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Solar panels as possible optical detectors for cosmic rays 

L. Tsankov1, G. Mitev2, M. Mitev3 
1University of Sofia, Bulgaria 

2Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 
Bulgaria

3Technical University, Sofia, Bulgaria 
 
Photovoltaic cells have relatively high sensitivity to visible light and are available as large area panels 

at a reasonable price. Their potential use as air Cherenkov detectors for the extended atmospheric showers, 
caused by high energy cosmic rays, is very attractive. 

In this paper we make an evaluation of different types of photovoltaic (PV) cells. Assemblies of several 
cells are studied, both connected in series and in parallel, aiming for the increase of the sensitive area, 
performance improvement etc. We propose a schematic for optimal separation of the fast component of the 
detector system signal. The threshold sensitivity of the different configurations is estimated and their ability to 
detect very high energy cosmic rays is discussed. 

Introduction 
In 1936 the Austrian physicist V.F. Hess (1883 – 1964) receives the Nobel Prize for 

Physics for the discovery of the cosmic rays. Ever since, the largest and most expensive 
research complexes that have been built, have been dedicated to the registration and 
measurement of the primary and secondary cosmic radiation parameters. For that purpose 
there have been conducted many observation tests with blimps and artificial Earth satellites. 
Many underground and surface observatories (at sea level and high-mountain), with detector 
area sometimes reaching 100 km2, have been built [1, 2]. 

 Most frequently during observation of extensive air showers (EAS) in surface stations 
can be registered the muon component, using groups of organic plastic photo-scintillation 
detectors (PSDs), whose output signals are passed on to fast coincidence circuits [1, 3]. They 
allow for very precise definition of the moment of the event occurrence but offer more limited 
capabilities for defining the energy parameters of the registered event. Rarely, liquid (most 
often water) Cherenkov detectors are used. 

 Another popular method is the detection of the Cherenkov radiation caused in the 
atmosphere by the primary high-energy charged particles (at 30 – 60 km altitude), or by the 
secondary products of the EAS. Photomultiplier tubes (PMTs), placed in the focus of the 
optical system, are used for detectors. 

 The rapid evolution of the photovoltaic (PV) cells in the last decade made them 
accessible at low prices. Their high efficiency and the possibility for construction of systems 
with significant area, allows for their use in Air Cherenkov detectors [5, 6]. 

 The purpose of this work is to evaluate the possibilities of PV-cell based detector 
systems to distinguish between the short light pulses of the Cherenkov radiation and the slow 
component arising from background light. 

 This imposes the need to look into new schematic solutions for the signal acquisition 
and shaping and the evaluation of their usability as components of Air Cherenkov detectors of 
EAS. It is necessary to define whether the sensor is capable of reacting to short light flux (the 
duration of the Cherenkov radiation is under 1 �s) and what is the minimum threshold for 
light impulse value (represented in number of photons in the interval) that can be registered 
with the corresponding detector. 
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Review  
1. Particularities and limitations 

The use of PVs in such nontrivial mode leads to the following characteristic 
particularities and problems, which should be considered during the development of the 
design of the signal acquisition and shaping circuit: 

1. The detector’s output signal comes from the charge generated in the detector 
volume, not the output voltage or current; 

2. The mean output current arising from the background light (twilight, full moon, 
urban area light etc.) can be some orders of magnitude higher than the signal level; 

3. PVs have significant capacitance (10-50 nF/cm2), exceeding the capacitance of the 
semiconductor detectors, used for ionized emissions detection, manyfold.  

In order to achieve large detector surface, for detectors constructed by PVs, exist two 
approaches – parallel or sequential connection of the cells. Both methods are equivalent in 
relation to the volume of the occurring charges. When n elements are connected in parallel the 
equivalent capacitance of the PV cell is n-times greater, while – connected in series – it is 
respectively n-times smaller. Obviously, having the PV cells sequentially connected is 
preferred for obtaining larger signal with the same generated charge. 

2. Signal acquisition with PV cells 
In [7] is shown that if the capacitance of the 

semiconductor detector doesn’t change in a wide range, the 
signal acquisition with transimpedance, or charge sensitive 
amplifier give equivalent results. The presence of a significant 
offset current from the PVs makes the galvanic connection to 
the amplifier impossible. In [5] are reviewed the options given 
through the introduction of capacitive separation of the input, 
or the use of an isolation transformer. 

