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Abstract: The paper considers the problem of gramians computation for linear hyperbolic
distributed parameter systems. Two different cases are considered: vibrating string and beam
systems. The presented approach is based on directly deriving the equations solutions by using
time - space separation of variables and the Fourier series representation method. The initial
problem framework is based on the state space formulation for infinite dimensional systems.
This framework uses Riesz-spectral operators defined over Hilbert spaces and implements the
concept of a C0 strongly continuous semigroup generated by bounded system operator. The
solution of the hyperbolic partial differential equations is divided in two parts. The zero input
part is due to the initial conditions and participates in obtaining the observability gramian of
the system. The zero state part is a consequence of the input signal effect and is used to compute
the controllability gramian.
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1. INTRODUCTION

In the system modeling and control literature, there ex-
ists a variety of methods for utilizing the gramians in
the procedures of model order reduction, see for example
Antoulas (2005). Although balanced model reduction has
gained quite popularity for finite dimensional systems, it
is still not the prevailing approach for model reduction of
infinite dimensional systems. One of the main reasons for
this drawback is the lack of efficient procedures for com-
puting the gramians, especially for distributed parameter
systems.

Distributed parameter systems are infinite dimensional
systems and their solution belongs to the infinite dimen-
sional Hilbert space. Most physical processes depend on
both time and space variables and therefore, they are
modeled as distributed parameter systems. Actually, the
term distributed parameter follows from the condition
that the corresponding solution reflects the distribution
in space of physical quantities. A specific feature of such
systems is their description in terms of irrational transfer
functions, see Curtain and Morris (2009). A general frame-
work for gramians definition for such systems is presented
in Curtain and Zwart (2020), Glover et al. (1988). The
system theory for infinite dimensional systems in the book
of Curtain and Zwart (2020), is based on the concept of
C0-continuous semigroups for obtaining the solutions of
the corresponding differential equations.

A model reduction procedure for expeditive and accu-
rate solution of hyperbolic partial differential equations
is presented in Taddei and Zhang (2021). A synthesized
review of the time-space separation principle in modeling
distributed parameter systems is given in Li and Qi (2010).

The balanced truncation method for model order reduc-
tion of the semi discretized Stokes equation is presented
in Stykel (2006). The undertaken approach is to obtain
spatial discretization of the Stokes equation by using finite
differences or the finite element method. The relation-
ship between input/output and internal stability and the
concepts of stabilizability/detectability are extended from
the finite dimensional to the infinite dimensional case in
Jacobson and Nett (2008). The generalization of the finite
dimensional theory is made possible from the evolution
of the state which is governed by strongly continuous
semigroup of bounded linear operators on Hilbert spaces.
The problem of model reduction for semistable infinite
dimensional control systems is considered in Ziemann and
Zhou (2019). Empirical gramians for distributed param-
eters systems are proposed in Jiang et al. (2018). Exact
derivation of the observability gramian of an advection-
diffusion PDE is investigated in Georges (2017). The state
observers are designed for estimation and prediction of the
pollution dynamics of a certain region by mainly improving
sensor output sensitivity with respect to the initial state
distribution. Another application of system gramians for
optimal sensor and actuator placement is presented in
Summers and Lygeros (2014). The authors have shown
that a possible placement selection can be accomplished
by optimization of certain controllability and observability
metrics for a given network.

This paper considers the problem of gramians computation
for vibrating string hyperbolic distributed parameter sys-
tem. The solution is obtained directly by using the time-
space separation principle and the Fourier series method.
Both gramians are obtained in the general framework of
C0-continuous semigroup theory. The proposed technique
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for deriving the gramians is extended to the vibrating
beam system.

2. MATHEMATICAL PRELIMINARIES ON
HYPERBOLIC DISTRIBUTED PARAMETER

SYSTEMS

Most models of mathematical physics are described by
partial differential equations of second order. These models
have been used for solving problems related to physical
processes in fluid mechanics and electrodynamics. The
general form of a second order partial differential equation
is given as follows:

autt + butx + cuxx + dut + eux + gu = f(x, t) (1)

where u = u(x, t) is the physical process under consider-
ation and f = f(x, t) is the external force applied to the
process. The equation (1) is homogeneous if the external
force on the right hand side is zero. If the condition b2 −
4ac > 0 is satisfied, the equation (1) is called hyperbolic
differential equation and the system describing the physi-
cal process governed by this equation is called hyperbolic
distributed parameter system. The goal of this paper is
to obtain explicit expressions for the gramians of certain
hyperbolic distributed parameter systems. The abstract
state equation of an arbitrary second order infinite dimen-
sional system is given in the following form, see Curtain
and Zwart (2020):

ż(t) = Az(t) +Bυ(t), (2)

where z(t) =

[
u(·, t) du(·, t)

dt

]T
∈ H, υ(t) ∈ U , H is the

infinite dimensional Hilbert space, A is an operator acting
on H, i.e. A : H → H and B : U → H, where U is the
input space, which can be finite dimensional. The output
equation of this system is presented as follows:

y(t) = Cz(t), (3)

where C : H → Y with Y being the output space, which
also can be finite dimensional. The key concept for obtain-
ing the solution of the infinite dimensional state equation,
that generalizes the concept of state transition matrix,
is the concept of a strongly continuous C0 semigroup,
see Curtain and Zwart (2020). A strongly continuous C0

semigroup is a family of linear operators S : H → H
which have the following properties: i) S(0) = I, where
I is the identity operator; ii) S(t)S(s) = S(t + s); iii)
limt→0+ S(t)z = z for every z ∈ H. The infinitesimal
generator A of a C0 semigroup on H is defined by the
expression Az = limt→0+

