
Proc. XXXI International Scientific Conference Electronics - ET2022, September 13 - 15, 2022, Sozopol, Bulgaria

978-1-6654-9878-4/22/$31.00 ©2022 IEEE

A Cycle-accurate Template Microprocessor Model

of a Von Neumann Architecture Based on SystemC

Lubomir Bogdanov, Ratcho Ivanov
Department of Electronics, Faculty of Electronic Engineering and Technologies

Technical University of Sofia
8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria

{lbogdanov, r.ivanov}@tu-sofia.bg

Abstract – The paper presents different aspects of the

creation of a cycle-accurate, pipeline-accurate, single-issue, von

Neumann microprocessor model that can be used as a template

to model any existing microarchitecture. The goal of this

development is simplicity and modularity so that any embedded

developer could create a model out of the instruction timings

given in the datasheet. The model is created as a separate entity

to allow for code reuse and support for many families and sub-

families of microcontrollers.

Keywords – cycle-accurate simulation; deeply-embedded;

instruction set simulator; microprocessor model; systemc.

I. INTRODUCTION

 Nowadays virtual prototypes are an integral part of the
system development and simulation on each level of
abstraction is a common procedure. Many industry-leading
companies invest in sophisticated software as the hardware
complexity continues to grow. Register transfer level (RTL)
and electronic system-level (ESL) design use simulation to
verify the operability of new hardware configurations.
Different teams develop libraries, hardware and software, at
different abstractions to help the final integration of their
components into a system by the main architect of the
project.
 A major effort in the creation of RTL and ESL models is
done by the Accellera Systems Initiative that groups together
leading companies like ARM, NXP, STMicroelectronics,
Intel and others, to create C++ libraries for design and
verification of electronic products under the name SystemC.
The positive aspect of such an approach is that the libraries
are based on standard C++ and can be ported to any operating
system. Therefore a simulation environment and models
created in SystemC are OS-independent and compiler-
independent.
 Though many such tools exist already in the industry,
most of them are closed-source, or partly-open source. The
final goal of this research is to create:

 an entirely open source simulation environment;
 an entirely open source simulation models.

Using SystemC for such a task has one more advantage –
recent releases contain the SystemC AMS libraries that can
be used for analog and RF functionality which would extend
the simulation not only for digital circuits but also for analog
devices.
 The structure of the future simulation environment is
shown in Fig. 1. The aim is to create complete SystemC
models of deeply-embedded microcontrollers such as the
families of MSP430, ARM Cortex-M, PIC16/18, Xtensa,

Fig. 1. Internal structure of the proposed cycle-accurate simulation
environment (successor of the Powot Simulator).

etc. The tool is a successor to the instruction set simulator
(ISS) Powot Simulator version 2 and adds instruction
timings and a pipeline of the microprocessor. Energy costs
of instructions will be supported. The current paper discusses
only the microprocessor from the block diagram shown in
Fig. 1.
 The level of abstraction of the proposed template model is
RTL and logic gates are not simulated. This would increase
the simulation speed, as well as provide ease of model
creation – a developer could treat the microprocessor as a
black box, using only specifications given in the datasheet of
the microprocessor or the microcontroller.

II. LITERATURE OVERVIEW

 To develop a microprocessor model, an insight of the
microarchitecture is needed. However modern
microprocessors on the market are closed source and they
should be treated as a black box. In most of the cases the
datasheets contain instruction cycles and details that are
enough to create a model. If no such information is given,
experimental measurements must be conducted to extract
those timings by using a microcontroller with an external
clock generator and a pulse counter. Then, the stages of the
pipeline have to be modeled using C++ and the SystemC
libraries. A good starting point for learning about the
instruction execution and the pipeline is the book [1] and a
generalized and shortened version of this book is given in
[2]. Authors start with a simple example of a single-issue,
scalar processor using just a program counter (PC), memory
and an arithmetic-logic unit (ALU).
 The work presented in [3] gives a classification of modern
processor microarchitectures that deviate from the standard
von Neumann model. This should be kept in mind while
developing models because the code of the model should be
structured in such a way that adding new features is made
easily and without rewriting the core functionality.

