices is
determined, as follows:

PDAij =
max

(
0,
(
xij − AVj

))
AVj

, or; PDAij =
max

(
0,
(

AVj − xij
))

AVj
, (21)

NDAij =
max

(
0,
(

AVj − xij
))

AVj
, for NDAij =

max
(
0,
(
xij − AVj

))
AVj

, (22)

The first Equations in (20) and (22) are for beneficial criteria, the second equations are
for other criteria.

The weighted sum of positive (SPi) and negative (SNi) distance:

SPi = ∑m
j=1 wjPDAij; SNi = ∑m

j=1 wjNDAij, (23)

The ranking of the alternatives is based on the appraisal score ASi:

ASi =
1
2
(NSPi + NSNI); 0 ≤ ASi ≤ 1 (24)

where: NSPi, NSNi are the normalization of the weighted sum of positive and negative
distance respectively.

NSPi =
SPi

maxi(SPi)
; NSNi = 1− SNi

maxi(SPi)
(25)

The best alternative based on the appraisal score has the highest assessment value.

3.4.2. Utility-Based Approach

The second approach uses MOORA and COPRAS methods [32,33].
The Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA) method

uses both beneficial and non-beneficial criteria for ranking the alternatives. This method is
based on ratio system, [33]. The ratio represented the normalized performances x∗ij of i-th
alternative on j-th criterion.

x∗ij =
xij√

∑n
i=1 x2

ij

, i = 1, . . . , n; j = 1, . . . , m; 0 ≤ x∗ij ≤ 1 (26)

The normalized performances in the case of maximation (for beneficial criteria) and
in the case of minimization (for non-beneficial criteria) is calculated. The criteria weights
could be accounted for by using Equation (14). The assessment criterion for ranking yi
based on the ratio system is determined as follows:

yi = ∑g
j=1 x∗ij −∑m

j=g+1 x∗ij (27)

where: g is the number of criteria to be maximized, (n− g) is the number of criteria to
be minimized.

The yi value can be positive or negative.
The ranking is according to the decreasing values of the assessment criterion. The

optimal alternative based on the ratio system has the highest assessment value.
The COPRAS method is based on evaluating the influence of maximizing and minimiz-

ing criteria on ranking the alternatives. The best alternative is based on both the ideal and
the anti-ideal solutions [32]. First, the normalization of the decision matrix is performed,
as follows:

xij =
xij

∑n
i=1 xij

(28)



Symmetry 2022, 14, 2025 14 of 34

The weighted normalized matrix (x̂ij)nxm is formed by multiplying the elements of
the normalized matrix by the weight to the corresponding criterion.

The ranking is based on the relative weights of each alternative Qi.

Qi = Pi +
∑n

i=1 Ri

Ri ∑n
i=1

1
Ri

(29)

where: Pi is the maximizing index; Ri is the minimizing index.

Pi = ∑k
i=1 x̂ij; Ri = ∑n

i=k+1 x̂ij (30)

where: k is the number of criteria which is to be maximized, (n− k) is the number of criteria
to be minimized.

The ranking is according to the decreasing values of relative weights. The best alterna-
tive is based on the highest the relative weights.

3.4.3. Outranking Based Approach

The preference ranking organization method for enrichment evaluation (PROMETHEE)
method is the outranking method in multi-criteria analysis [36,37]: the concept of this
method is based on the outranking flows. They can be positives and negatives. The positive
outranking flow ϕ+(ai) of alternative ai expresses how much each alternative is outranking
all the others. The negative outranking flow ϕ−(ai) of alternative ai expresses how much
each alternative is outranked by all the others. The value of the preference degree of
all criteria for each pair of possible decisions is determined. The alternatives are ranked
according to the net outranking flows ϕ(ai) of alternative ai, which are determined as a
difference between ϕ+(ai) and ϕ−(ai). The ranking is according to the decreasing values
of net outranking flows.

The following condition is valid:

ϕ(ai) ∈ [−1; 1]; ∑n
i=1 ϕ(ai) = 0 (31)

The type of the preference function is specified for each criterion by the decision
maker. There are six types of preference functions: usual criterion, quasi-criterion, V-shape
criterion, level criterion, linear criterion and Gaussian criterion.

3.4.4. Comparison of the Results

To determine the consistency of the results obtained by using the multi-criteria
decision-making methods, the Spearman Rank correlation coefficient was proposed [53].

rs = 1−
6. ∑n

i=1 d2
i

n(n2 − 1)
(32)

where rs is the Spearman Rank correlation coefficient; di is the distance between the ranks
for each xi, yi data pairs of ranking methods, n is the number of elements in each data
series (i.e., the number of studied autonomous metro systems).

The Spearman Rank correlation coefficient is appropriate to apply when the data need
to be ranked. Therefore, this coefficient was used in this study. The value of Spearman Rank
correlation coefficient is between −1 and 1, where the value of −1 indicate the stronger
perfect relationship between two sets of rank, and the value of −1 shows a strong negative
correlation between the methods; 0 is no correlation.

3.5. Step 5: Determination the Final Ranking Based on the New Aggregative Approach

The ranking was carried out based on the three multi-criteria approaches which in-
clude five MCDM methods taken together, based on a new aggregative technique proposed
in this study, which applied the Laplace’s criterion Li and the Hurwitz’s criterion Hi for
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decision making. These criteria serve to choose one strategy over others, when facing a
decision under uncertainty [53].

The Laplace criterion considered all conditions as equally likely [53]. The best alter-
native is the one with the maximum average payoff. The Hurwitz’s criterion uses the
maximum and the minimum value of the payoff of the alternatives, and also a coefficient
to compute the value for each alternative [53]. The alternative with the highest value of
criterion is the best.

The new approach elaborated on in this study considers the estimates obtained by the
different methods as benefits of the different conditions for the individual alternatives.

Thus, a payoff matrix MCnxs (n = 1, . . . , n is the number of alternatives; s = 1, . . . , S
is the number of multi-criteria decision-making methods used) is formed, in which the
columns are the scores obtained by the applied multi-criteria methods, and the rows are
the investigated autonomous metro system. So, to use the scores, they must be normalized.
A normalized payoff matrix NMCnxs is formed by applying the average sum method. The
elements of normalized payoff matrix NMCis are calculated as follows:

NMCis =
MCis

∑n
i=1 MCis

(33)

The Laplace criterion in point view the new aggregated approach is determined,
as follows:

Li =
∑S

s=1 NMCis

S
(34)

where: s = 1, . . . , S is the number of multi-criteria decision-making methods used; NMCis
are normalized values of the scores calculated by different methods.

With the purpose to perform normalization of the scores obtained by multi-criteria
methods, it is necessary that their values be positive. Therefore, for methods such as
PROMETHEE in which there are positive and negative values of the net outranking flows,
transformation is carried out, as follows:

ϕ∗(ai) = β + ϕ(ai) (35)

where: ϕ∗(ai) are the corrected values of the net outranking flows; β is correction parameter.
The value of the correction parameter is determined according to the maximum

absolute value of net outranking flows and is the larger integer.

β = integer
∣∣∣∣max

i
ϕ(ai)

∣∣∣∣ (36)

For example, if the minimum negative value of net outranking flows is ϕ(ai) = −0.9,∣∣∣∣max
i

ϕ(ai)

∣∣∣∣ = 0.9, then according to Equation (36), β = 1. If the minimum negative value

of net outranking flows is ϕ(ai) = −1.9,
∣∣∣∣max

i
ϕ(ai)

∣∣∣∣ = 1.9, then β = 2.

