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Abstract – The paper presents different aspects of the 

creation of a cycle-accurate, pipeline-accurate, single-issue, von 

Neumann microprocessor model that can be used as a template 

to model any existing microarchitecture. The goal of this 

development is simplicity and modularity so that any embedded 

developer could create a model out of the instruction timings 

given in the datasheet. The model is created as a separate entity 

to allow for code reuse and support for many families and sub-

families of microcontrollers. 
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I. INTRODUCTION 
 
 Nowadays virtual prototypes are an integral part of the 
system development and simulation on each level of 
abstraction is a common procedure. Many industry-leading 
companies invest in sophisticated software as the hardware 
complexity continues to grow. Register transfer level (RTL) 
and electronic system-level (ESL) design use simulation to 
verify the operability of new hardware configurations. 
Different teams develop libraries, hardware and software, at 
different abstractions to help the final integration of their 
components into a system by the main architect of the 
project. 
 A major effort in the creation of RTL and ESL models is 
done by the Accellera Systems Initiative that groups together 
leading companies like ARM, NXP, STMicroelectronics, 
Intel and others, to create C++ libraries for design and 
verification of electronic products under the name SystemC. 
The positive aspect of such an approach is that the libraries 
are based on standard C++ and can be ported to any operating 
system. Therefore a simulation environment and models 
created in SystemC are OS-independent and compiler-
independent.  
 Though many such tools exist already in the industry, 
most of them are closed-source, or partly-open source. The 
final goal of this research is to create: 

 an entirely open source simulation environment; 
 an entirely open source simulation models. 

Using SystemC for such a task has one more advantage – 
recent releases contain the SystemC AMS libraries that can 
be used for analog and RF functionality which would extend 
the simulation not only for digital circuits but also for analog 
devices.  
 The structure of the future simulation environment is 
shown in Fig. 1. The aim is to create complete SystemC 
models of deeply-embedded microcontrollers such as the 
families of MSP430, ARM Cortex-M, PIC16/18, Xtensa,  

 

Fig. 1. Internal structure of the proposed cycle-accurate simulation 
environment (successor of the Powot Simulator). 

etc. The tool is a successor to the instruction set simulator 
(ISS) Powot Simulator version 2 and adds instruction 
timings and a pipeline of the microprocessor. Energy costs 
of instructions will be supported. The current paper discusses 
only the microprocessor from the block diagram shown in 
Fig. 1. 
 The level of abstraction of the proposed template model is 
RTL and logic gates are not simulated. This would increase 
the simulation speed, as well as provide ease of model 
creation – a developer could treat the microprocessor as a 
black box, using only specifications given in the datasheet of 
the microprocessor or the microcontroller. 
 

II. LITERATURE  OVERVIEW 
 
 To develop a microprocessor model, an insight of the 
microarchitecture is needed. However modern 
microprocessors on the market are closed source and they 
should be treated as a black box. In most of the cases the 
datasheets contain instruction cycles and details that are 
enough to create a model. If no such information is given, 
experimental measurements must be conducted to extract 
those timings by using a microcontroller with an external 
clock generator and a pulse counter. Then, the stages of the 
pipeline have to be modeled using C++ and the SystemC 
libraries. A good starting point for learning about the 
instruction execution and the pipeline is the book [1] and a 
generalized and shortened version of this book is given in 
[2]. Authors start with a simple example of a single-issue, 
scalar processor using just a program counter (PC), memory 
and an arithmetic-logic unit (ALU). 
 The work presented in [3] gives a classification of modern 
processor microarchitectures that deviate from the standard 
von Neumann model. This should be kept in mind while 
developing models because the code of the model should be 
structured in such a way that adding new features is made 
easily and without rewriting the core functionality. 