 Some knowledge about superscalar processors is needed
because such microarchitectures are starting to enter the
market. One example is the ARM Cortex-M7 that is
integrated in the deeply-embedded microcontroller
STM32F769. A description of such an architecture is given
in [4] where an example C program and its Assembler
equivalent are analyzed. Data hazards involving registers are
also explained.
 In [5] a comparison between a RISC and a CISC
architecture is given. Two specific processors are analyzed –
the Alpha 21164 and the Intel Pentium Pro. Implementation
details of the pipeline are shown that may help for modeling.
For example, a superscalar processor may have more
functional units in its core than issue queues.
 The paper [6] presents details about vector processors.
Vectored processing moved from supercomputers to
embedded systems. An example is the RISC-V architecture
and the RISC-V-based microcontroller ESP32-S2. Because
RISC-V is an open source instruction set, it is very likely that
in the future more of these implementations will be seen. A
template model should contain such an option also.
 Further architectural details are given in [7] and [8] for the
R4300i and UltraSPARC-I processors. They contain cache
memories (which are also common for the modern
microprocessors) and on the block diagrams the connection
between them and the processor could be seen. The paper [8]
even shows the width of the internal buses. The paper [7]
shows one fundamental detail about pipelined processors –
the internal logic works on both edges of the clock signal and
this should be reflected in the SystemC model. Otherwise the
model wouldn’t be cycle-accurate at all.

III. BASIC BLOCKS OF A CYCLE-ACCURATE SYSTEMC

MICROPROCESSOR MODEL

 Implementing a microprocessor model is a task that
cannot be accomplished on its own – additional external (to
the microprocessor) modules are required. Figure 2 shows
the minimum setup that is needed to start the development.
 The microcontroller block is a top-level entity that holds
all of the modules and the buses. This block has a specific
name corresponding to a particular part number. The rest of
the modules can be reused but the microcontroller – cannot.

Fig. 2. Minimum modules required to start the microprocessor
model development.

 The microprocessor block contains a program counter
(PC), an interrupt controller, and components of the pipeline
– stages, interconnect buffers, functional units, etc.
 The pipeline block extracts information about instruction
execution timings from a library and controls the PC during
program jumps and pipeline stalls. The pipeline is controlled
not only by the program instructions but also by an interrupt
controller.
 The program counter is a parallel register from the
register file and is connected directly to the address bus of
the microprocessor. The address bus is an output-only bus
and no other outputs can be connected to it, or the SystemC
simulation kernel will report an error during runtime. The PC
is used to stop the instruction fetching during a pipeline stall.
This event can be detected and displayed to the user.
 The interrupt controller block breaks the fetch-decode-
execute cycle and inserts a vector table address in the
program counter. Before this happens, a stack frame is
pushed onto the stack and some cycles are stolen to simulate
interrupt latency. This block is asynchronous and is not
connected to the clock signal.
 The memory block is an abstraction of the entire address
map of the microprocessor. Instruction and data memory, as
well as peripheral registers must be mapped into this block
in the future. For now, only instruction/data memory with
single cycle access times is needed, a vector table and a stack
region. This block must be exposed to the simulation kernel,
so that the user could write some instructions and data before
performing power-on-reset. No memory controllers are
modeled so far. The development effort is put entirely on the
microprocessor.
 A clock signal is shared between the microprocessor and
the memory block. Simulation events take place on both
edges – this will ease the writing of the C++ code and will
make the model cycle-accurate. For simplicity – debug
messages of instruction execution are shown on both edges.
This way the core state is visible to the user.

