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Abstract— A theoretical model for research the accuracy of 

a method for measuring deviations from flatness is considered 

in the publication. The measurement method is based on the 

concept of the Kalman filter and is particularly effective against 

the action of various types of external influences, such as 

vibrations and shocks, noises of electromagnetic origin, 

temperature deformations, etc. It is adapted to measurements in 

static mode. Based on the measurement method, specialized 

algorithms can be developed to automatically correct 

measurement errors of shape and placement deviations, which 

can significantly improve accuracy characteristics, simplify the 

construction of measuring instruments, and reduce metrological 

requirements for their components and elements. Based on the 

structure of the measurement method, the concept of the 

research model is developed, which is based on the mutual 

conditioning of the statistical characteristics of the errors of 

model and measurement, derived as standalone components in 

the base system of equations. 

Keywords— Kalman filter; Flat Surfaces Measurements; 

Dynamic measurement error; measurement in dynamic mode. 

I. INTRODUCTION 

The modern development of industry, the high level of 
automation and intellectualization of technical processes, 
including measurement processes, allow nowadays to solve 
the problems of ensuring the unity and necessary accuracy of 
measurements, the allocation of the metrological load between 
the hardware and informational parts of the measurement 
systems [1]. The development and application of specialized 
algorithms for automatic error correction in a number of cases 
can significantly improve the accuracy characteristics, 
simplify the construction of measuring instruments and reduce 
the metrological requirements for their components and 
elements [2]. 

For example, in the field of mechanical engineering, the 
metrological task related to the measurement of the deviation 
from flatness is particularly relevant [3]. This task arises both 
in the development and creation, as well as in the calibration 
and attestation of machine-building equipment 
(multifunctional CNC machines, coordinate measuring 
machines, 3D printers, etc.) [4]. One of the main accuracy 
parameters of all the machines and systems listed above is the 

deviation from flatness of the working and measuring 
surfaces. 

The importance it has the measurement of deviation from 
flatness both for the shape of the manufactured products and 
for the quality indicators of the technological equipment and 
measuring systems in coordinate metrology leads to the 
appearance of a large amount of measuring tools in this 
direction [3]. All known methods in this field are based on 
comparing the controlled plane with the reference plane [5, 6]. 
At the same time, the methods for reproducing the reference 
plane and the ways for determining the deviations of the 
measured surfaces from the reference plane can be of a 
different nature [7-25]. It is in this direction, the development 
of specialized mathematical models and algorithms can 
increase the level of automation of metrological processes, 
expand the spectrum of input-output processes and lead to 
improvement of the characteristics of measurement accuracy. 

On the other hand, a large part of the technological 
equipment and measuring systems work in the conditions of 
external influences, which lead to the appearance of 
significant errors, having a dynamic nature for the most part. 
External influences can be sign-changing mechanical 
influences such as vibrations and shocks, noises of 
electromagnetic origin, temperature deformations, etc. All 
these influences are determined by the conditions in a real 
working environment. That is why, in these cases, the task of 
removing or reducing the influence of external factors on the 
measurement result becomes important meaning. One of the 
most effective ways to solve this task is through the 
development of adaptive stochastic optimization algorithms, 
which include evaluation search and iterative optimization of 
the solution. Along with this, it is necessary to evaluate the 
accuracy of the obtained solutions, which will be the main task 
in the present publication. 

II. MEASUREMENT ALGORITHM 

When measuring deviations from flatness in conditions 
characterized by the action of factors of different nature, it is 
appropriate to use the following measurement model, 
representing a powerful tool for combining information from 
different sources: 
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z F X      

(1) 
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q H z       , 

where Fk is the matrix defining the transition from the values 
of the measured magnitude, grouped in the vector zij, from the 
previous position (xkyj) to the current position (xk+1yj); 
Xk+1=[X, Y, 1]Т – matrix with the values of the coordinates in 
the current position determined by the ordered pair of numbers 

xk+1yj; k – a random vector specifying the model; qk+1 – a 
vector formed by the measured values at the current position 
(xk+1yj); Hk+1 – a transformation matrix that converts the 
measurement units from the measurement vector qk+1 to the 

model vector zk+1; k+1 – random vector defining the 
measurement error. 