1
t [S(t)z − z] with domain D(A),

that is the set of elements z ∈ H for which the limit exists.
In the Riesz-spectral operator framework, the operator A
can be presented in the form:

Az =
∞∑

n=1

λn〈z, φn〉φn, (4)

where {λn, n = 1, 2, . . .} are the operator eigenvalues and
{φn, n = 1, 2, . . .} are the corresponding eigenfunctions,
forming an orthonormal set of functions. The solution of
the homogeneous equation is presented in terms of the C0

semigroup S(t) as follows:

z(t) = S(t)z0, (5)

where z0 is the initial condition. In the Riesz-spectral
operator framework, the solution of the homogeneous
equation can be presented in the form:

z(t) =
∞∑

n=1

eλnt〈z0, φn〉φn, (6)

Similarly to the finite dimensional case, the controllability
map on a finite interval [0, t] is a bounded linear map
C : H([0, t], U) → H, defined as:

(Cυ)(t) =
t∫

0

S(t− τ)Bυ(τ)dτ (7)

The controllability gramian on the finite interval [0, t] is
given in operator form as Wc(0, t) = CC∗, where C∗ is
the adjoint operator of C. Using expression (7), we can
compute the controllability gramian on the time interval
[0, t] as an element of the space of linear maps L(H,H)
from the expression, see Curtain and Zwart (2020):

Wc(0, t)z =

t∫

0

S(τ)BB∗S∗(τ)zdτ. (8)

The infinite dimensional observability map on a finite
interval [0, t], O : H → H([0, t], Y ) is a bounded linear
map defined as:

(Oz)(t) = CS(t)z (9)

The observability gramian on the finite interval [0, t] is
given in operator form as Wo(0, t) = O∗O, where O∗ is
the adjoint operator of O. The observability gramian on
the time interval [0, t], can be computed as an element of
the linear space L(H,H) from the expression, see Curtain
and Zwart (2020):

Wo(0, t)z =

t∫

0

S∗(τ)C∗CS(τ)zdτ. (10)

From the derivations above follows, that the computation
of infinite dimensional system gramians reduces to obtain-
ing the solutions of the infinite dimensional abstract state
and output equations.

3. GRAMIANS EVALUATION FOR THE VIBRATING
STRING SYSTEM

The vibrating string system is a basic example for hyper-
bolic distributed parameter systems that is described by
the wave partial differential equation. We undertake direct
approach for deriving the solution for the wave PDE as
shown in Farlow (1982), which is further used to compute
the gramians for the vibrating string and beam systems.

The application of the law of Newton to a vibrating
string of length l leads to the following partial differential
equation:

∂2u(x, t)

∂t2
= α2 ∂

2u(x, t)

∂x2
+ f(x, t), 0 < x < l, t ≥ 0, (11)

where u(x, t) is the string deviation from the equilibrium
position, α2 is a constant parameter and f(x, t) is a contin-
uous function representing the external force acting on the
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string. We assume that the string ends are fixed and the
wave equation is with homogeneous boundary conditions:
u(0, t) = 0 and u(l, t) = 0. Further assume continuous
initial conditions: u(x, 0) = ϕ(x) and ∂u

∂t (x, 0) = ψ(x). The
vibrating string problem can be described in the frame-
work of abstract differential equation (2), where matrix A

is in the form A =

(
0 1

−A0 0

)
where A0h = −d2h

dx2 and

B =

(
0
1

)
. The domain of the operator A0 is defined as,

see Curtain and Zwart (2020):

D(A0) = {h ∈ L2(0, l) : h,
dh

dx
− continuous,

d2h

dx2
∈ L2(0, l);h(0) = 0 = h(l)}

The domain of the operator A is D(A) = D(A
1
2
0 )×L2(0, l),

see Curtain and Zwart (2020). Applying the time space
separation of variables method, see Li and Qi (2010), we
look for the solution of equation (11) in the form:

u(x, t) = T (t)X(x) (12)

Consider first the homogeneous equation when the exter-
nal force acting on the string is zero, i.e. f(x, t) = 0. Then
the differential equation takes the form:

∂2u(x, t)

∂t2
= α2 ∂

2u(x, t)

∂x2
, 0 < x < l, t ≥ 0, (13)

with initial conditions u(x, 0) = ϕ(x) and ∂u
∂t (x, 0) = ψ(x)

and boundary conditions u(0, t) = u(l, t) = 0. Following
the approach presented in Farlow (1982) and substituting
(12) in (13), we obtain the following expression:

X(x)T
′′
(t) = α2X

′′
(x)T (t) (14)

which can be presented as:

1

α2

T
′′
(t)

T (t)
=

X
′′
(x)

X(x)
(15)

Since both sides of (15) are independent from each other,
they are equal to a constant λ. So, we obtain the equation:

X
′′
(x)− λX(x) = 0 (16)

with boundary conditions X(0) = 0 and X(l) = 0. For
λ ≥ 0, the solution of equation (16) reduces to the trivial
solution X(x) ≡ 0, see Farlow (1982). The only nontrivial
solution exists when λ < 0 and in this case, we obtain the
solution in the form:

X(x) = C sin
√
−λx+D cos

√
−λx (17)

Since X(0) = 0, From (17) is clear that D = 0. Since
X(l) = 0, C sin

√
−λl = 0. The solution of this equation is√

−λ = nπ
l or we obtain λn = −(nπl )2, n = 1, 2, . . .. The

values of λ for which the equation (17)) has nontrivial
solution are called eigenvalues of the wave equation (13)
and the functions φn(x) = sin

√
−λnx = sin nπ

l x are called
eigenfunctions for the wave equation (13). Therefore, the
wave equation has nontrivial solutions in terms of its
eigenfunctions Xn(x) = φn(x) = sin nπ

l x for n = 1, 2, . . ..

For each eigenvalue λn = −(nπl )2, there exists a function
Tn(t), which is a solution of the differential equation:

T
′′

n (t) +
(nπ

l

)2

α2Tn(t) = 0 (18)

The solution of equation (18) can be determined as:

Tn(t) = An cos
αnπ

l
t+Bn sin

αnπ

l
t (19)

The solution of (13) can be presented in the form u(x, t) =∑∞
n=1 un(x, t), where:

un(x, t) =
[
An cos

αnπ

l
t+Bn sin

αnπ

l
t
]
sin

nπ

l
x, (20)

Introducing the summation operator, we can write:

u(x, t) =

∞∑
n=1

[
An cos

αnπ

l
t+Bn sin

αnπ

l
t
]
sin

nπ

l
x (21)

The coefficients An, Bn, n = 1, 2, . . . in (21) can be
determined from the initial conditions:

u(x, 0) =

∞∑
n=1

An sin
nπ

l
x = ϕ(x) (22)

∂u

∂t
(x, 0) =

∞∑
n=1

αnπ

l
Bn sin

nπ

l
x = ψ(x) (23)

for 0 < x < l. The equations (22) and (23) can be
considered as Fourier series presentations of the continuous
functions ϕ(x) and ψ(x) with respect to the complete
orthonormal system of functions φn(x) = sin nπ

l x, n =
1, 2, . . .. Therefore, the coefficients An and αnπ

l Bn are the
Fourier coefficients ϕn and ψn in the series expansion
with respect to the system {φn(x)}, n = 1, 2, . . .. These
coefficients can be determined by the standard formulas:

An = ϕn = 〈ϕ, φn〉 =
2

l

l∫

0

ϕ(x) sin
nπ

l
xdx (24)

Bn =
lψn

αnπ
=

l〈ψ, φn〉
αnπ

=
2

αnπ

l∫

0

ψ(x) sin
nπ

l
xdx (25)

Therefore, the solution of the homogeneous wave equation
can be presented in the form:

u(x, t) =

∞∑
n=1

[
〈ϕ, φn〉 cos

αnπ

l
t+ 〈ψ, φn〉

l

αnπ
sin

αnπ

l
t

]

· φn(x) (26)

The second state variable in the abstract differential equa-
tion can be written as:

∂u

∂t
=

∞∑
n=1

[
−αnπ

l
〈ϕ, φn〉 sin

αnπ

l
t+ 〈ψ, φn〉 cos

αnπ

l
t
]

· φn(x) (27)

We use the following notations:

ωn = αnπ
l , zn(t) =

[
un(·, t)
dun(·, t)

dt

]
, zn(0) =

[
〈ϕ, φn〉
〈ψ, φn〉

]
.

Then,we can write the nth components of equations (26)
and (27) as:
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initial conditions: u(x, 0) = ϕ(x) and ∂u

∂t (x, 0) = ψ(x). The
vibrating string problem can be described in the frame-
work of abstract differential equation (2), where matrix A

is in the form A =

(
0 1

−A0 0

)
where A0h = −d2h

dx2 and

B =

(
0
1

)
. The domain of the operator A0 is defined as,

see Curtain and Zwart (2020):

D(A0) = {h ∈ L2(0, l) : h,
dh

dx
− continuous,

d2h

dx2
∈ L2(0, l);h(0) = 0 = h(l)}

The domain of the operator A is D(A) = D(A
1
2
0 )×L2(0, l),

see Curtain and Zwart (2020). Applying the time space
separation of variables method, see Li and Qi (2010), we
look for the solution of equation (11) in the form:

u(x, t) = T (t)X(x) (12)

Consider first the homogeneous equation when the exter-
nal force acting on the string is zero, i.e. f(x, t) = 0. Then
the differential equation takes the form:

∂2u(x, t)

∂t2
= α2 ∂

2u(x, t)

∂x2
, 0 < x < l, t ≥ 0, (13)

with initial conditions u(x, 0) = ϕ(x) and ∂u
∂t (x, 0) = ψ(x)

and boundary conditions u(0, t) = u(l, t) = 0. Following
the approach presented in Farlow (1982) and substituting
(12) in (13), we obtain the following expression:

X(x)T
′′
(t) = α2X

′′
(x)T (t) (14)

which can be presented as:

1

α2

T
′′
(t)

T (t)
=

X
′′
(x)

X(x)
(15)

Since both sides of (15) are independent from each other,
they are equal to a constant λ. So, we obtain the equation:

X
′′
(x)− λX(x) = 0 (16)

with boundary conditions X(0) = 0 and X(l) = 0. For
λ ≥ 0, the solution of equation (16) reduces to the trivial
solution X(x) ≡ 0, see Farlow (1982). The only nontrivial
solution exists when λ < 0 and in this case, we obtain the
solution in the form:

X(x) = C sin
√
−λx+D cos

√
−λx (17)

Since X(0) = 0, From (17) is clear that D = 0. Since
X(l) = 0, C sin

√
−λl = 0. The solution of this equation is√

−λ = nπ
l or we obtain λn = −(nπl )2, n = 1, 2, . . .. The

values of λ for which the equation (17)) has nontrivial
solution are called eigenvalues of the wave equation (13)
and the functions φn(x) = sin

√
−λnx = sin nπ

l x are called
eigenfunctions for the wave equation (13). Therefore, the
wave equation has nontrivial solutions in terms of its
eigenfunctions Xn(x) = φn(x) = sin nπ

l x for n = 1, 2, . . ..

For each eigenvalue λn = −(nπl )2, there exists a function
Tn(t), which is a solution of the differential equation:

T
′′

n (t) +
(nπ

l

)2

α2Tn(t) = 0 (18)

The solution of equation (18) can be determined as:

Tn(t) = An cos
αnπ

l
t+Bn sin

αnπ

l
t (19)

The solution of (13) can be presented in the form u(x, t) =∑∞
n=1 un(x, t), where:

un(x, t) =
[
An cos

αnπ

l
t+Bn sin

αnπ

l
t
]
sin

nπ

l
x, (20)

Introducing the summation operator, we can write:

u(x, t) =

∞∑
n=1

[
An cos

αnπ

l
t+Bn sin

αnπ

l
t
]
sin

nπ

l
x (21)

The coefficients An, Bn, n = 1, 2, . . . in (21) can be
determined from the initial conditions:

u(x, 0) =

∞∑
n=1

An sin
nπ

l
x = ϕ(x) (22)

∂u

∂t
(x, 0) =

∞∑
n=1

αnπ

l
Bn sin

nπ

l
x = ψ(x) (23)

for 0 < x < l. The equations (22) and (23) can be
considered as Fourier series presentations of the continuous
functions ϕ(x) and ψ(x) with respect to the complete
orthonormal system of functions φn(x) = sin nπ

l x, n =
1, 2, . . .. Therefore, the coefficients An and αnπ

l Bn are the
Fourier coefficients ϕn and ψn in the series expansion
with respect to the system {φn(x)}, n = 1, 2, . . .. These
coefficients can be determined by the standard formulas:

An = ϕn = 〈ϕ, φn〉 =
2

l

l∫

0

ϕ(x) sin
nπ

l
xdx (24)

Bn =
lψn

αnπ
=

l〈ψ, φn〉
αnπ

=
2

αnπ

l∫

0

ψ(x) sin
nπ

l
xdx (25)

Therefore, the solution of the homogeneous wave equation
can be presented in the form:

u(x, t) =

∞∑
n=1

[
〈ϕ, φn〉 cos

αnπ

l
t+ 〈ψ, φn〉

l

αnπ
sin

αnπ

l
t

]

· φn(x) (26)

The second state variable in the abstract differential equa-
tion can be written as:

∂u

∂t
=

∞∑
n=1

[
−αnπ

l
〈ϕ, φn〉 sin

αnπ

l
t+ 〈ψ, φn〉 cos

αnπ

l
t
]

· φn(x) (27)

We use the following notations:

ωn = αnπ
l , zn(t) =

[
un(·, t)
dun(·, t)

dt

]
, zn(0) =

[
〈ϕ, φn〉
〈ψ, φn〉

]
.

Then,we can write the nth components of equations (26)
and (27) as:

zn(t) =

[
cosωnt

1

ωn
sinωnt

−ωn sinωnt cosωnt

]
zn(0) · φn (28)

We consider the following matrix from equation (28):

Λn(t) =

[
cosωnt

1

ωn
sinωnt

−ωn sinωnt cosωnt

]
, (29)

It can be easily seen that the eigenvalues of Λn(t) are
cos(ωnt)± j sin(ωnt) and therefore, after using the Euler’s
equality, we can claim that Λn(t) is similarly equivalent to
the matrix diag{ejωnt, e−jωnt}. It is obvious that matrix
Λn(t) satisfies the conditions for strongly continuous C0

semigroup. Therefore, equation (28) can be considered as
the nth component of equation (6), i.e. the Riesz-spectral
operator representation of zn(t). Next we assume that the
system output is the string deviation from the equilibrium,
i.e. y(t) = u(·, t). We can write:

y(t) =
∞∑

n=1

CnΛn(t)zn(0) · φn, (30)

where Cn = [ 1 0 ]. Expression (30) can be written in
matrix form as:

y(t) =
∞∑

n=1

CnΛn(t)Φnzn(0), (31)

where Φn = Φn(x) is a [ 2× 2 ] diagonal matrix Φn =[
φn 0
0 φn

]
. The observability gramian is computed on the

interval [0, t] by implementing the equation (10) in the
form:

Wo[(0, t), x] =

∞∑
n=1




t∫

0

ΛT
n (τ)C

T
nCnΛn(τ)dτ


Φn(x) (32)

where Λn(t) is defined as in (29) with ωn = αnπ
l , Bn

is a [ 2× 1 ] vector column Bn =

[
0
1

]
and Φn(x) =

Φn is a [ 2× 2 ] diagonal matrix defined as Φn(x) =[
φn(x) 0
0 φn(x)

]
.