A. The Microprocessor and the Pipeline

 In Fig. 3 the internal structure of the pipeline is shown.
The template model contains three stages but from a
programming point of view they are identical and the user
can add as many stages as needed. The fetch stage differs
from the others because it contains the logic for the PC.

Fig. 3. Internal structure of the modeled pipeline.

 Instruction fetching begins with the PC. The PC is a
standard 32-bit variable of the type “uint32_t”. This variable
models a parallel register. Its size can be changed to 8-, 16-
or 64-bit. If the modeled microprocessor contains a PC with
a different resolution, the nearest bigger value should be
chosen, e.g. for a 10-bit PC choose a 16-bit variable, for a
20-bit PC choose a 32-bit, and so on.
 Next, the memory or peripheral device will output a value
on the instruction/data bus. Because many peripherals and
memories could be connected to it, this bus must be
implemented as a logic vector – a special type of signal that
can have logic high, logic low and high-impedance values.
The bus is declared in SystemC as:

sc_inout<sc_lv<16>>
instr_data_bus_fetch_in

{"cpu_instr_data_bus_fetch_in"};

where sc_inout declares a bidirectional wire, sc_lv<16>
declares a 16-bit bus width whose wires can have logic 1, 0
or high impedance states, and the string in the curly braces
sets the name of the bus. The latter is an important aspect of
the SystemC simulation because if an error occurs, the
SystemC kernel outputs a message related to this string. If
the bus is not given a name, SystemC will use an
automatically generated one which would make the
debugging obscure. A more sophisticated bus structures
exist, such as shown in [9], and is up to the user whether they
will be implemented or not.
 Once the instruction/data bus holds a valid value, it will
be directed to the fetch module. The module is modeled as a
method of a special type – a synchronous thread in SystemC.
This is needed because the SystemC simulation kernel can
treat it as a digital hardware and can route signals
concurrently. If it is implemented as a normal C++ method,
each hardware signal will enter each module sequentially,
which will lead to a non-functioning device. For example, if
an Enable signal is connected to three modules, this signal
must reach simultaneously each module in the same clock
cycle, if asserted. But a C++ program is a sequential
program, so a problem arises. To deal with this problem,
SystemC contains a special macro that declares the method
as a thread. In the current template this is done the following
way:

SC_MODULE(cpu){
 sc_in_clk clock {"cpu_clock"};
...
 void fetch();
 void decode();
 void execute();
...

 SC_CTOR(cpu){
 ...

 SC_CTHREAD(fetch, clock.pos());

 SC_CTHREAD(decode, clock.pos());

 SC_CTHREAD(execute, clock.pos());
 ...
 }

};

where the macro SC_CTHREAD() must be invoked in the
constructor of the module, SC_CTOR(), and the clock edge
for the activation of the method is declared as rising. It is
worth noting that this template can be used for
microprocessors with synchronous gates only. Some designs
try to lower the consumed power by using asynchronous
gates, like in [10] and [11]. Asynchronous modeling would
require a more detailed knowledge of the hardware and the
models would be bigger in code size. For simplicity, authors
consider only synchronous microarchitectures in this paper.
 The first value to be fetched (after power on) on the
instruction/data bus must always be an instruction. When the
instruction enters the fetch stage, it is passed to a method that
must evaluate its opcode and extract cycle penalty for the
current stage. This method should be implemented by the
user. Currently, the method simply returns 1 cycle per phase,
to keep the pipeline full. Here a problem arises – most
manufacturers give instruction cycle cost as a single value.
This means that the user must either try to figure out the cycle
cost per each stage alone, or make some kind of cycle-
accurate measurements on a real hardware. Both tasks are
daunting and future research will be done to address this
problem. This method can also be used for energy
consumption estimation and some novel ideas how to do this
is given in [12], [13] and [14].
 The cycle estimation method holds its respective stage
stalled and counts the number of cycles that have passed
since the entry of the instruction. When the cycles have been
wasted, the instruction is ready to advance into the next
stage. But before that, the next stage must have completed
the processing of the previous instruction. If there is an
instruction in the next stage, the previous stage must stall. If
there is no instruction in the next stage, the previous stage
can transfer its instruction and load a new one. This behavior
can be done easily with an inter-stage buffer. The buffer must
implement a blocking read/write FIFO scheme, i.e. if the
buffer is full, no new data can be pushed, and if the buffer is
empty, the stage must stall on reading it. On Fig. 3 six
variables are used for this purpose:

bool fetch_stage_stalled;
bool decode_stage_stalled;
bool execute_stage_stalled;

fifo_buffer *fe_de;
fifo_buffer *de_exe;
fifo_buffer *output_buffer;

the first three are simple boolean flags, the second three are
classes of type “fifo_buffer”. The FIFOs are complex
variables that must check for data availability on each access,
that is why they are implemented as classes. The size of the
FIFO is configurable, but in the current model it is set to 1.
The methods that the user can use are:

 bool push(sc_lv<16> new_element);
 bool pop(sc_lv<16> &next_element);
 bool peek(sc_lv<16> &next_element);
 bool is_empty(void);

where each value is declared as a logic vector of 16-bit size
(sc_lv<16>) because the instruction/data bus uses the same

type. Each method returns 0 on success and 1, if the FIFO is
full/empty.
 If all of the stages are stalled, the pipeline stalls and no
further instructions should be fetched. That is why the flag
of the fetch stage blocks the PC from incrementing. This
event can be tracked by the user, as it is one of the most
important contributors for reducing the instructions per cycle
(IPC) parameter of a microprocessor.

B. The Microcontroller

 All of the modules described so far are part of a bigger
entity, the model of the microcontroller. Such a hierarchy
allows that submodules can be reused just like in real life
hardware – Texas Instruments’ Timer_A and Timer_B
modules are one and the same throughout all of the devices,
ST Microelectronics’ LPTIM and TIM2 also, etc.
 That is why the microcontroller instantiates all of the
needed submodules (implemented as SystemC classes) and
connects them with buses. Here is how this can be done:

SC_MODULE(mcu){
 sc_in_clk clock {"..."};
 sc_signal<bool> read_write {"..."};
 sc_signal<sc_lv<16>, SC_MANY_WRITERS>

instr_data_bus {"..."};
 sc_signal<sc_uint<20>> address_bus

{"..."};
 sc_signal<sc_uint<16>> control_bus

{"..."};

 cpu *cpu_;
 flash_memory *flash;

 mcu(::sc_core::sc_module_name);
 ~mcu();

};

and then the submodules are connected together in the
constructor of the microcontroller:

mcu::mcu(::sc_core::sc_module_name){
cpu_ = new cpu("cpu");

cpu_->address_bus_fetch_in(address_bus);
cpu_-
>instr_data_bus_fetch_in(instr_data_bus)

;
cpu_->clock(clock);

cpu_->read_write(read_write);

flash = new flash_memory("flash");

flash->address_bus(address_bus);

flash->data_bus(instr_data_bus);
flash->clock(clock);
flash->read_write(read_write);

}

Once each submodule is tested and verified, it can be used in
many different microcontrollers throughout different
families and subfamilies.

C. The Simulation Environment

 Once the microcontroller has been set up with a minimum
of a CPU and a memory block, it must be attached to a
program that drives the clock line. This has to be done in the
simulating program that will invoke the models. Currently
this is a very simple program that initializes the
microcontroller’s memory with some instructions and a
single loop that drives the design with some clock cycles:

int sc_main(int argc, char* argv[]){
 sc_signal<bool, SC_MANY_WRITERS>
clock;
 int i;
 mcu mcu_("mcu");

 mcu_.clock(clock);

 mcu_.flash->program(0x4400, 0x1111);

 mcu_.flash->program(0x4402, 0x2222);

 mcu_.flash->program(0x4404, 0x3333);

 mcu_.flash->program(0x4406, 0x4444);

 mcu_.flash->program(0x4408, 0x5555);
 mcu_.flash->program(0x440a, 0xaaaa);

 for(i = 0; i < 20; i++){
 clock = 0;
 sc_start(1, SC_MS);
 clock = 1;

 sc_start(1, SC_MS);
 }
 return 0;
}

The simulation program has to be developed further to
support device selection, time quants selection, binary
loading, GDB debug support, etc.