Based on the model (1), numerous algorithms can be 
created for automatic correction of errors made in real 
working conditions when measuring deviations from flatness, 
parallelism, perpendicularity and other geometric inaccuracies 
of shape and placement. Through this model, error correction 
is embedded in the structure of the measurement procedure in 
the form of a filter, at the output of which the best estimate is 
obtained. When determining deviations from flatness, all 
algorithms based on model (1) work on the basis of data 
obtained from coordinate measurements, the structural 
organization of which is shown in the scheme of Fig. 1. The 
basic coordinate system that defines the measurement-
calculation operations in three-dimensional space is denoted 
by xyz. The deviations of the flat surface 1 in the direction of 
the z axis are measured by the sensors 2. The sensors are 
spaced equally apart in the y-axis direction, and their 
sequential number is denoted by the variable j=1,2,…,n. When 
performing the measurement procedure, all sensors are moved 
simultaneously along the x-axis and reports are made at each 
successive position indicated by i=1,2,…,m. 

Algorithms based on equations (1) work in two steps 
within the prediction-correction model, which is shown 
schematically in Fig.1. In the first step, determined by the first 
equation in system (1), the predicted estimates of the values of 
deviations z in step k+1, as well as their uncertainties, are 
calculated. After receiving the measurement data forming the 

vector qk+1, a correction based on the minimum of the mean 
squared error from the prediction and measurements is 
performed for the values of the deviations z in the current step 
k+1. 

In static measurements, what are the measurements of 
deviations from flatness, there are a number of specific 
features related to the characteristics of the elements of the 
system (1). Thus, for example, the transition matrix Fk can 
take a different form depending on the chosen approach for 
defining the theoretical model by which the values are 
predicted from step k in the next step k+1. One of the 
frequently used theoretical models is a plane of the form 

:k k k ka X b Y c Z    , whose coefficients ak, bk and ck are 

calculated by the method of least squares for each iteration. 
Another specific feature is that in linear measurements the 

transformation matrix Hk+1 can be easily determined, since the 
theoretical model usually works in the same measurement 
units in which the measurement procedures are performed. 
Moreover, the measurement algorithms have wide 
possibilities to configure their parameters so that the model 

errors k and the measurement k+1 represent one-dimensional 
random vectors. 

III. A MATHEMATICAL MODEL FOR ESTIMATING THE 

ACCURACY OF THE MEASUREMENT ALGORITHM 

One of the tasks having important practical importance for 
the applicability of the model (1) is related to the accuracy of 
the estimation of the measured magnitude. The model (1) has 
the advantage that model and measurement errors are 

separated as independent components. In fact, the errors k 

and k+1 represent one-dimensional random vectors whose 
elements can be defined as random variables characterizing 
the uncertainty at each coordinate point xkyj and xk+1yj. 

Unlike other similar filters, model (1) works not only with 
the estimation of the measured magnitude, but also with the 
estimation of the statistical probability density, based on the 
Bayes formula for the conditional probability. 

If at the coordinate point xkyj an estimate kjẑ  is obtained 

with a probability density function (PDF) shown in Fig. 2 with 

 

                     Fig. 1. Measurement scheme and block scheme of the algorithm 



position 1, the predictive estimate p

k 1, jẑ   and its corresponding 

PDF (position 2 of Fig. 2) for the next coordinate point xk+1yj 
x can be obtained based on the equation of the model. It can 
be seen from Fig. 2 that the dispersion of the estimate is larger, 

which is due to the uncertainty defined by the model error k. 
The probability density function of the predicted estimate can 
be determined by a Gaussian model 
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As a result of measuring the magnitude z at the coordinate 

point xk+1yj, a second estimate m

k 1, jẑ   is obtained, the statistical 

characteristics of which are presented in Fig. 2 of curve 3. The 
probability density function of this estimate is defined by 
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The best estimate k 1, jẑ   of the measured magnitude z is 

obtained by combining the predicted estimate p

k 1, jẑ   and the 

measurement estimate m

k 1, jẑ   based on the criterion for a 

minimum of mean squared error.  