The normalization is conducted by using these corrected values.
The best alternative is determined based on the maximum value of Laplace’s criterion,

as the normalized values are considered as benefits. The ranking is in descending order of
the criterion.

The Hurwitz’s criterion in the point of view the new aggregated approach is deter-
mined, as follows:

Hi =∝ .max
s

NMCis + (1− ∝).min
s

NMCis (37)

where ∝ is coefficient enabling to make a decision in the different situations. The value of ∝
is between 0 and 1. Generally, ∝= 0.5.
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The alternative of having a maximum value of Hurwitz’s criterion was selected as
the best. The ranking is in descending order of the criterion. The results determined by
Hurwitz’s criterion verify these calculated by using Laplace’s criterion.

3.6. Step 6: Verification the Results by Applying Cluster Analysis

The fifth step of the methodology includes a validation of results of multi-criteria
decision-making approaches by applying the multi-measurable statistical method cluster
analysis. The cluster analysis method permits a classification to be made on the examined
alternatives into groups called clusters, [54,55]. In this study, two approaches of cluster
analysis have been investigated: hierarchal cluster analysis and K-means clustering method.
These approaches allow for the results to be verified. The hierarchal cluster analysis
represents the clusters and the distance between them in the form of a dendrogram. The
average linkage within groups method is preferred as an agglomerative method to define
the clusters. The average of the distances between all observations of pairs of clusters is
minimized by using this method. The Euclidean distance and Squared Euclidean distance
as a metric for distance, are proposed as these are the most commonly used distances
between two points. The K-means cluster analysis is a non-hierarchical method. The
number of clusters is specified in advance based of the results received by the hierarchal
cluster analysis. The K-means cluster analysis was applied to verify the results obtained
by hierarchal cluster analysis. Both clustering methods verify the results of the ranking
autonomous metro systems with the application of multi-criteria analysis.

4. Results and Discussion

This research was conducted under the following limitations:

• The average number of daily journeys was taken into account in this study;
• The changes in peak periods, as well as daily and monthly irregularity of trips, were

not taken into account;
• The fully autonomous metro lines between airport terminals were not considered;
• The planned extensions of the existing autonomous lines were not taken into account;
• The manufacturer of the rolling stock and the type of the rolling stock according to the

wheel are not taken into account;
• The type of signalling is not taken into account.

4.1. Determination of the Weights of Criteria

The methodology is used for ranking 20 autonomous metro system in Europe. Table 1
represents the initial decision matrix with the values of criteria for the investigated metros.
The data were collected from [3]. The last row of this table shows the type of optimization
for the criteria–minimization or maximization.

The level of security depends on the surrounding environment. Line 1 and Line 2
in Copenhagen have the highest level of security. The autonomous metro lines in Paris,
Barcelona and Toulouse have the lowest level of security. The safety performance of a
metro line depends on the safety of the city and the regions. The length of the line and
the number of stations determine the average distance between stations. Barcelona has
the longest network of autonomous metro lines. It could be seen according to the data
represented in Table 1 that the driverless metro lines have a short distance between stations.
This is due to the smaller surface areas. Line M2 in Lausanne is characterized with the least
distance between stations. The average commercial speed is different for the investigated
metro lines. Some lines operated at low commercial speed such as Turin and Lausanne.
The commercial speed is inversely proportional to the density of the stations.
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Table 1. Initial decision matrix.

Autonomous Metro C1 C2 C3 C4 C5 C6 C7 C8

A1 Copenhagen, Line 1 0.95 4 14.3 15 0.95 40 108,000 7552
A2 Copenhagen, Line 2 0.95 4 14.2 16 0.88 40 108,000 7606
A3 Barcelona, Line 9 0.7 3 30 24 1.25 29 165,000 5500
A4 Barcelona, Line 10 0.7 3 20 20 1 29 165,000 8250
A5 Turin, M0 0.78 2 13.2 23 0.62 25.5 155,000 10,265
A6 Rome, Line C 0.8 3 19.1 22 0.86 30 62,000 3246
A7 Milan, Line 5 0.6 3 13 19 0.67 30 130,000 10,000
A8 Brescia 0.8 4 13.7 17 0.8 30 44,100 3219
A9 Paris, Line 1 0.72 2 16.6 25 0.66 30 497,000 29,940
A10 Paris, Line 14 0.72 2 9.2 9 1.02 40 229,000 24,891
A11 Rennes, Line A 0.8 1.5 9.4 15 0.62 33 130,000 13,830
A12 Toulouse, Line A 0.68 1.5 12.5 18 0.69 34 140,500 11,240
A13 Toulouse, Line B 0.68 2 15.7 20 0.79 34 140,500 8949
A14 Lile, Line A 0.78 1.5 13.5 18 0.75 34 135,000 10,000
A15 Lile, Line B 0.78 2 32 43 0.74 34 135,000 4219
A16 Lyon, Line D 0.75 2 12.5 15 0.83 30 220,000 17,600
A17 Nuremberg, Line U2 0.85 3 13.1 16 0.81 34.4 140,000 10,687
A18 Nuremberg, Line U3 0.85 3 8.1 13 0.62 26 120,000 14,815
A19 Budapest, Line 4 0.85 3 7.4 10 0.74 30 160,000 21,622
A20 Lausanne, Line M2 0.83 3 5.9 14 0.42 18 50,000 8475

Type max min max max min max max max

C1–security; C2–interval, min; C3–length, km; C4–number of stations; C5–average distance, km; C6–average
commercial speed, km/h; C7–average number of passengers per day; C8–intensity of day trips, pass./km.

Table 2 shows the results of the Shannon Entropy method. Figure 2 illustrates the
values of the weights. It can be seen that the intensity of day trips (C8) and the number of
passengers per day (C7) have the greatest impact on the investigated systems. The criteria
security (C1), average distance (C5) and average speed (C6) have a small influence.

Table 2. Parameters of Shannon Entropy method.

Parameter C1 C2 C3 C4 C5 C6 C7 C8

Ei 0.998 0.984 0.971 0.979 0.992 0.995 0.952 0.945
Di 0.002 0.016 0.029 0.021 0.008 0.005 0.048 0.055
wi 0.011 0.086 0.160 0.112 0.045 0.025 0.261 0.299

Figure 2. Weights of criteria by Shannon Entropy method.

The group of eight experts who are specialists in academia (three experts) and special-
ists in railway transport administration (five experts) with long experience, gave an overall
rating using the scale of the BWM method. The criterion intensity of day trips (C8) was
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determined by experts as the best and the criterion average distance (C5), respectively, as
the worst. Table 3 represents the pairwise comparison vectors for the best criterion, and
for the worst criterion. The optimal solution of the linear optimization model given by
Equations (9)–(13) were solved by Solver (MS Excel). The value of the consistency ξ∗ is
closed to zero, which indicates a high degree of consistency.

Table 3. Pairwise comparison vectors.

Criteria Best/Worst Criteria C1 C2 C3 C4 C5 C6 C7 C8

Best to Others Best: Pass./day (C7) 2 4 4 3 4 2 1 1

Others to the Worst Worst: Average distance, km (C5) 4 3 1 2 1 4 4 4

ξ* = 0.056.