For evaluating the controllability gramian for the vibrat-
ing string distributed parameter system, we consider the
nonhomogeneous wave equation:

∂2u(x, t)

∂t2
= α2 ∂

2u(x, t)

∂x2
+ f(x, t), 0 < x < l, t ≥ 0, (33)

with zero boundary conditions u(0, t) = u(l, t) = 0 and
zero initial conditions u(x, 0) = ∂u

∂t (x, 0) = 0. We use
the time-space separation method to find the solution of
(33) with homogeneous initial and boundary conditions,
see Farlow (1982). We assume that the Fourier series
is convergent on the finite interval (0, l) and that the
continuous function f(x, t) can also be presented in terms
of the complete orthonormal set of eigenfunctions φn(x) =
sin nπ

l x as follows:

f(x, t) =

∞∑
n=1

fn(t) sin
nπ

l
x (34)

where fn(t) are the Fourier series coefficients in the series
expansion and can be computed from the expression:

fn(t) =
2

l

l∫

0

f(x, t) sin
nπ

l
xdx (35)

Then, the equation (33) can be written in the form:
∞∑

n=1

[
T

′′

n (t) +
(αnπ

l

)2

Tn(t)− fn(t)

]
sin

nπ

l
x = 0 (36)

Therefore, the coefficients of the Fourier series expansion
(36) have to be all zero and the time-domain function
function Tn(t) satisfies the following equation:

T
′′

n (t) +
(αnπ

l

)2

Tn(t) = fn(t), Tn(0) = T
′

n(0) = 0 (37)

Equation (37) is an ordinary differential equation and its
solution is given in the form:

Tn(t) =
l

αnπ

t∫

0

sin
[αnπ

l
(t− τ)

]
fn(τ)dτ, (38)

where expression (38) is the well known Duhamel integral
for the convolution operator of linear systems. After sub-
stitution of (38) in the expression for u(x, t), we find the
solution of the nonhomogeneous wave equation under zero
initial and boundary conditions as follows:

u(x, t) =

∞∑
n=1


 l

αnπ

t∫

0

sin
[αnπ

l
(t− τ)

]
fn(τ)dτ




· sin nπ

l
x (39)

The time derivative of u(x, t) satisfies the following equa-
tion:

∂u(x, t)

∂t
=

∞∑
n=1




t∫

0

cos
αnπ

l
(t− τ)fn(τ)dτ


 · sin nπ

l
x (40)

Making the same notations as before, we obtain for the
nth state vector component of the abstract differential
equation the following expression:

zn(t) =

t∫

0

[
cosωn(t− τ)

1

ωn
sinωn(t− τ)

−ωn sinωn(t− τ) cosωn(t− τ)

]
·

Bnυn(τ)dτ · sin nπ

l
x, (41)

where Bn =

[
0
1

]
and υn(t) = fn(t). The state z(t)

containing zn(t) from (41) can be written in matrix form
as:

z(t) =

∞∑
n=1




t∫

0

Λn(t− τ)ΦnΥn(τ)dτ


 , (42)

where Υn(t) is a [ 2× 1 ] vector column Υn(t) = Bn ·υn(t)
and Φn = Φn(x) is a [ 2× 2 ] diagonal matrix Φn =[
φn 0
0 φn

]
.
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Following the definition for the controllability gramian as
in (8), we derive the following expression for the gramian:

Wc[(0, t), x] =

∞∑
n=1




t∫

0

Λn(τ)BnB
T
nΛ

T
n (τ)dτ


Φn(x) (43)

where Λn(t) is defined as in (29) with ωn = αnπ
l , Bn is a

[ 2× 1 ] vector column Bn =

[
0
1

]
and Φn(x) = Φn.

4. GRAMIANS EVALUATION FOR THE VIBRATING
BEAM SYSTEM

We consider the partial differential equation describing the
vibrating beam system:

∂2u(x, t)

∂t2
= −α2 ∂

4u(x, t)

∂x4
, 0 < x < l, t ≥ 0, (44)

where α2 = κ
ρ is the parameter with κ - modulus of deflec-

tion, ρ - material linear density and f(x, t) is the external
force acting on the beam. We assume zero boundary con-
ditions: u(0, t) = u(l, t) = 0 and uxx(0, t) = uxx(l, t) = 0.
The initial conditions for the problem are u(x, 0) = ϕ(x)
and ut(x, 0) = ψ(x), where ϕ(x) and ψ(x) are continuous
functions. We apply the method of time-space variables
separation and present the solution in the form u(x, t) =
T (t)X(x) =

∑∞
n=1 Tn(t)Xn(x).