 



 Some knowledge about superscalar processors is needed 
because such microarchitectures are starting to enter the 
market. One example is the ARM Cortex-M7 that is 
integrated in the deeply-embedded microcontroller 
STM32F769. A description of such an architecture is given 
in [4] where an example C program and its Assembler 
equivalent are analyzed. Data hazards involving registers are 
also explained. 
 In [5] a comparison between a RISC and a CISC 
architecture is given. Two specific processors are analyzed – 
the Alpha 21164 and the Intel Pentium Pro. Implementation 
details of the pipeline are shown that may help for modeling. 
For example, a superscalar processor may have more 
functional units in its core than issue queues. 
 The paper [6] presents details about vector processors. 
Vectored processing moved from supercomputers to 
embedded systems. An example is the RISC-V architecture 
and the RISC-V-based microcontroller ESP32-S2. Because 
RISC-V is an open source instruction set, it is very likely that 
in the future more of these implementations will be seen. A 
template model should contain such an option also. 
 Further architectural details are given in [7] and [8] for the 
R4300i and UltraSPARC-I processors. They contain cache 
memories (which are also common for the modern 
microprocessors) and on the block diagrams the connection 
between them and the processor could be seen. The paper [8] 
even shows the width of the internal buses. The paper [7] 
shows one fundamental detail about pipelined processors – 
the internal logic works on both edges of the clock signal and 
this should be reflected in the SystemC model. Otherwise the 
model wouldn’t be cycle-accurate at all. 
 

III. BASIC BLOCKS OF A CYCLE-ACCURATE SYSTEMC 

MICROPROCESSOR MODEL 
 
 Implementing a microprocessor model is a task that 
cannot be accomplished on its own – additional external (to 
the microprocessor) modules are required. Figure 2 shows 
the minimum setup that is needed to start the development. 
 The microcontroller block is a top-level entity that holds 
all of the modules and the buses. This block has a specific 
name corresponding to a particular part number. The rest of 
the modules can be reused but the microcontroller – cannot. 
 

 
 

Fig. 2. Minimum modules required to start the microprocessor 
model development. 

 The microprocessor block contains a program counter 
(PC), an interrupt controller, and components of the pipeline 
– stages, interconnect buffers, functional units, etc. 
 The pipeline block extracts information about instruction 
execution timings from a library and controls the PC during 
program jumps and pipeline stalls. The pipeline is controlled 
not only by the program instructions but also by an interrupt 
controller. 
  The program counter is a parallel register from the 
register file and is connected directly to the address bus of 
the microprocessor. The address bus is an output-only bus 
and no other outputs can be connected to it, or the SystemC 
simulation kernel will report an error during runtime. The PC 
is used to stop the instruction fetching during a pipeline stall. 
This event can be detected and displayed to the user. 
 The interrupt controller block breaks the fetch-decode-
execute cycle and inserts a vector table address in the 
program counter. Before this happens, a stack frame is 
pushed onto the stack and some cycles are stolen to simulate 
interrupt latency. This block is asynchronous and is not 
connected to the clock signal. 
 The memory block is an abstraction of the entire address 
map of the microprocessor. Instruction and data memory, as 
well as peripheral registers must be mapped into this block 
in the future. For now, only instruction/data memory with 
single cycle access times is needed, a vector table and a stack 
region. This block must be exposed to the simulation kernel, 
so that the user could write some instructions and data before 
performing power-on-reset. No memory controllers are 
modeled so far. The development effort is put entirely on the 
microprocessor. 
 A clock signal is shared between the microprocessor and 
the memory block. Simulation events take place on both 
edges – this will ease the writing of the C++ code and will 
make the model cycle-accurate. For simplicity – debug 
messages of instruction execution are shown on both edges. 
This way the core state is visible to the user. 
 
A. The Microprocessor and the Pipeline 

 
 In Fig. 3 the internal structure of the pipeline is shown. 
The template model contains three stages but from a 
programming point of view they are identical and the user 
can add as many stages as needed. The fetch stage differs 
from the others because it contains the logic for the PC.  
 

 

Fig. 3. Internal structure of the modeled pipeline. 