Figure 3 illustrates the weights of criteria given by the BWM method. It can be seen
that the intensity of day trips (C8) and the number of passengers per day (C7) have the
greatest impact on the investigated systems. The results shows that the criterion security
(C1) also has a great influence on the efficiency of autonomous metro systems. The results
according to the criteria with the great impact are similar to these calculated by the Shannon
Entropy method. The criterion length of the autonomous metro lines has the least influence.
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The final weights of criteria were determined by Equation (14). The influence of the
chance of the parameter α on both Shannon Entropy and BWM method was examined.
Figure 4 shows a comparison of the weights according to the variation in the parameter
α. Value α = 0 means the results of the BWM method; value α = 1 means the results of
the Shannon Entropy method. The average value of both methods indicates α = 0.5 and it
is illustrated in Figure 4 by columns. It can be seen that the criteria security (C1), length
of the autonomous metro lines (C3), average speed (C6) and intensity of day trips (C8)
have a large variation depending on the parameter α. The variation in the criteria interval
between trains (C2) and number of stations (C4) is small. This is due to the fact that by
both methods, their values are close. The greatest impact according to the average method
is found to be the criteria and intensity of day trips (C8) and average number of passengers
per day (C7).
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4.2. Ranking the Autonomous Metro System

In this step, according to the methodology, three multi-criteria approaches were
applied for ranking the autonomous metro systems. The ranking of autonomous metro
for each of the multi-criteria approaches is performed according to the weights given by
Shannon entropy method, BWM method and average weights by both methods. Figure 5
illustrates the results of ranking by TOPSIS and EDAS methods.
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Table A1 in Appendix A represents the results by TOPSIS method. It can be seen that
the ranking determined by different weighting approach is similar. The first position is for
Line 1 of the Paris autonomous metro system, and the second one is for Line 14, also in the
Paris autonomous metro system. Line D in the Lion metro is in the third position. There is
a significant difference between the position of Line 1 in Paris, and the other alternatives.

Table A2 in the Appendix A shows the results of the EDAS method. In can be seen
that the results are similar to those calculated by using the TOPSIS method. This is due to
the fact that both methods use distance as a measure to rank the alternatives. The ranking
by using different weighting approaches is almost the same.

Table A3 in the Appendix A shows the results by using the MOORA method. The
best alternative is again Line 1 of the Paris autonomous metro system, Line 14 is in the
second position. There are some differences for the third position. Line 4 in Budapest is
ranked third according to the BWM method and the average weighting approaches. There
are some differences in the ranking between the weighting approaches used.

Table A4 in Appendix A represents the results by applying the COPRAS method. It
can be seen that the best alternative according to the COPRAS method is again Line 1 in
the Paris metro; Line 14 in the Paris metro is in the second position; the third position is
for Line D in Lion. It can be seen that there are similar results according to the weighting
approaches used.

Figure 6 illustrates the results of ranking by both MOORA and COPRAS methods.
There is a big distance between the first and second position in ranking. The distance
between the other positions in ranking are small. The results show that the ranking by
utility approach is close to those performed by using a distance-based approach.
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Table A5 in Appendix A and Figure 7 presents the results of net outranking flows
by PROMETHEE method. The linear type of the preference function is set for each of the
criteria. The results show that the best autonomous metro is Line 1 in Paris. The second
and the third positions are for Line 14 in Paris and Line D in Lion. The results given by
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different weighting approaches are close. There is displacement between second and third
place according to the results obtained by distance-based and utility-based multi-criteria
methods. The first position of Line 1 in Paris is clearly expressed.

Symmetry 2022, 14, x FOR PEER REVIEW 21 of 33 
 

 

Table A5 in Appendix A and Figure 7 presents the results of net outranking flows by 

PROMETHEE method. The linear type of the preference function is set for each of the 

criteria. The results show that the best autonomous metro is Line 1 in Paris. The second 

and the third positions are for Line 14 in Paris and Line D in Lion. The results given by 

different weighting approaches are close. There is displacement between second and third 

place according to the results obtained by distance-based and utility-based multi-criteria 

methods. The first position of Line 1 in Paris is clearly expressed. 

 

Figure 7. Ranking by PROMETHEE method. 

Figure 8 illustrates the comparison of the ranking given by different multi-criteria 

methods and different weighting approaches. 

It can be seen that Line 1, Line 14 in Paris and Line D in Lion are the best autonomous 

metro systems for all variants of ranking. These autonomous metro systems differ signif-

icantly from other systems. The weighting by BWM method and ranking by PROME-

THEE method place Line 14 in Paris in second position, while by both Shannon Entropy 

and average methods, the second position is for Line D in Lion. At the bottom of the rank-

ing are Brescia and Line M2 in Lausanne. These positions are similar according to all 

multi-criteria approaches. These autonomous metro lines have the smallest intensity of 

day trips as it can be seen according to the data given in Table 1. It can be summarized 

that the results by applying Shannon Entropy method, BWM and average approach are 

similar. This is due to the fact that the criteria number of passengers per day (C7) and 

intensity of day trips (C8) have the greatest influence on the ranking. 

The multi-criteria methods applied in this research were compared by using Spear-

man correlation coefficient. This technique was applied to the results obtained using the 

weights of the average approach when both Shannon Entropy and BWM method were 

considered. Table 4 represents the results for Spearman correlation coefficient. It can be 

concluded that there is a strong correlation between the results by different methods. The 

ranking obtained by EDAS and TOPSIS methods are almost the closest, rs = 0.83. The same 

applies to the results of the ranking obtained by the methods COPRAS and EDAS, rs = 

0.91. This is due to the fact that the respective methods apply the same approach, EDAS 

and TOPSIS methods are distance-based and the COPRAS and MOORA are utility-based. 

The ranking given by the PROMETHEE method is closest to that obtained through the 

EDAS method 𝑟𝑠 = 0.85. 

Figure 7. Ranking by PROMETHEE method.

Figure 8 illustrates the comparison of the ranking given by different multi-criteria
methods and different weighting approaches.
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It can be seen that Line 1, Line 14 in Paris and Line D in Lion are the best autonomous
metro systems for all variants of ranking. These autonomous metro systems differ signifi-
cantly from other systems. The weighting by BWM method and ranking by PROMETHEE
method place Line 14 in Paris in second position, while by both Shannon Entropy and
average methods, the second position is for Line D in Lion. At the bottom of the ranking are
Brescia and Line M2 in Lausanne. These positions are similar according to all multi-criteria
approaches. These autonomous metro lines have the smallest intensity of day trips as it
can be seen according to the data given in Table 1. It can be summarized that the results by
applying Shannon Entropy method, BWM and average approach are similar. This is due to
the fact that the criteria number of passengers per day (C7) and intensity of day trips (C8)
have the greatest influence on the ranking.

The multi-criteria methods applied in this research were compared by using Spearman
correlation coefficient. This technique was applied to the results obtained using the weights
of the average approach when both Shannon Entropy and BWM method were considered.
Table 4 represents the results for Spearman correlation coefficient. It can be concluded that
there is a strong correlation between the results by different methods. The ranking obtained
by EDAS and TOPSIS methods are almost the closest, rs = 0.83. The same applies to the
results of the ranking obtained by the methods COPRAS and EDAS, rs = 0.91. This is due to
the fact that the respective methods apply the same approach, EDAS and TOPSIS methods
are distance-based and the COPRAS and MOORA are utility-based. The ranking given by
the PROMETHEE method is closest to that obtained through the EDAS method rs = 0.85.