Following the approach presented in Farlow (1982), we
consider the homogeneous equation:

X(x)T
′′
(t) = −α2X(IV )(x)T (t) (45)

From (45) we obtain the following expression:

1

α2

T
′′
(t)

T (t)
= −X(IV )(x)

X(x)
= λ, (46)

where λ = −ω2 is a negative number. From (46) we obtain
the fourth order differential equation:

X(IV ) − ω2X(x) = 0 (47)

Equation (47) has the following general solution, see
Farlow (1982):

X(x) =A cos
√
ωx+B sin

√
ωx

+C sinh
√
ωx+D cosh

√
ωx (48)

From the boundary conditions at x = 0, we have X(0) = 0

and X
′′
(0) = 0, therefore A + D = 0 and −A + D =

0. Thus, we obtain A = D = 0. From the boundary
conditions at x = l, we have X(l) = 0 and X

′′
(l) = 0,

therefore B sin
√
ωl + C sinh

√
ωl = 0 and −B sin

√
ωl +

C sinh
√
ωl = 0. From the last two equations we obtain

Csinh
√
ωl = 0 and B sin

√
ωl = 0 and therefore, C = 0

and
√
ωl = nπ. The natural frequencies of the vibrating

beam system are ωn =
(
nπ
l

)2
and the eigenvalues are

obtained as λn = −
(
nπ
l

)4
. The eigenfunctions of the

problem are Xn(x) = φn(x) = sin nπ
l x, n = 1, 2, . . ..

Next, we consider the function Tn(t), from the differential
equation (46):

T
′′

n (t) +
(nπ

l

)4

α2Tn(t) = 0 (49)

The solution of equation (49) takes the form:

Tn(t) = an cos

[(nπ
l

)2

αt

]
+ bn sin

[(nπ
l

)2

αt

]
(50)

Finally, the solution of the homogeneous vibrating beam
equation is obtained as follows:

u(x, t) =

∞∑
n=1

[
an cos

[(nπ
l

)2

αt

]
+ bn sin

[(nπ
l

)2

αt

]]

· sin nπ

l
x (51)

The coefficients an and bn, n = 1, 2, . . . are obtained from
the initial conditions: u(x, 0) = ϕ(x) =

∑∞
n=1 an sin

nπ
l x

and ut(x, 0) = ψ(x) =
∑∞

n=1 α
(
nπ
l

)2
bn sin

nπ
l x. Since

the eigenfunctions φn(x) = sin nπ
l x, n = 1, 2, . . . form

a complete orthonormal set in the Hilbert space H, we
can compute the coefficients an and bn, n = 1, 2, . . . as
coefficients in Fourier series expansions:

an = ϕn = 〈ϕ, φn〉 =
2

l

l∫

0

ϕ(x) sin
nπ

l
xdx (52)

bn =
1

α

(
l

nπ

)2

ψn =
1

α

(
l

nπ

)2

〈ψ, φn〉

=
2l

α(nπ)2

l∫

0

ψ(x) sin
nπ

l
xdx (53)

Therefore, the solution of the homogeneous vibrating
beam equation is:

u(x, t) =

∞∑
n=1

〈ϕ, φn〉 cos
[(nπ

l

)2

αt

]
sin

nπ

l
x

+
1

α

(
l

nπ

)2

〈ψ, φn〉 sin
[(nπ

l

)2

αt

]
sin

nπ

l
x(54)

The second state variable in the abstract diffrenetial
equation can be written as:

∂u

∂t
=

∞∑
n=1

−α
(nπ

l

)2

〈ϕ, φn〉 sin
[
α
(nπ

l

)2

t

]
sin

nπ

l
x

+ 〈ψ, φn〉 cos
[
α
(nπ

l

)2

t

]
sin

nπ

l
x (55)

We use the following notations:

ωn = α
(
nπ
l

)2
, zn(t) =

[
un(·, t)
dun(·, t)

dt

]
, zn(0) =

[
〈ϕ, φn〉
〈ψ, φn〉

]
.

We build the matrix Λn(t) as in (29) with input argument

ωn = α
(
nπ
l

)2
and present the relation between zn(t) and

zn(0) as in (28). Forming Cn and Φn(x) as in the vibrating
string system we obtain the relation (31) for the vibrating
beam system. Finally, we obtain the observability gramian
of the vibrating beam as in (32).
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Following the definition for the controllability gramian as
in (8), we derive the following expression for the gramian:

Wc[(0, t), x] =

∞∑
n=1




t∫

0

Λn(τ)BnB
T
nΛ

T
n (τ)dτ


Φn(x) (43)

where Λn(t) is defined as in (29) with ωn = αnπ
l , Bn is a

[ 2× 1 ] vector column Bn =

[
0
1

]
and Φn(x) = Φn.

4. GRAMIANS EVALUATION FOR THE VIBRATING
BEAM SYSTEM

We consider the partial differential equation describing the
vibrating beam system:

∂2u(x, t)

∂t2
= −α2 ∂

4u(x, t)

∂x4
, 0 < x < l, t ≥ 0, (44)

where α2 = κ
ρ is the parameter with κ - modulus of deflec-

tion, ρ - material linear density and f(x, t) is the external
force acting on the beam. We assume zero boundary con-
ditions: u(0, t) = u(l, t) = 0 and uxx(0, t) = uxx(l, t) = 0.
The initial conditions for the problem are u(x, 0) = ϕ(x)
and ut(x, 0) = ψ(x), where ϕ(x) and ψ(x) are continuous
functions. We apply the method of time-space variables
separation and present the solution in the form u(x, t) =
T (t)X(x) =

∑∞
n=1 Tn(t)Xn(x).