 
 



 Instruction fetching begins with the PC. The PC is a 
standard 32-bit variable of the type “uint32_t”. This variable 
models a parallel register. Its size can be changed to 8-, 16- 
or 64-bit. If the modeled microprocessor contains a PC with 
a different resolution, the nearest bigger value should be 
chosen, e.g. for a 10-bit PC choose a 16-bit variable, for a 
20-bit PC choose a 32-bit, and so on. 
 Next, the memory or peripheral device will output a value 
on the instruction/data bus. Because many peripherals and 
memories could be connected to it, this bus must be 
implemented as a logic vector – a special type of signal that 
can have logic high, logic low and high-impedance values. 
The bus is declared in SystemC as: 
 
sc_inout<sc_lv<16>> 
instr_data_bus_fetch_in 

{"cpu_instr_data_bus_fetch_in"}; 

 

where sc_inout declares a bidirectional wire, sc_lv<16> 
declares a 16-bit bus width whose wires can have logic 1, 0 
or high impedance states, and the string in the curly braces 
sets the name of the bus. The latter is an important aspect of 
the SystemC simulation because if an error occurs, the 
SystemC kernel outputs a message related to this string. If 
the bus is not given a name, SystemC will use an 
automatically generated one which would make the 
debugging obscure. A more sophisticated bus structures 
exist, such as shown in [9], and is up to the user whether they 
will be implemented or not. 
 Once the instruction/data bus holds a valid value, it will 
be directed to the fetch module. The module is modeled as a 
method of a special type – a synchronous thread in SystemC. 
This is needed because the SystemC simulation kernel can 
treat it as a digital hardware and can route signals 
concurrently. If it is implemented as a normal C++ method, 
each hardware signal will enter each module sequentially, 
which will lead to a non-functioning device. For example, if 
an Enable signal is connected to three modules, this signal 
must reach simultaneously each module in the same clock 
cycle, if asserted. But a C++ program is a sequential 
program, so a problem arises. To deal with this problem, 
SystemC contains a special macro that declares the method 
as a thread. In the current template this is done the following 
way: 
 
SC_MODULE(cpu){ 
 sc_in_clk clock {"cpu_clock"}; 
... 
 void fetch(); 
 void decode(); 
 void execute(); 
...  

 SC_CTOR(cpu){ 
 ... 

  SC_CTHREAD(fetch, clock.pos()); 

  SC_CTHREAD(decode, clock.pos()); 

  SC_CTHREAD(execute, clock.pos()); 
 ... 
 } 

}; 

 

where the macro SC_CTHREAD( ) must be invoked in the 
constructor of the module, SC_CTOR( ), and the clock edge 
for the activation of the method is declared as rising. It is 
worth noting that this template can be used for 
microprocessors with synchronous gates only. Some designs 
try to lower the consumed power by using asynchronous 
gates, like in [10] and [11]. Asynchronous modeling would 
require a more detailed knowledge of the hardware and the 
models would be bigger in code size. For simplicity, authors 
consider only synchronous microarchitectures in this paper. 
 The first value to be fetched (after power on) on the 
instruction/data bus must always be an instruction. When the 
instruction enters the fetch stage, it is passed to a method that 
must evaluate its opcode and extract cycle penalty for the 
current stage. This method should be implemented by the 
user. Currently, the method simply returns 1 cycle per phase, 
to keep the pipeline full. Here a problem arises – most 
manufacturers give instruction cycle cost as a single value. 
This means that the user must either try to figure out the cycle 
cost per each stage alone, or make some kind of cycle-
accurate measurements on a real hardware. Both tasks are 
daunting and future research will be done to address this 
problem. This method can also be used for energy 
consumption estimation and some novel ideas how to do this 
is given in [12], [13] and [14]. 
 The cycle estimation method holds its respective stage 
stalled and counts the number of cycles that have passed 
since the entry of the instruction. When the cycles have been 
wasted, the instruction is ready to advance into the next 
stage. But before that, the next stage must have completed 
the processing of the previous instruction. If there is an 
instruction in the next stage, the previous stage must stall. If 
there is no instruction in the next stage, the previous stage 
can transfer its instruction and load a new one. This behavior 
can be done easily with an inter-stage buffer. The buffer must 
implement a blocking read/write FIFO scheme, i.e. if the 
buffer is full, no new data can be pushed, and if the buffer is 
empty, the stage must stall on reading it. On Fig. 3 six 
variables are used for this purpose: 
 
bool fetch_stage_stalled; 
bool decode_stage_stalled; 
bool execute_stage_stalled; 
  
fifo_buffer *fe_de; 
fifo_buffer *de_exe; 
fifo_buffer *output_buffer; 