Table 4. Spearman correlation coefficient (rs) between the applied multi-criteria methods.

Multi-Criteria Method EDAS TOPSIS COPRAS MOORA PROMETHEE

EDAS - 0.83 0.69 0.85 0.85
TOPSIS - 0.89 0.95 0.78
COPRAS - 0.91 0.64
MOORA - 0.72

4.3. Ranking by the New Aggregative Approach

The final ranking of the autonomous metro systems is performed by applying the
new aggregative approach. For this purpose, the results of scores by the different multi-
criteria methods used were applied. The average approach of weighting was applied
(Tables 2, 3, 5, A1 and A4 in Appendix A).

The new aggregative approach considers the estimates obtained by the different multi-
criteria methods as the benefits of different strategies. Thus, the different autonomous
metro lines could be ranked considering the benefits of different strategies.

First, the score of each alternative is determined by applying each of the investigated
multi-criteria method (EDAS, TOPSIS, MOORA, COPRAS and PROMETHEE) based on
average approach of weighting using Equation (14). These are the results in the column
before the last of each of the Tables 2, 3, 5, A1 and A4 in Appendix A.

Thus, a payoff matrix is formed, in which the columns are the scores obtained by the
applied multi-criteria methods, and the rows are the investigated autonomous metro system.
Table 5 represents the payoff matrix. The last column of Table 5 shows the transformed
values of net outranking flows according to Equation (35). The minimum negative value of

net outranking flows is ϕ(ai) = −0.578,
∣∣∣∣max

i
ϕ(ai)

∣∣∣∣ = 0.578. So, according to Equation (36),

β = 1.
The first part of Table 6 shows the normalized payoff matrix which consists of the

normalized values of the scores; the second part presents the results for the Laplace’s
criterion and Hurwitz’s criterion is determined by applying Equations (34) and (37).
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Table 5. Scores by used multi-criteria methods (payoff matrix MCnxs ).

Autonomous Metro
EDAS TOPSIS COPRAS MOORA PROMETHEE PROMETHEE

ASi Ci Qi yi ϕ(ai) ϕ*(ai)=β+ϕ(ai)

A1 Copenhagen, Line 1 0.238 0.177 0.215 0.161 −0.307 0.693
A2 Copenhagen, Line 2 0.251 0.180 0.175 0.121 −0.277 0.723
A3 Barcelona, Line 9 0.342 0.269 0.186 0.132 0.131 1.131
A4 Barcelona, Line 10 0.393 0.262 0.179 0.132 0.117 1.117
A5 Turin, M0 0.463 0.290 0.186 0.155 0.114 1.114
A6 Rome, Line C 0.108 0.144 0.150 0.105 −0.319 0.681
A7 Milan, Line 5 0.369 0.240 0.175 0.134 −0.099 0.901
A8 Brescia 0.001 0.098 0.131 0.079 −0.578 0.422
A9 Paris, Line 1 0.988 0.850 0.337 0.305 0.594 1.594
A10 Paris, Line 14 0.586 0.527 0.269 0.229 0.327 1.327
A11 Rennes, Line A 0.441 0.311 0.197 0.170 −0.012 0.988
A12 Toulouse, Line A 0.459 0.289 0.187 0.158 0.193 1.193
A13 Toulouse, Line B 0.416 0.256 0.180 0.145 0.136 1.136
A14 Lile, Line A 0.433 0.269 0.183 0.153 0.026 1.026
A15 Lile, Line B 0.410 0.301 0.220 0.186 0.032 1.032
A16 Lyon, Line D 0.572 0.442 0.226 0.190 0.367 1.367
A17 Nuremberg, Line U2 0.415 0.255 0.186 0.143 0.056 1.056
A18 Nuremberg, Line U3 0.362 0.294 0.194 0.155 −0.195 0.805
A19 Budapest, Line 4 0.484 0.421 0.239 0.197 0.069 1.069
A20 Lausanne, Line M2 0.082 0.164 0.139 0.104 −0.376 0.624

Total 7.815 6.039 3.954 3.153 0.000 20.000

Table 6. Ranking by new aggregative approach.

Autonomous Metro

Normalized Payoff Matrix MCnxs Laplace’s
Criterion Hurwitz’s Criterion

Normalized Values, NMCis

EDAS TOPSIS COPRAS MOORA PROMETHEE Li Rank max min Hi Rank

A1 Copenhagen, Line 1 0.030 0.029 0.054 0.051 0.035 0.040 16 0.054 0.029 0.042 16
A2 Copenhagen, Line 2 0.032 0.030 0.044 0.038 0.036 0.036 17 0.044 0.030 0.037 17
A3 Barcelona, Line 9 0.044 0.045 0.047 0.042 0.057 0.047 13 0.057 0.042 0.049 11
A4 Barcelona, Line 10 0.050 0.043 0.045 0.042 0.056 0.047 12 0.056 0.042 0.049 12
A5 Turin, M0 0.059 0.048 0.047 0.049 0.056 0.052 8 0.059 0.047 0.053 7
A6 Rome, Line C 0.014 0.024 0.038 0.033 0.034 0.029 18 0.038 0.014 0.026 18
A7 Milan, Line 5 0.047 0.040 0.044 0.043 0.045 0.044 15 0.047 0.040 0.044 15
A8 Brescia 0.000 0.016 0.033 0.025 0.021 0.019 20 0.033 0.000 0.017 20
A9 Paris, Line 1 0.126 0.141 0.085 0.097 0.080 0.106 1 0.141 0.080 0.110 1
A10 Paris, Line 14 0.075 0.087 0.068 0.072 0.066 0.074 2 0.087 0.066 0.077 2
A11 Rennes, Line A 0.056 0.051 0.050 0.054 0.049 0.052 7 0.056 0.049 0.053 8
A12 Toulouse, Line A 0.059 0.048 0.047 0.050 0.060 0.053 6 0.060 0.047 0.053 6
A13 Toulouse, Line B 0.053 0.042 0.046 0.046 0.057 0.049 10 0.057 0.042 0.050 10
A14 Lile, Line A 0.055 0.045 0.046 0.049 0.051 0.049 9 0.055 0.045 0.050 9
A15 Lile, Line B 0.052 0.050 0.056 0.059 0.052 0.054 5 0.059 0.050 0.054 5
A16 Lyon, Line D 0.073 0.073 0.057 0.060 0.068 0.066 3 0.073 0.057 0.065 3
A17 Nuremberg, Line U2 0.053 0.042 0.047 0.045 0.053 0.048 11 0.053 0.042 0.048 13
A18 Nuremberg, Line U3 0.046 0.049 0.049 0.049 0.040 0.047 14 0.049 0.040 0.045 14
A19 Budapest, Line 4 0.062 0.070 0.061 0.063 0.053 0.062 4 0.070 0.053 0.062 4
A20 Lausanne, Line M2 0.011 0.027 0.035 0.033 0.031 0.027 19 0.035 0.011 0.023 19

It can be seen that the ranking by both criteria is almost the same. Line 1 in Paris was
placed in the first position, Line 14 in Paris was ranked in the second position and Line D
in Lion is in third place. These are also the metro lines with the highest average number of
passengers per day. Brescia and Line M2 in Lausanne were placed at the end of the ranking.
These are also the metro lines with the lowest average number of passengers per day. The
results by Laplace’s criterion and Hurwitz’s criterion are similar. There is some difference
after the seventh position.
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Table 7 represents the values of Spearman correlation coefficient by using the ranking
by both criteria and results of the positions by applying the multi-criteria methods. The
Spearman correlation coefficient between both ranking by using Laplace’s criterion and
Hurwitz’s criterion is 0.99, which indicate that the results are the same. It could be seen
that the ranking obtained by new aggregative approach is closest to that obtained by EDAS
method (rs = 0.96)

Table 7. Spearman correlation coefficient (rs) for Laplace’s criterion and Hurwitz’s criterion.