IV. SIMULATION RESULTS

 In order to test the microprocessor pipeline, two events
have to be induced: a pipeline stall and a pipeline bubble.
 The first experiment runs a simulation where each
instruction spends a single cycle in each stage. Here are the
results:

execute 0

decode 0

fetch 1111

============== [3] 0 ==============

============== [3] 1 ==============

execute 0

decode 1111

fetch 2222

============== [4] 0 ==============

============== [4] 1 ==============

execute 1111

decode 2222

fetch 3333

============== [5] 0 ==============

============== [5] 1 ==============

execute 2222

decode 3333

fetch 4444

To induce a pipeline bubble, instruction 0x3333 must spend
2 cycles in the fetch stage. Here are the results:

execute 0

decode 0

fetch 1111

============== [3] 0 ==============

============== [3] 1 ==============

execute 0

decode 1111

fetch 2222

============== [4] 0 ==============

============== [4] 1 ==============

execute 1111

decode 2222

fetch 3333 stall[1]

============== [5] 0 ==============

============== [5] 1 ==============

execute 2222

decode 0 //BUBBLE!

fetch 3333

============== [6] 0 ==============

============== [6] 1 ==============

execute 0 //BUBBLE!

decode 3333

fetch 4444

============== [7] 0 ==============

============== [7] 1 ==============

execute 3333

decode 4444

fetch 5555

In clock cycle #4 the fetching stage stalls for one additional
cycle which produces a bubble in the decode stage. In
iteration #7 the bubble is cleared and execution continues at
full rate.
 To induce a pipeline stall one of the instructions must
block for a time long enough so that the blockage is
propagated to the fetch stage (and respectively to the PC).
Instruction 0x1111 could stall in the execute stage for 3
cycles, then here are the results:

execute 0

decode 0

fetch 1111

============== [3] 0 ==============

============== [3] 1 ==============

execute 0

decode 1111

fetch 2222

============== [4] 0 ==============

============== [4] 1 ==============

execute 1111 stall[2]

decode 2222

fetch 3333

============== [5] 0 ==============

============== [5] 1 ==============

execute 1111 stall[1]

decode 3333 stall[1]

fetch 4444

============== [6] 0 ==============

============== [6] 1 ==============

execute 1111

decode 3333 stall[0]

fetch 5555 stall[1]

============== [7] 0 ==============

============== [7] 1 ==============

execute 2222

decode 3333

fetch 5555 stall[0]

============== [8] 0 ==============

============== [8] 1 ==============

execute 3333

decode 4444

fetch 5555

============== [9] 0 ==============

============== [9] 1 ==============

execute 4444

decode 5555

fetch aaaa

Notice how instruction 0x2222 disappears in clock cycle #5.
This is because its decoding phase has been completed and
the instruction is pushed into the inter-stage buffer. The same
event happens with 0x4444 in cycle #6. The stalling of the
pipeline happens in cycle #6 where instruction 0x5555 is
forced to stall in the fetch stage up to cycle #8 (inclusive). So
a 3-cycle stall in the execute stage forced a 3-cycle stall in
the fetch stage, which is the expected behavior.