 
the first three are simple boolean flags, the second three are 
classes of type “fifo_buffer”. The FIFOs are complex 
variables that must check for data availability on each access, 
that is why they are implemented as classes. The size of the 
FIFO is configurable, but in the current model it is set to 1. 
The methods that the user can use are: 
 
 bool push(sc_lv<16> new_element); 
 bool pop(sc_lv<16> &next_element); 
 bool peek(sc_lv<16> &next_element); 
 bool is_empty(void); 

 
where each value is declared as a logic vector of 16-bit size 
(sc_lv<16>) because the instruction/data bus uses the same 



type. Each method returns 0 on success and 1, if the FIFO is 
full/empty. 
 If all of the stages are stalled, the pipeline stalls and no 
further instructions should be fetched. That is why the flag 
of the fetch stage blocks the PC from incrementing. This 
event can be tracked by the user, as it is one of the most 
important contributors for reducing the instructions per cycle 
(IPC) parameter of a microprocessor.  
 
B. The Microcontroller 

 
 All of the modules described so far are part of a bigger 
entity, the model of the microcontroller. Such a hierarchy 
allows that submodules can be reused just like in real life 
hardware – Texas Instruments’ Timer_A and Timer_B 
modules are one and the same throughout all of the devices, 
ST Microelectronics’ LPTIM and TIM2 also, etc.  
 That is why the microcontroller instantiates all of the 
needed submodules (implemented as SystemC classes) and 
connects them with buses. Here is how this can be done: 
 
SC_MODULE(mcu){ 
 sc_in_clk clock {"..."}; 
 sc_signal<bool> read_write {"..."};  
 sc_signal<sc_lv<16>, SC_MANY_WRITERS> 

instr_data_bus {"..."}; 
 sc_signal<sc_uint<20>> address_bus 

{"..."}; 
 sc_signal<sc_uint<16>> control_bus 

{"..."}; 
 
 cpu *cpu_; 
 flash_memory *flash; 
 

 mcu(::sc_core::sc_module_name); 
 ~mcu(); 

}; 

 
and then the submodules are connected together in the 
constructor of the microcontroller: 
 
mcu::mcu(::sc_core::sc_module_name){ 
cpu_ = new cpu("cpu"); 
 

cpu_->address_bus_fetch_in(address_bus); 
cpu_-
>instr_data_bus_fetch_in(instr_data_bus)

; 
cpu_->clock(clock); 

cpu_->read_write(read_write); 

 
flash = new flash_memory("flash"); 
 
flash->address_bus(address_bus); 

flash->data_bus(instr_data_bus); 
flash->clock(clock); 
flash->read_write(read_write); 

} 

 
Once each submodule is tested and verified, it can be used in 
many different microcontrollers throughout different 
families and subfamilies. 

C. The Simulation Environment 
 

 Once the microcontroller has been set up with a minimum 
of a CPU and a memory block, it must be attached to a 
program that drives the clock line. This has to be done in the 
simulating program that will invoke the models. Currently 
this is a very simple program that initializes the 
microcontroller’s memory with some instructions and a 
single loop that drives the design with some clock cycles: 
 
int sc_main(int argc, char* argv[]){ 
 sc_signal<bool, SC_MANY_WRITERS> 
clock; 
 int i; 
 mcu mcu_("mcu"); 
 

 mcu_.clock(clock); 

 mcu_.flash->program(0x4400, 0x1111); 

 mcu_.flash->program(0x4402, 0x2222); 

 mcu_.flash->program(0x4404, 0x3333); 

 mcu_.flash->program(0x4406, 0x4444); 

 mcu_.flash->program(0x4408, 0x5555); 
 mcu_.flash->program(0x440a, 0xaaaa); 

 
 for(i = 0; i < 20; i++){ 
  clock = 0; 
  sc_start(1, SC_MS); 
  clock = 1; 

  sc_start(1, SC_MS); 
 } 
 return 0; 
} 

The simulation program has to be developed further to 
support device selection, time quants selection, binary 
loading, GDB debug support, etc.   
 