Criterion Hurwitz’s Criterion EDAS TOPSIS COPRAS MOORA PROMETHEE

Laplace’s criterion 0.99 0.96 0.91 0.80 0.94 0.82
Hurwitz’s criterion 0.96 0.93 0.82 0.95 0.85

4.4. Sensitivity Analysis

The sensitivity analysis according to the variation in the values of criteria was per-
formed. For this purpose, the weights determined by using average approach (BWM and
Shannon Entropy method) and ranking by using the aggregative approach were examined.
The limits of variation in the weights of the criteria at which the ranking is preserved were
defined. Figure 9 represents the weights and their upper limits. The lower limit for all
criteria is 0. The criteria safety satisfaction rate (C1), average distance between stations
(C5), number of passengers per day (C7) and intensity of day trips (C8) have wide ranges
of variation. The criterion average commercial speed (C6) has small limits of variation.
The criteria average headways (C2), length of the autonomous metro lines (C3, number of
stations (C4) and intensity of day trips (C8) have an average limit of variation.
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4.5. Verification the Results by Applying Cluster Analysis

The hierarchal cluster analysis and K-means clustering method were used to verify
the results obtained by different approaches of multi-criteria analysis. Figure 10 illustrates
a dendrogram according to the hierarchal cluster analysis and average linkage between
groups by both Squared Euclidean distance and Euclidean distance as measure of distance.
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It could be seen according to the results by using Squared Euclidean distance
(Figure 10a) that Line 1 in Paris forms a first cluster. Its elements are at a considerable
distance from the other metro lines. The second cluster is formed by the other autonomous
metro lines and is equidistant from the first one. This cluster contains two subclusters
that are homogeneous. The first subcluster includes the following two metro lines: Line
14 in Paris and Line D in Lion. The second subcluster also includes two subclusters. The
first subcluster includes Line C in Rome, Line M2 in Lausanne and Brescia. The second
subcluster is formed by the following autonomous metro lines: Line 9 and Line 10 in
Barcelona, Line U2 and Line U3 in Nuremberg, Line 1 and Line 2 in Copenhagen, Line M0
in Turin, Line A in Rene, Line A and Line B in Toulouse, Line A and Line B in Lille, Line 5 in
Milan, Line 4 in Budapest. The elements of these subclusters are united at a relatively small
distance. Figure 10b shows the results given by Squared Euclidean distance. The results by
using Euclidean distance are similar to these obtained by Squared Euclidean distance. Two
clusters were formed again. The first cluster includes Line 1 in Paris. The second cluster
includes the other autonomous metro lines. It contains more subclusters compared to the
Squared Euclidean distance. The first subcluster is formed by two subclusters: on the one
hand Line 14 in Paris and Line D in Lion, and on the other hand, the other four subclusters.
First, Line M2 in Lausanne, Line C in Rome and Brescia are united in a common subcluster.
Second, Line 1 and Line 2 in the Copenhagen metro and Line U3 in Nuremberg also form a
separate subcluster. Third, Line 9 and Line 10 in Barcelona, Line M0 in Turin and Line 4 in
Budapest also form a subcluster. Fourth, Line A in Rene, Line A and Line B in Toulouse,
Line A and Line B in Lile, Line U2 in Nuremberg and Line 5 in Milan are structured in a
separate subcluster which is homogeneous. It can be concluded that the results of both
distance approaches are similar.
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It is important that Line 1 in Paris is significantly different from the others. K-means
clustering requires the number of clusters to be set in advance. The method determines the
autonomous metro lines in each cluster. K-means cluster Analysis was conducted based
on the number of clusters obtained by Hierarchical Cluster Analysis. Three variants of
number of clusters were formed, based on the results illustrated in Figure 10. The first
variant consists of two clusters; the second variant has three clusters, and the third variant
includes four clusters. The statistical importance of different criteria was determined by
using the F criterion (Fisher’s criterion). This test was used only for descriptive purposes.
The observed significance levels cannot be applied as tests of the hypothesis that the cluster
means are equal. Table 8 shows the values of the F test. The criteria average number
of passengers per day (C7), intensity of day trips (C8) and average distance (C5) have a
significant importance according to the results of F criterion.

Table 8. F test.

Criteria Number of Clusters C1 C2 C3 C4 C5 C6 C7 C8

F criterion
2 0.445 0.591 0.085 0.833 0.294 0.086 54.461 10.445
3 1.773 1.241 0.053 0.574 1.276 0.046 59.839 8.049
4 0.398 1.394 0.345 0.874 1.117 1.704 183.173 12.532

Figure 11 illustrates the results of K-means clustering according to the number of
clusters and the autonomous metro lines in each cluster. It can be seen that for the first
variant with two clusters, Line 1 in Paris forms the first cluster; all other metro lines are
the elements of the second cluster. The results for variant 2 in which three clusters were
formed shows that Line 1 in Paris forms the first cluster again; the second cluster consists
of 16 metro lines; the third cluster includes Line M2 in Lausanne, Line C in Rome and
Brescia. The results for variant 3 in which four clusters were formed show that Line 1 in
Paris forms a separate cluster, Line 1 in Paris and Line D in Lyon also form a separate
cluster, 14 metro lines form another cluster, and Line M2 in Lausanne, Line C in Rome and
Brescia are included in another cluster. The results show that the clustering with three
and four clusters are similar. Line 1 in Paris is distinguished from other metro lines. It is
observed that the results obtained from the hierarchical cluster analysis coincide with those
obtained from the K-means cluster analysis.
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Table 9 represents a comparison of the results by both cluster analysis and new
aggregated approach. It can be seen that according to the results given by Laplace’s
criterion and Hurwitz’s criterion, the values of these criteria for the autonomous metro
line in the first cluster are the upper limits of 0.1. The values of these criteria for the
elements of the second cluster are between 0.65 and 0.75. The values of the Laplace’s
criterion and Hurwitz’s criterion in the end of the table are between 0.01 and 0.03. These
elements form the fourth cluster. Considering that the third cluster is formed by metro
lines with the values of Laplace’s criterion and Hurwitz’s criterion between 0.08 and 0.03,
it can be concluded that the results by cluster analysis are similar to these obtained by new
aggregated approach. This gives reason to conclude that there are four clearly formed
clusters. Figure 12 shows a summary of clusters based on the results by both clustering
methods and new aggregative approach based on multi-criteria decision-making methods.

Table 9. Comparison of the results by cluster analysis and new aggregating approach.