The graphical interpretation of the statistical 
characteristics of this estimate is shown in Fig. 2 through 
curve 4. In this case, the property that the multiplication of two 
Gaussian functions equals a third Gaussian function can be 
used [26]. From where it follows that the statistical 

characteristics of the estimation accuracy k 1, jẑ   at the current 

point xk+1yj are determined by the multiplication 
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From where, the new function defining the statistical 

characteristics of the estimation accuracy k 1, jẑ  , will be [26]: 
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where 
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The above formulas make it possible to study the influence 
of the statistical characteristics of the errors allowed in the 
prediction and measurement on the accuracy of the estimate 
when measuring the deviation from flatness. 

IV. ANALYSIS AND RESULTS 

The analysis was performed on the basis of the 
mathematical models presented in the previous point of the 
statistical characteristics of the parameters determining the 

prediction and correction in the platform (1) for stochastic 
optimization. 

The results of the study of the influence of the statistical 
parameters of the prediction and measurement on the 

formation of the result estimate k 1, jẑ   in the current step k+1 

are shown in Figures 3 and 4. It can be seen from Fig. 3 that 
when increasing the values of the mean squared deviation 

k 1 
 from the probability density function of measurement 

k 1
P 

, the value of the estimate k 1, jẑ   shifts in the direction of 

decreasing its values. This shift is stronger pronounced for 

smaller values of the mean squared deviation 
k 1 

 of the 

statistical characteristics defining the estimate prediction. 
From a mathematical point of view, this is explained by the 
stronger influence of the second term in equation (6). The 
probabilistic interpretation of this circumstance is related to 
the broadening of PDF span from measurement, which leads 

 

                      Fig. 2. Layout of the probability density functions of the parameters of the prediction-correction system 
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to a shift of the value of to k 1, jẑ   the left area of the graphic of 

Fig. 2. 

 

Reverse to the influence of 
k 1 

, the increase in the 

values of the mean squared deviation 
k 1 

 leads to a 

substantial change in the values k 1, jẑ   of in the direction of 

increasing its values, i.e. in the direction to the right with 
respect to the arrangement of the graphs of Fig. 2. The most 
complete idea of the influence of the statistical parameters of 
the prediction and measurement on the evaluation of the result 

k 1, jẑ   can be obtained from the three-dimensional graph 

shown in Fig. 5. The function from fig. 5 expresses not only 
the influence of the mean squared deviations of the prediction 
and the measurement, but in this case the values determining 
the difference between the estimates are also taken into 

account, i.e. m p

k 1,j k 1, j
ˆ ˆz z  . 

 

Fig. 5. Results on a three-dimensional scale obtained in research of the 
outcome assessment 

 

Results of the analysis related to the change in the mean 

squared deviation k 1, j   of the estimate k 1, jẑ   obtained in the 

k+1-th iteration are presented in Figures 6 and 7 on a graphical 
scale. It can be seen from the figures that for smaller values 

k 1 
 of the increase of k 1, j   is not substantially, and the 

curves in this case reach certain limit values (Fig. 6). In 

contrast to this, at larger values of 
k 1 

 the increase of the 

mean squared deviation k 1, j   is unbounded (Fig. 7). 

V. CONCLUSIONS 

A model to investigate the accuracy of a flatness 
measurement method is presented. The measurement method 
makes it possible to build specialized algorithms that are 
particularly effective against the action of various types of 
external influences, such as vibrations and shocks, noises of 
electromagnetic origin, temperature deformations, etc. The 
operation of the algorithms is performed in two steps within 
the prediction-correction model. The resulting estimate is 
corrected substantially based on a criterion based on the 
minimum of the mean squared error from the prediction and 
measurements. The concept of the research model is based on 
the mutual conditioning of the statistical characteristics of the 
errors of model and measurement, derived as independent 
components in the basic system of equations. The model 
works not only with the estimation of the measured 
magnitude, but also with the estimation of the statistical 
probability density, based on the Bayes formula for the 
conditional probability. 

The analysis carried out based on the model presented in 
the work reveals important properties of the statistical 
parameters of the prediction and the measurement on the 
accuracy of the estimate when measuring the deviation from 
flatness. 
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