Following the approach presented in Farlow (1982), we
consider the homogeneous equation:

X(x)T
′′
(t) = −α2X(IV )(x)T (t) (45)

From (45) we obtain the following expression:

1

α2

T
′′
(t)

T (t)
= −X(IV )(x)

X(x)
= λ, (46)

where λ = −ω2 is a negative number. From (46) we obtain
the fourth order differential equation:

X(IV ) − ω2X(x) = 0 (47)

Equation (47) has the following general solution, see
Farlow (1982):

X(x) =A cos
√
ωx+B sin

√
ωx

+C sinh
√
ωx+D cosh

√
ωx (48)

From the boundary conditions at x = 0, we have X(0) = 0

and X
′′
(0) = 0, therefore A + D = 0 and −A + D =

0. Thus, we obtain A = D = 0. From the boundary
conditions at x = l, we have X(l) = 0 and X

′′
(l) = 0,

therefore B sin
√
ωl + C sinh

√
ωl = 0 and −B sin

√
ωl +

C sinh
√
ωl = 0. From the last two equations we obtain

Csinh
√
ωl = 0 and B sin

√
ωl = 0 and therefore, C = 0

and
√
ωl = nπ. The natural frequencies of the vibrating

beam system are ωn =
(
nπ
l

)2
and the eigenvalues are

obtained as λn = −
(
nπ
l

)4
. The eigenfunctions of the

problem are Xn(x) = φn(x) = sin nπ
l x, n = 1, 2, . . ..

Next, we consider the function Tn(t), from the differential
equation (46):

T
′′

n (t) +
(nπ

l

)4

α2Tn(t) = 0 (49)

The solution of equation (49) takes the form:

Tn(t) = an cos

[(nπ
l

)2

αt

]
+ bn sin

[(nπ
l

)2

αt

]
(50)

Finally, the solution of the homogeneous vibrating beam
equation is obtained as follows:

u(x, t) =

∞∑
n=1

[
an cos

[(nπ
l

)2

αt

]
+ bn sin

[(nπ
l

)2

αt

]]

· sin nπ

l
x (51)

The coefficients an and bn, n = 1, 2, . . . are obtained from
the initial conditions: u(x, 0) = ϕ(x) =

∑∞
n=1 an sin

nπ
l x

and ut(x, 0) = ψ(x) =
∑∞

n=1 α
(
nπ
l

)2
bn sin

nπ
l x. Since

the eigenfunctions φn(x) = sin nπ
l x, n = 1, 2, . . . form

a complete orthonormal set in the Hilbert space H, we
can compute the coefficients an and bn, n = 1, 2, . . . as
coefficients in Fourier series expansions:

an = ϕn = 〈ϕ, φn〉 =
2

l

l∫

0

ϕ(x) sin
nπ

l
xdx (52)

bn =
1

α

(
l

nπ

)2

ψn =
1

α

(
l

nπ

)2

〈ψ, φn〉

=
2l

α(nπ)2

l∫

0

ψ(x) sin
nπ

l
xdx (53)

Therefore, the solution of the homogeneous vibrating
beam equation is:

u(x, t) =

∞∑
n=1

〈ϕ, φn〉 cos
[(nπ

l

)2

αt

]
sin

nπ

l
x

+
1

α

(
l

nπ

)2

〈ψ, φn〉 sin
[(nπ

l

)2

αt

]
sin

nπ

l
x(54)

The second state variable in the abstract diffrenetial
equation can be written as:

∂u

∂t
=

∞∑
n=1

−α
(nπ

l

)2

〈ϕ, φn〉 sin
[
α
(nπ

l

)2

t

]
sin

nπ

l
x

+ 〈ψ, φn〉 cos
[
α
(nπ

l

)2

t

]
sin

nπ

l
x (55)

We use the following notations:

ωn = α
(
nπ
l

)2
, zn(t) =

[
un(·, t)
dun(·, t)

dt

]
, zn(0) =

[
〈ϕ, φn〉
〈ψ, φn〉

]
.

We build the matrix Λn(t) as in (29) with input argument

ωn = α
(
nπ
l

)2
and present the relation between zn(t) and

zn(0) as in (28). Forming Cn and Φn(x) as in the vibrating
string system we obtain the relation (31) for the vibrating
beam system. Finally, we obtain the observability gramian
of the vibrating beam as in (32).

For computing the controllability gramian of the vibrat-
ing beam distributed parameter system, we consider the
nonhomogenous equation:

∂2u(x, t)

∂t2
= −α2 ∂

4u(x, t)

∂x4
+ f(x, t), 0 < x < l, t ≥ 0,(56)

with zero boundary conditions u(0, t) = u(l, t) = 0 and
uxx(0, t) = uxx(l, t) = 0, and zero initial conditions
u(x, 0) = ut(x, 0) = 0. We look for the solutions of
the nonhomogeneous wave equations by using the Fourier
series method in the form u(x, t) =

∑∞
n=1 Tn(t)Xn(x) =∑∞

n=1 Tn(t) sin
nπ
l x.