Autonomous Metro Line
Cluster Laplace’s Criterion Hurwitz’s Criterion

Hierarchical K-Means Li Hi

A9 Paris, Line 1 1 1 0.106 0.110
A10 Paris, Line 14 2 2 0.074 0.077
A16 Lyon, Line D 2 2 0.066 0.065
A19 Budapest, Line 4 3 3 0.062 0.062
A15 Lile, Line B 3 3 0.054 0.054
A12 Toulouse, Line A 3 3 0.053 0.053
A5 Turin, M0 3 3 0.052 0.053
A11 Rennes, Line A 3 3 0.052 0.053
A13 Toulouse, Line B 3 3 0.049 0.050
A14 Lile, Line A 3 3 0.049 0.050
A17 Nuremberg, Line U2 3 3 0.048 0.048
A3 Barcelona, Line 9 3 3 0.047 0.049
A4 Barcelona, Line 10 3 3 0.047 0.049
A18 Nuremberg, Line U3 3 3 0.047 0.045
A7 Milan, Line 5 3 3 0.044 0.044
A1 Copenhagen, Line 1 3 3 0.040 0.042
A2 Copenhagen, Line 2 3 3 0.036 0.037
A6 Rome, Line C 4 4 0.029 0.026
A20 Lausanne, Line M2 4 4 0.027 0.023
A8 Brescia 4 4 0.019 0.017
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• Cluster 1–This cluster includes Line 1 in Paris, which were ranking as the best by
all methods. It was placed in the first position respectively by both Laplace’s and
Hurwitz’s criteria. These metro lines carry over 400 thousand passengers per day. The
values of Laplace’s criterion and Hurwitz’s criterion are the upper limits of 0.1.

• Cluster 2–This cluster contains two autonomous metro lines: Line 14 in Paris and Line
D in Lyon. They were placed in second and third positions by both Laplace’s and
Hurwitz’s criteria. The values of Laplace’s criterion and Hurwitz’s criterion of these
metro lines are between 0.065 and 0.075. These metro lines carry between 200 thousand
and 400 thousand passengers per day.

• Cluster 3–This cluster includes fourteen autonomous metro lines: Line A and Line B in
Toulouse; Line A and Line B in Lille; Line 5 in Milan; Line 1 and Line 2 in Copenhagen
metro; Line M0 in Turin; Line U2 and Line U3 in Nuremberg; Line 9 and Line 10 in
Barcelona; Line A in Rennes; Line 4 in Budapest. They were placed between fourth
and seventeenth positions by both Laplace’s and Hurwitz’s criteria. The values of
Laplace’s criterion and Hurwitz’s criterion of these metro lines are below 0.035 and
0.065. These metro lines carry between 100 thousand and 200 thousand passengers
per day.

• Cluster 4–This cluster is formed by three metro lines: Line C in Rome; Line M2 in
Lausanne, and Brescia. The values of Laplace’s criterion and Hurwitz’s criterion
of these metro lines are below 0.035. These metro lines carry below 100 thousand
passengers per day.

5. Conclusions

This paper proposes a new integrated six-step methodology for the multi-criteria
evaluation of fully autonomous metro systems’ performance. Groups of symmetric au-
tonomous metro lines were formed. A new aggregative approach based on multi-criteria
methods for ranking was developed. This approach was applied to evaluate 20 fully
autonomous metro systems in European countries.

Eight criteria accounting for the safety, infrastructural and technological development
were defined to assess the autonomous metro system. The new average approach to
determine the criteria weights was elaborated which includes both objective and subjective
techniques for assessment. For this purpose, the Shannon Entropy method and BWM were
applied. It was found that the intensity of day trips (30%) and the number of passengers per
day (25%) have the greatest impact on investigated systems. Three multi-criteria approaches
including five multi-criteria methods were used to evaluate the fully autonomous metro
systems: distance-based, utility-based and outranking approaches. The Spearman rank
correlation coefficient was implemented to compare the results. It was found that that there
is a strong correlation between the results by different multi-criteria methods. The final
ranking was performed based on the new proposed aggregative approach which considers
multi-criteria analysis scores as benefits of different strategies and inputs them to Laplace’s
and Hurwitz’s decision-making criteria. It was found that Line 1 in Paris is the best. Line
14 in Paris and Line D in Lyon ranked in the second and third position, respectively. These
three metro lines are also with the highest average number of passengers per day. Brescia,
Line C in Rome, and Line M2 in Lausanne were placed at the end of the ranking. These are
also the metro lines with the lowest average number of passengers per day.

The verification of the results was carried out through hierarchal cluster analysis and
K-means clustering methods. The average linkage between groups hierarchical method
and both Squared Euclidean distance and Euclidean distance as a measure of distance
were applied for clustering. It was observed that the results obtained from the hierarchical
cluster analysis coincide with those obtained from the K-means cluster analysis. In was
found that Line 1 in Paris forms a cluster that which is at a great distance from the other
autonomous metro lines. The results by cluster analysis are similar to those obtained by
multi-criteria methods.
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Finally, four clearly formed groups were proposed. The first includes Line 1 in Paris.
This line carries over 400 thousand passengers per day. The second cluster includes Line
14 in Paris and Line D in Lyon. These metro lines carry over 200 thousand passengers per
day. These three metro lines, which are elements of the first and second clusters, were
ranked as the best by all methods. The third cluster is formed by 14 autonomous metro
lines. These metro lines carry between 100 thousand and 200 thousand passengers per
day. The fourth cluster has three metro lines. These metro lines carry under 100 thousand
passengers per day.

The results could be used to compare different fully autonomous metro lines. The
elaborated new aggregated approach could serve to assess the position of autonomous
metro lines and make decisions for their development.

The novelty of this study and its main advantage consists of the establishment of
groups of symmetrical autonomous metro lines; the evaluation on the performance of au-
tonomous metro lines; the combining of an objective and subjective approach to determine
the importance of the decision criteria; the integration of the distance-based, utility-based
and outranking multi-criteria approaches in an aggregative approach for decision making.

The results could be used by metro operators to evaluate the level of their development.
Measures could be taken to increase security and safety, to reduce the train headway
and respectively increase the number of metro trains and the capacity of vehicles. The
demographic and economic growth of the cities impact their mobility and planning is
needed to increase the capacity of autonomous metro lines. The metro lines which form one
group could apply for financial resources under European programs for their development
and expansion. The classification from one group to another depends mostly on the
passengers carried and the intensity of the trips.

Future research will expand the number of criteria for decision making and the scope
of the studied autonomous metro systems; the uncertainty of transport process also could be
examined. The presented aggregative approach could also be used in the case of uncertainty.
In this case it is necessary to apply fuzzy or interval extensions of multi-criteria decision-
making methods. The final ranking could be performed based on the new aggregative
approach proposed in this study which considers multi-criteria analysis scores as benefits
of different strategies and inputs them to Laplace’s and Hurwitz’s decision-making criteria.
In the future, research will be presented on the new aggregative approach based on fuzzy
or interval methods.

The proposed new aggregated approach could also be used for evaluation in different
areas of research. A different number of multi-criteria methods could be applied in this
new aggregated approach.
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Appendix A

Table A1. Results by TOPSIS method.