V. CONCLUSION

 A simple template SystemC model of a microprocessor is
proposed in this paper. The model will be open-sourced and
could be used by research groups to model different
microarchitectures as a black box, without detailed
knowledge of the underlying hardware. By simply using
instruction cycle numbers from a datasheet, a fast model
development will be possible. The model is independent of
memory and peripherals, and can be used in many
microcontrollers, just like HDL code is reused to create
different families and sub-families of microcontrollers. A
development effort is needed at the beginning to create the
modules and later on a system-level approach can be used to
simply drag-and-drop different components to form a bigger
model.
 The simulation environment is yet rudimental, but will be
enhanced in the future to allow users to perform more
complex simulations. The most important part is a GDB
connection that will enable the simulator to be connected to
a graphical development environment such as Eclipse.
 Future improvements must include the development of a
new template for asynchronous microprocessors, as they are
starting to enter the market for low-power applications.
Energy estimation must be included also, along with the
cycle-accurate timings.

ACKNOWLEDGMENT

 The authors would like to thank the Research and
Development Sector at the Technical University of Sofia for
the financial support.

REFERENCES

[1] D. Patterson, J. Hennessy, "Computer Organization and

Design: The hardware/software interface", 5th edition, ISBN:
978-0-12-407726-3, Elsevier, 2014.

[2] P. Machanick, "Computer Architecture: a qualitative
overview of Hennessy and Patterson", unpublished, online,
2001.

[3] J. Silc, T. Ungerer, B. Robic, "A survey of new research
directions in microprocessors", Microprocessors and
Microsystems 24, pp.175-190, 1999.

[4] J. Smith, G. Sohi, "The Microarchitecture of Superscalar
Processors", Proceedings of the IEEE, Vol. 83, Issue 12, DOI:
10.1109/5.476078, 1995.

[5] D. Bhandarkar, "RISC versus CISC: A Tale of Two Chips",
ACM SIGARCH Computer Architecture News, Vol. 25, Issue
1, pp.1-12, 1997.

[6] R. Espasa, M. Valero, J. Smith, "Vector Architectures: Past,
Present and Future", ICS '98: Proceedings of the 12th
international conference on Supercomputing, pp.425-432,
1998.

[7] "R4300i Microprocessor", Open RISC Technology, datasheet,
rev. 0.3, 1997.

[8] M. Tremblay, D. Greenlay, K. Normoyle, "The Design of the
Microarchitecture of UltraSPARC-I", Proceedings of the
IEEE, Vol. 83, Issue 12, DOI: 10.1109/5.476081, 1995.

[9] J. Parcerisa, J. Sahuquillo, A. Gonzalez, J. Duato, "On-Chip
Interconnects and Instruction Steering Schemes for Clustered
Microarchitectures", IEEE Transactions on Parallel and
Distributed Systems, Vol. 16, Issue 2, DOI:
10.1109/TPDS.2005.23, 2005.

[10] A. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R.
Southworth, U. Cummings, T. Lee, "The Design of an
Asynchronous MIPS R3000 Microprocessor", Proc.
Seventeenth Conference on Advanced Research in VLSI,
DOI: 10.1109/ARVLSI.1997.634853, 1997.

[11] A. Lines, "The Vortex: A Superscalar Asynchronous
Processor", 13th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC'07), DOI:
10.1109/ASYNC.2007.28, 2007.

[12] V. Kulkarni, G. Udupi, "A Simplified Software Energy
Consumption Estimation for Embedded System", Journal of
Embedded Systems, Vol. 4, No. 1, 7-12, DOI:10.12691/jes-4-
1-2, 2017.

[13] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A.
Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gupta, P. Cook,
"Power-aware microarchitecture: design and modeling
challenges for next-generation microprocessors", IEEE Micro,
Vol. 20, Issue 6, DOI: 10.1109/40.888701, 2000.

[14] I. Delgado-Lozano, M. Martínez-Rodríguez, A. Bakas, B.
Brumley, A. Michalas, "Attestation Waves: Platform Trust via
Remote Power Analysis", CANS 2021: Cryptology and
Network Security, pp.460–482, 2021.