We assume that the Fourier series is convergent and that
the function f(x, t) can also be presented in terms of
Fourier series as f(x, t) =

∑∞
n=1 fn(t) sin

nπ
l x, where fn(t)

are the Fourier series coefficients in the series expan-
sion and can be computed from the expression fn(t) =
2
l

∫ l

0
f(x, t) sin nπ

l xdx. Then, the equation (56) can be writ-
ten in the form:

∞∑
n=1

[
T

′′

n (t) + α2
(nπ

l

)4

Tn(t)− fn(t)

]
sin

nπ

l
x = 0 (57)

The solution for Tn(t) from (57) takes the form:

Tn(t) =
l2

α(nπ)2

t∫

0

sin

[
α
(nπ

l

)2

(t− τ)

]
fn(τ)dτ (58)

Using the expressions for Λn(t) in (29) with ωn = α
(
nπ
l

)2
,

we can write the solution to the vibrating beam problem
into a matrix form as:

z(t) =
∞∑

n=1




t∫

0

Λn(t− τ)ΦnΥn(τ)dτ


 (59)

where Φn = Φn(x), Λn(t) is defined as in (29) for the

vibrating string case with ωn = α
(
nπ
l

)2
, Υn(t) =

[
0

υn(t)

]

with υn(t) = fn(t). Then, the controllability gramian takes

the form as in (43) with Bn =

[
0
1

]
.

5. CONCLUSION

This paper considers the problem of controllability and ob-
servability gramians computation for certain linear, time-
invariant hyperbolic distributed parameter systems. A di-
rect approach for solving the partial differential equation
is considered, and the solution is obtained by using time
space variables separation and the Fourier series method.
Two different distributed parameter systems are explored:
the vibrating string and beam systems. The same approach
for deriving the solutions in both cases is applied, which
is based on obtaining the eigenvalues and eigenfunctions
for the stated problems. The obtained results comply with
the general theory for infinite dimensional systems, based
on the Riesz-spectral operator interpretation of the state
space description and deriving of C0 strongly continuous
semigroups in Hilbert spaces. The obtained gramians are
easy to compute and require elementary operations to
derive.

ACKNOWLEDGEMENTS

This work was supported in part by the Research and
Development Sector at the Technical University of Sofia.

REFERENCES

A. Antoulas. Approximation of large-scale dynamical
systems. SIAM Publ., Philadelphia, 2005.

R. Curtain and K. Morris. Transfer functions of dis-
tributed parameter systems. A tutorial. Automatica, vol.
45, pages 1106 - 1116, 2009.

R. Curtain and H. Zwart. Introduction to infinite-
dimensional systems theory. A state-space approach.
Springer, New York, 2020.

S. Farlow. Partial differeential equations for scientists and
engineers. J. Wiley and sons, New York, 1982.

D. Georges. Optimal sensor location and mobile sensor
crowd modeling for environmental monitoring. IFAC
PapersOnLine, vol. 50, 1, pages 7076 - 7081, 2017.

K. Glover, R. Curtain and J. Partington. Realisation
and approximation of linear infinite-dimensional sys-
tems with error bounds. SIAM Journal of Control and
Optimization, vol. 26, 8, pages 863 - 898, 1988.

C. Jacobson and C. Nett. Linear state-space systems in
infinite-dimansional space: The role and characteriza-
tion of joint stabilizability/detectability. IEEE Tran-
zactions on Automatic Control, vol. 33, 6, pages 541 -
549, 1988.

M. Jiang, J. Wu, W. Zhang and X. Li. Empirical gramian-
based spatial basis functions for model of nonlinear
distributed parameter systems. Mathematical and Com-
puter Modelling of Dynamical Systems, vol. 24, 3, pages
258 - 274, 2018. pages 810-814, 2011.

H.-X. Li and C. Qi. Modeling of distributed parameter
systems for applications - A synthesized review from
time-space separation. Journal of Process Control, vol.
20, pages 891 - 901, 2010.

T. Reis and T. Selig. Balancing transformations for
infinite-dimensional contrl systems. in Proceedings in
Applied Mathematics and Mechanics, vol. 13, pages 465
- 466, 2013.

T. Stykel. Balanced truncation model reduction for
semidiscretized Stokes equation. Linear Algebra and its
Applications, vol. 415, pages 262 - 289, 2006.

T. Summers and J. Lygeros. Optimal sensor and actuator
placement in complex dynamical networks. Proceedings
of the 19th World Congress of IFAC, Cape Town, South
Africa, pages 3764 - 3789, 2014.

T. Taddei and L. Zhang. Space-time registration-based
model reduction of parameterized one-dimensional hy-
perbolic PDE’s. Mathematical Modelling and Numerical
Analysis, vol. 55, pages 99 - 130, 2021.

V. Trenchant, W. Hu, H. Ramirez and Y. Gorrec. Struc-
ture preserving finite dimensional polar coordinates for
heat and wave equations. 9th Vienna International
Conference on Mathematical Modelling, Vienna, pages
624 - 629, 2018.

I. Ziemann and Y. Zhou. Model reduction of semistable
distributed parameter systems. 18th European Control
Conference, pages 1944 - 1950, 2019.