Autonomous Metro
Shannon Entropy BWM Average

D+
i D−i Ci Rank D+

i D−i Ci Rank D+
i D−i Ci Rank

A1 Copenhagen, Line 1 0.177 0.037 0.172 17 0.142 0.037 0.207 17 0.161 0.035 0.177 17
A2 Copenhagen, Line 2 0.177 0.037 0.174 16 0.142 0.038 0.212 16 0.160 0.035 0.180 16
A3 Barcelona, Line 9 0.164 0.072 0.305 7 0.134 0.043 0.245 15 0.150 0.055 0.269 10
A4 Barcelona, Line 10 0.157 0.059 0.274 11 0.127 0.044 0.258 13 0.143 0.051 0.262 12
A5 Turin, M0 0.154 0.062 0.287 10 0.123 0.053 0.300 8 0.139 0.057 0.290 8
A6 Rome, Line C 0.196 0.038 0.163 18 0.159 0.027 0.147 19 0.179 0.030 0.144 19
A7 Milan, Line 5 0.163 0.051 0.238 15 0.131 0.043 0.250 14 0.147 0.047 0.240 15
A8 Brescia 0.205 0.023 0.100 20 0.165 0.022 0.120 20 0.186 0.020 0.098 20
A9 Paris, Line 1 0.043 0.200 0.823 1 0.027 0.163 0.856 1 0.032 0.183 0.850 1
A10 Paris, Line 14 0.113 0.125 0.525 2 0.089 0.099 0.526 2 0.100 0.112 0.527 2
A11 Rennes, Line A 0.155 0.069 0.308 6 0.123 0.058 0.321 5 0.139 0.063 0.311 5
A12 Toulouse, Line A 0.156 0.063 0.287 9 0.125 0.053 0.300 7 0.141 0.057 0.289 9
A13 Toulouse, Line B 0.161 0.056 0.259 13 0.129 0.047 0.266 12 0.146 0.050 0.256 13
A14 Lile, Line A 0.160 0.059 0.268 12 0.128 0.050 0.281 10 0.145 0.053 0.269 11
A15 Lile, Line B 0.171 0.084 0.330 5 0.138 0.057 0.293 9 0.156 0.067 0.301 6
A16 Lyon, Line D 0.122 0.095 0.439 3 0.097 0.077 0.442 3 0.109 0.086 0.442 3
A17 Nuremberg, Line U2 0.159 0.054 0.252 14 0.127 0.047 0.268 11 0.144 0.049 0.255 14
A18 Nuremberg, Line U3 0.157 0.065 0.292 8 0.126 0.054 0.300 6 0.142 0.059 0.294 7
A19 Budapest, Line 4 0.136 0.099 0.422 4 0.108 0.078 0.420 4 0.122 0.089 0.421 4
A20 Lausanne, Line M2 0.191 0.034 0.152 19 0.153 0.036 0.188 18 0.173 0.034 0.164 18

Table A2. Results by EDAS method.

Autonomous Metro
Shannon Entropy BWM Average

SPi SNi ASi Rank SPi SNi ASi Rank SPi SNi ASi Rank

A1 Copenhagen, Line 1 0.010 0.259 0.225 17 0.068 0.194 0.271 17 0.039 0.236 0.238 17
A2 Copenhagen, Line 2 0.010 0.248 0.237 16 0.068 0.187 0.281 15 0.039 0.224 0.251 16
A3 Barcelona, Line 9 0.220 0.204 0.378 14 0.064 0.192 0.271 16 0.156 0.196 0.342 15
A4 Barcelona, Line 10 0.088 0.116 0.413 11 0.035 0.118 0.357 12 0.065 0.116 0.393 12
A5 Turin, M0 0.063 0.056 0.467 5 0.039 0.056 0.445 8 0.061 0.056 0.463 5
A6 Rome, Line C 0.068 0.383 0.117 18 0.018 0.312 0.081 19 0.052 0.350 0.108 18
A7 Milan, Line 5 0.010 0.112 0.384 13 0.011 0.115 0.347 13 0.011 0.114 0.369 13
A8 Brescia 0.000 0.463 0.000 20 0.004 0.363 0.002 20 0.002 0.420 0.001 20
A9 Paris, Line 1 1.131 0.002 0.998 1 0.885 0.017 0.976 1 1.036 0.010 0.988 1
A10 Paris, Line 14 0.501 0.130 0.581 2 0.419 0.051 0.666 2 0.461 0.115 0.586 2
A11 Rennes, Line A 0.109 0.114 0.425 8 0.098 0.048 0.489 5 0.102 0.091 0.441 7
A12 Toulouse, Line A 0.047 0.056 0.460 6 0.049 0.047 0.463 6 0.047 0.053 0.459 6
A13 Toulouse, Line B 0.043 0.088 0.424 9 0.031 0.085 0.401 11 0.040 0.087 0.416 9
A14 Lile, Line A 0.043 0.085 0.427 7 0.044 0.058 0.445 7 0.043 0.074 0.433 8
A15 Lile, Line B 0.355 0.218 0.421 10 0.092 0.164 0.326 14 0.286 0.192 0.410 11
A16 Lyon, Line D 0.289 0.049 0.575 3 0.230 0.024 0.597 3 0.261 0.045 0.572 3
A17 Nuremberg, Line U2 0.004 0.089 0.405 12 0.026 0.052 0.443 9 0.014 0.077 0.415 10
A18 Nuremberg, Line U3 0.095 0.174 0.354 15 0.089 0.102 0.410 10 0.091 0.153 0.362 14
A19 Budapest, Line 4 0.277 0.143 0.468 4 0.219 0.041 0.567 4 0.248 0.114 0.484 4
A20 Lausanne, Line M2 0.028 0.304 0.209 15 0.042 0.278 0.159 18 0.028 0.304 0.189 16
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Table A3. Results by MOORA method.

Autonomous Metro

Shannon Entropy BWM Average
g
∑
j=1

x*
ij

m
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yi Rank
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m
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A1 Copenhagen, Line 1 0.193 0.054 0.140 12 0.235 0.055 0.180 7 0.214 0.053 0.161 7
A2 Copenhagen, Line 2 0.151 0.052 0.098 17 0.198 0.053 0.145 14 0.173 0.052 0.121 17
A3 Barcelona, Line 9 0.193 0.050 0.143 9 0.179 0.055 0.124 17 0.184 0.052 0.132 15
A4 Barcelona, Line 10 0.177 0.045 0.132 14 0.181 0.049 0.133 16 0.178 0.046 0.132 16
A5 Turin, M0 0.178 0.029 0.148 8 0.193 0.031 0.162 11 0.184 0.030 0.155 10
A6 Rome, Line C 0.138 0.043 0.095 18 0.161 0.045 0.116 19 0.148 0.043 0.105 18
A7 Milan, Line 5 0.168 0.039 0.128 16 0.181 0.040 0.141 15 0.173 0.039 0.134 14
A8 Brescia 0.112 0.051 0.061 20 0.149 0.051 0.098 20 0.129 0.050 0.079 20
A9 Paris, Line 1 0.353 0.030 0.323 1 0.320 0.032 0.288 1 0.336 0.031 0.305 1
A10 Paris, Line 14 0.262 0.036 0.226 2 0.273 0.042 0.231 2 0.267 0.039 0.229 2
A11 Rennes, Line A 0.182 0.025 0.158 6 0.211 0.027 0.183 5 0.196 0.026 0.170 6
A12 Toulouse, Line A 0.176 0.026 0.150 7 0.197 0.029 0.167 8 0.186 0.027 0.158 8
A13 Toulouse, Line B 0.171 0.032 0.138 13 0.188 0.036 0.153 13 0.179 0.034 0.145 12
A14 Lile, Line A 0.169 0.027 0.142 10 0.196 0.031 0.165 10 0.182 0.029 0.153 11
A15 Lile, Line B 0.226 0.031 0.194 3 0.216 0.034 0.181 6 0.219 0.033 0.186 5
A16 Lyon, Line D 0.221 0.033 0.188 5 0.228 0.037 0.192 4 0.224 0.035 0.190 4
A17 Nuremberg, Line U2 0.171 0.042 0.129 15 0.201 0.043 0.158 12 0.185 0.042 0.143 13
A18 Nuremberg, Line U3 0.181 0.039 0.142 11 0.205 0.038 0.167 9 0.193 0.038 0.155 9
A19 Budapest, Line 4 0.230 0.041 0.189 4 0.246 0.042 0.205 3 0.238 0.041 0.197 3
A20 Lausanne, Line M2 0.122 0.035 0.087 19 0.154 0.033 0.121 18 0.138 0.034 0.104 19