IV. SIMULATION RESULTS 
 
 In order to test the microprocessor pipeline, two events 
have to be induced: a pipeline stall and a pipeline bubble. 
 The first experiment runs a simulation where each 
instruction spends a single cycle in each stage. Here are the 
results: 

execute 0 

decode 0 

fetch 1111 

============== [3] 0 ============== 

============== [3] 1 ============== 

execute 0 

decode 1111 

fetch 2222 

============== [4] 0 ============== 

============== [4] 1 ============== 

execute 1111 

decode 2222 

fetch 3333 

============== [5] 0 ============== 

============== [5] 1 ============== 

execute 2222 

decode 3333 

fetch 4444 



To induce a pipeline bubble, instruction 0x3333 must spend 
2 cycles in the fetch stage. Here are the results: 
 

execute 0 

decode 0 

fetch 1111 

============== [3] 0 ============== 

============== [3] 1 ============== 

execute 0 

decode 1111 

fetch 2222 

============== [4] 0 ============== 

============== [4] 1 ============== 

execute 1111 

decode 2222 

fetch 3333 stall[1] 

============== [5] 0 ============== 

============== [5] 1 ============== 

execute 2222 

decode 0        //BUBBLE! 

fetch 3333 

============== [6] 0 ============== 

============== [6] 1 ============== 

execute 0      //BUBBLE! 

decode 3333 

fetch 4444 

============== [7] 0 ============== 

============== [7] 1 ============== 

execute 3333 

decode 4444 

fetch 5555 

 

In clock cycle #4 the fetching stage stalls for one additional 
cycle which produces a bubble in the decode stage. In 
iteration #7 the bubble is cleared and execution continues at 
full rate. 
 To induce a pipeline stall one of the instructions must 
block for a time long enough so that the blockage is 
propagated to the fetch stage (and respectively to the PC). 
Instruction 0x1111 could stall in the execute stage for 3 
cycles, then here are the results: 
 

execute 0 

decode 0 

fetch 1111 

============== [3] 0 ============== 

============== [3] 1 ============== 

execute 0 

decode 1111 

fetch 2222 

============== [4] 0 ============== 

============== [4] 1 ============== 

execute 1111 stall[2] 

decode 2222 

fetch 3333 

============== [5] 0 ============== 

============== [5] 1 ============== 

execute 1111 stall[1] 

decode 3333 stall[1] 

fetch 4444 

============== [6] 0 ============== 

============== [6] 1 ============== 

execute 1111 

decode 3333 stall[0] 

fetch 5555 stall[1] 

============== [7] 0 ============== 

============== [7] 1 ============== 

execute 2222 

decode 3333 

fetch 5555 stall[0] 

============== [8] 0 ============== 

============== [8] 1 ============== 

execute 3333 

decode 4444 

fetch 5555 

============== [9] 0 ============== 

============== [9] 1 ============== 

execute 4444 

decode 5555 

fetch aaaa 

 
Notice how instruction 0x2222 disappears in clock cycle #5. 
This is because its decoding phase has been completed and 
the instruction is pushed into the inter-stage buffer. The same 
event happens with 0x4444 in cycle #6. The stalling of the 
pipeline happens in cycle #6 where instruction 0x5555 is 
forced to stall in the fetch stage up to cycle #8 (inclusive). So 
a 3-cycle stall in the execute stage forced a 3-cycle stall in 
the fetch stage, which is the expected behavior.   
 

V. CONCLUSION 
 
 A simple template SystemC model of a microprocessor is 
proposed in this paper. The model will be open-sourced and 
could be used by research groups to model different 
microarchitectures as a black box, without detailed 
knowledge of the underlying hardware. By simply using 
instruction cycle numbers from a datasheet, a fast model 
development will be possible. The model is independent of 
memory and peripherals, and can be used in many 
microcontrollers, just like HDL code is reused to create 
different families and sub-families of microcontrollers. A 
development effort is needed at the beginning to create the 
modules and later on a system-level approach can be used to 
simply drag-and-drop different components to form a bigger 
model. 
 The simulation environment is yet rudimental, but will be 
enhanced in the future to allow users to perform more 
complex simulations. The most important part is a GDB 
connection that will enable the simulator to be connected to 
a graphical development environment such as Eclipse.  
 Future improvements must include the development of a 
new template for asynchronous microprocessors, as they are 
starting to enter the market for low-power applications. 
Energy estimation must be included also, along with the 
cycle-accurate timings.  
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