Another possible solution is the compensation of the 
offset current. The PV cell output can be presented as a sum of 

two components (Fig. 1) – a slow one, due to the background light (IBL), and a second one, 
fast changing short pulse, due to the Cherenkov light of EAS (ICL). Our idea is to connect 
opposite the cell a current generator IC, whose value is equal to the slow component and 
adaptively follows it. For the short pulse the high output resistance of the current generator IC 
takes the role of a load, which guarantees the full collection of the charge in the detector 
volume, caused by the Cherenkov light. 

Fig. 1 

IBL ICL 

LFF

CSA 

IC 



 266

3. Front-end-electronics schematic 
The PV signal preamplifier 

is realized using AD8033 
operational amplifier (Fig. 2). 
Depending on the Rfb/Cfb ratio, it 
works either as a transimpedance or 
as a charge sensitive preamplifier. 
That is illustrated by the form of the 
output signal on Fig. 3. That ratio 
influences the amplitude-frequency 
diagram of the amplifier (Fig. 4). 
An overcompensation is seen for 
Cfb < 5 pF, so the amplifier can 
lose stability. That can be seen both 
on the amplitude-frequency and 
output signal shape diagrams. 

 
 

An OTA CA3080 is used to 
compensate the background and the slow 
component of the PV current. Fig. 5 shows 
the device’s performance for input pulses 
with duration 1 �s and amplitude 10 �A, 
while the slow component changes from 0 to 
500 �A. It can be seen that the disturbance is 
successfully compensated up to 450 �A. We 
get an output signal with considerable 
amplitude without any significant offset. 

 
 

That guarantees the schematic would work flawlessly in high background lighting 
conditions – e.g twilight, full moon or urban areas. 

A first order low pass filter is implemented based on Rf and Cf, followed by a buffer 
amplifier CA3140. The signals with frequency lower than the cut-off frequency of the filter 
are fed to the input of the adjustable current generator and change its output value, 
compensating the low frequency background and noises. The high frequency signals (in this 
case caused by the short light pulses) can’t get through the filter, the current generator keeps 

Fig. 2 
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its value, corresponding to the mean value of 
the offset current of the PV cell. The high 
output resistance of the current generator 
guarantees the full collection of the charge, 
induced by the short light pulse. The influence 
of the notch frequency on the output is 
illustrated on Fig.6. It can be seen that the 
compensation circuit does not deteriorate the 
rise time and the output amplitude of the pulse 
– i.e. its operation doesn’t change the signal. 

The output signal vs. the detector's 
capacitance is shown on Fig.7. It is seen that 
the amplifier might become unstable at high 
capacitance. This suggests the general rule 
when connecting PV cells into batteries - they 
should be connected in series in order to 
decrease the total capacitance. In our 
experiments this value was decreased to 7,2 nF 
and 3,6 nF for the different configurations. 

4. Test SETUP 
Our experimental setup (Fig. 8) uses a light pulse generator [8] with adjustable 

amplitude and duration of the signal, and interchangeable LEDs (red, green and blue). It is 
possible to set 15 different levels of the LED drive current either in continuous, or pulse 
mode. The light pulse length is step-adjustable in the rage between 50ns ÷ 250�s. 

The PV output current is measured in continuous mode lighting, using highly sensitive 
digital microampermeter (6-Digit Multimeter Hameg 8112-3). That makes possible, by 
factoring-in the light pulse length, the calculation of the charge generated in the volume of the 
PV cell. The amplitude and the shape of the output pulses are monitored with a digital 
oscilloscope. 
 
 
 
 
 
 
 
 
 
 

Results
Series of measurements were conducted using commercially available PV panels, 

consisting of either 36 cells sized 60x15 mm (nominal output 5W at 12V), or 36 cells - 
60x30 mm each (nominal output 10W at 12V). The PV cells are internally connected in 
series. Two of the smaller panels were also used connected in series as an aggregate panel. 
The shape of the output pulse is presented on the oscillogram (Fig. 9), together with the pulse 
lighting the LED. The experiments, carried out using slowly changing background light (e.g. 
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reflected luminescence light), have proven that the schematic successfully compensates these 
disturbances. 

Fig. 10 shows the signal/noise (S/N) ratio for the three panel assemblies as a function of 
the signal (number of photoelectrons generated by the LED pulse (1μs) per m2). The S/N ratio 
of 3 is reached at about108 pe/m2, while the night sky is estimated to give about 1012 pe/m2 

(i.e. 106 pe/m2 for the pulse duration). 
 

Conclusion
The experimental results show that both the performance and the sensitivity of 

PV cells are sufficient to register the Cherenkov component of very high energy EAS. The 
compensation circuit for the slow component (due to the background light) allows to increase 
the observation period significantly - during the whole night, even at full moon, as well as 
performing observations in sites having poor astro climate. 
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