Table A4. Results by COPRAS method.

Autonomous Metro
Shannon Entropy BWM Average

Pi Ri Qi Rank Pi Ri Qi Rank Pi Ri Qi Rank

A1 Copenhagen, Line 1 0.193 0.054 0.195 6 0.235 0.055 0.236 4 0.214 0.053 0.215 6
A2 Copenhagen, Line 2 0.151 0.052 0.152 17 0.198 0.053 0.199 10 0.173 0.052 0.175 17
A3 Barcelona, Line 9 0.193 0.050 0.194 7 0.179 0.055 0.180 17 0.184 0.052 0.186 12
A4 Barcelona, Line 10 0.177 0.045 0.178 11 0.181 0.049 0.183 15 0.178 0.046 0.179 15
A5 Turin, M0 0.178 0.029 0.179 10 0.193 0.031 0.194 13 0.184 0.030 0.186 11
A6 Rome, Line C 0.138 0.043 0.139 18 0.161 0.045 0.163 18 0.148 0.043 0.150 18
A7 Milan, Line 5 0.168 0.039 0.169 16 0.181 0.040 0.182 16 0.173 0.039 0.175 16
A8 Brescia 0.112 0.051 0.113 20 0.149 0.051 0.150 20 0.129 0.050 0.131 20
A9 Paris, Line 1 0.353 0.030 0.354 1 0.320 0.032 0.322 1 0.336 0.031 0.337 1
A10 Paris, Line 14 0.262 0.036 0.263 2 0.273 0.042 0.274 2 0.267 0.039 0.269 2
A11 Rennes, Line A 0.182 0.025 0.184 8 0.211 0.027 0.212 7 0.196 0.026 0.197 7
A12 Toulouse, Line A 0.176 0.026 0.177 12 0.197 0.029 0.198 11 0.186 0.027 0.187 9
A13 Toulouse, Line B 0.171 0.032 0.172 13 0.188 0.036 0.190 14 0.179 0.034 0.180 14
A14 Lile, Line A 0.169 0.027 0.171 15 0.196 0.031 0.197 12 0.182 0.029 0.183 13
A15 Lile, Line B 0.226 0.031 0.227 4 0.216 0.034 0.217 6 0.219 0.033 0.220 5
A16 Lyon, Line D 0.221 0.033 0.223 5 0.228 0.037 0.230 5 0.224 0.035 0.226 4
A17 Nuremberg, Line U2 0.171 0.042 0.172 14 0.201 0.043 0.203 9 0.185 0.042 0.186 10
A18 Nuremberg, Line U3 0.181 0.039 0.182 9 0.205 0.038 0.207 8 0.193 0.038 0.194 8
A19 Budapest, Line 4 0.581 0.031 0.581 3 0.421 0.042 0.423 3 0.506 0.036 0.507 3
A20 Lausanne, Line M2 0.162 0.027 0.163 19 0.172 0.033 0.173 19 0.166 0.030 0.167 19
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Table A5. Results by PROMETHEE method.

Autonomous Metro
Shannon Entropy BWM Average

ϕ(ai) ϕ+(ai) ϕ−(ai) Rank ϕ(ai) ϕ+(ai) ϕ−(ai) Rank ϕ(ai) ϕ+(ai) ϕ−(ai) Rank

A1 Copenhagen, Line 1 −0.383 0.209 0.592 18 −0.192 0.246 0.438 17 −0.307 0.218 0.525 17
A2 Copenhagen, Line 2 −0.350 0.221 0.571 17 −0.167 0.257 0.425 16 −0.277 0.229 0.507 16
A3 Barcelona, Line 9 0.183 0.495 0.312 5 0.045 0.335 0.290 10 0.131 0.428 0.297 6
A4 Barcelona, Line 10 0.166 0.494 0.328 6 −0.019 0.304 0.324 12 0.117 0.426 0.309 7
A5 Turin, M0 0.166 0.472 0.307 7 0.012 0.344 0.332 11 0.114 0.423 0.309 8
A6 Rome, Line C −0.307 0.263 0.569 16 −0.424 0.108 0.531 18 −0.319 0.215 0.534 18
A7 Milan, Line 5 −0.094 0.320 0.414 14 −0.134 0.232 0.366 14 −0.099 0.287 0.386 14
A8 Brescia −0.625 0.085 0.710 20 −0.572 0.040 0.612 20 −0.578 0.075 0.653 20
A9 Paris, Line 1 0.694 0.764 0.070 1 0.516 0.599 0.083 1 0.594 0.671 0.078 1
A10 Paris, Line 14 0.286 0.562 0.275 3 0.453 0.549 0.095 2 0.327 0.548 0.221 3
A11 Rennes, Line A −0.053 0.385 0.438 13 0.093 0.378 0.286 8 −0.012 0.367 0.379 13
A12 Toulouse, Line A 0.186 0.489 0.303 4 0.227 0.439 0.212 4 0.193 0.461 0.267 4
A13 Toulouse, Line B 0.142 0.475 0.333 8 0.114 0.379 0.266 7 0.136 0.435 0.299 5
A14 Lile, Line A 0.034 0.438 0.405 11 −0.084 0.283 0.368 13 0.026 0.393 0.368 12
A15 Lile, Line B 0.011 0.386 0.375 12 0.065 0.350 0.285 9 0.032 0.369 0.337 11
A16 Lyon, Line D 0.427 0.602 0.175 2 0.385 0.508 0.123 3 0.367 0.538 0.171 2
A17 Nuremberg, Line U2 0.041 0.399 0.358 10 0.131 0.386 0.255 6 0.056 0.378 0.322 10
A18 Nuremberg, Line U3 −0.182 0.324 0.506 15 −0.151 0.266 0.417 15 −0.195 0.287 0.482 15
A19 Budapest, Line 4 0.066 0.446 0.380 9 0.177 0.407 0.230 5 0.069 0.407 0.338 9
A20 Lausanne, Line M2 −0.409 0.216 0.625 19 −0.474 0.111 0.585 19 −0.376 0.199 0.575 19
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