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Abstract: Driver behavior models are an important part of road traffic simulation modeling. They
encompass characteristics such as mood, fatigue, and response to distracting conditions. The rela-
tionships between external factors and the way drivers perform tasks can also be represented in
models. This article proposes a methodology for establishing parameters of driver behavior models.
The methodology is based on road traffic data and determines the car-following model and routing
algorithm and their parameters that best describe driving habits. Sequential and parallel implemen-
tation of the methodology through the urban mobility simulator SUMO and Python are proposed.
Four car-following models and three routing algorithms and their parameters are investigated. The
results of the performed simulations prove the applicability of the methodology. Based on more than
7000 simulations performed, it is concluded that in future experiments of the traffic in Plovdiv it is
appropriate to use a Contraction Hierarchies routing algorithm with the default routing step and the
Krauss car-following model with the default configuration parameters.
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1. Introduction

Simulation is the main approach in presenting systems for which it is difficult and
expensive to perform real experiments. The degree of correspondence between the real
system and the simulation describes the validity of the model. The acceptability of the
degree of correspondence depends on the purpose of the further experiments [1].

Road traffic is one of the most intensive domains of simulation modeling due to the
great interest in transport and the many pressing issues in this field. Road traffic simulation
models are usually agent-based. This makes them suitable for dynamic enrichment, inte-
gration of complex behaviors, and modeling intelligent human behavior. The drawback is
that the complexity of the model complicates maintenance [1,2].

Road traffic simulation models include many components: the road network, traffic
load data, the choice of simulation tool (traffic simulator), the model of interaction between
agents, and parameter settings. Model evaluation and calibration is often complex and
goal-specific. The use of real input data increases the correspondence to the real world but
complicates the validation process [3,4].

Fitting the input data to the simulator (traffic demand estimation) is one of the impor-
tant tasks to solve. Traffic demand estimation converts input traffic information (lifestyle
statistics and detector data) into single-trip routes using routing algorithms [5,6].

Another important component of the road traffic simulation model is the driver be-
havior model. This takes into account characteristics such as mood, fatigue, and responses
to distracting conditions [7,8]. The relationships between external factors and the way
drivers perform tasks, such as choices of headway during car-following, gap acceptance,
overtaking, speed choice, and lateral and longitudinal control, can also be represented in
the model [9–11].

Table 1 presents studies reflecting different aspects of driver behavior.
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Table 1. Different aspects of driver behavior.

Title Objective Type of Analyzed Data Conclusion

Driver Rating: A mobile
application to evaluate
driver behavior [7]

To test experimentally how
sending feedback to drivers in
real time affects the manner of
driving

Vehicle sensor and
smartphone data

The field experiment confirms the
effectiveness of the Driver Rating
mobile application.

“Machine learning methods
for driver behaviour
classification” [8]

To investigate techniques for
driver behavior detection and
evaluation

Raw and processed
sensor data and video
recordings of trips

The applicability of machine
learning classification methods for
driver behavior evaluation is
confirmed. Three types of driving
are classified: normal, drowsy, and
aggressive.

“Car following and
microscopic traffic
simulation under distracted
driving” [9]

To investigate car-following
models in the context of
distracted activities

Data extracted from
driving simulator

Simulation experiments over
TRANSMODELER traffic simulator
with General Motors and Intelligent
Driver Model car-following models
show deterioration of traffic flow
when texting and to some extent
when talking on the phone.

“The influence of attention
distraction on the drivers’
behaviour” [10]

To examine how time spent
focusing attention on roadside
advertisements affects safety
and driving performance

Data extracted from
driving simulator

Investigation of speed, accelerator
pedal pressure intensity, and
steering wheel angle indicates that
taking eyes off the road for 2 s does
not significantly affect driver
distraction.

“Drivers’ behaviour on
expressways: headway and
speed relationships” [11]

To study drivers’
car-following behaviour on
Malaysian high-speed
highways

Hourly traffic data
collected via Automatic
Traffic Counter
connected to pneumatic
tubes

Real data are processed via linear
regression. The results show that
driver behavior is influenced by the
types of highway facilities.

“An extended car-following
model considering the
drivers’ characteristics under
a V2V communication
environment” [12]

To increase safety and comfort
during driving Traffic simulation

The conducted experiment proved
that vehicle-to-vehicle
communication can improve traffic
stability, safety, and fuel economy.

“Empirical study of effect of
dynamic travel time
information on driver route
choice behavior” [13]

To evaluate the effect of
information on driver
behavior depending on driver
age and historical data.

Pre-run questionnaire,
sensor data from field
experiment, and post-run
questionnaire.

When drivers know the routes well
or have more experience, real-time
information affects them less. Older
drivers are less likely to take risks.

“Assessing the road traffic
crashes among novice female
drivers in Saudi Arabia” [14]

To evaluate factors that affect
road accidents caused by
novice female drivers

Questionnaire

Age is not a significant influencing
factor. Female novice drivers who
are single, divorced/widowed,
employed, and have higher
individual incomes are at higher
risk of getting into car accidents.

“Application of the
AHP-BWM Model for
Evaluating Driver Behavior
Factors Related to Road
Safety: A Case Study for
Budapest” [15]

To dissect and rank the
significant driver behavior
factors related to road safety
in Budapest

Questionnaire

Driver behavior factors are
classified in a three-level
hierarchical structure: “Aggressive
violations”, “fail to apply brakes in
road hazards”, “drive with alcohol
use”, and “disobey traffic lights” are
distinguished as most significant.
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Table 1. Cont.

Title Objective Type of Analyzed Data Conclusion

“Analyzing the Importance
of driver behavior criteria
related to road safety for
different driving cultures”
[16]

To examine the significant
driver behavior criteria in
different cultures

Questionnaire
Each country has its own traffic
safety issues related to driver
behavior.

“Real Time Estimation of
Drivers’ Behaviour ” [17]

To estimate the Intelligent
Driver Model parameters Real traffic data

The factors that affect vehicle
motion characteristics are: driver
lane-change behavior, the number
of vehicles in the opposite lane,
vehicle type in the opposite lane,
and shoulder width.

“Modeling driver behavior
in road traffic simulation”

To present a methodology for
driver behavior modeling in
traffic simulation

Real traffic data -

In articles [7,12,13], the importance of advanced real-time driver information systems
is emphasized. The authors of [7] provided the results of a field experiment that confirms
the advances of the presented application: increased driver attention and pursuit of safe
driving. The authors of [12] prove the effectiveness of the proposed V2V-based information
system via simulation. The conclusions of [13] are ambiguous. The results of a two-stage
survey and field experiment show that dynamic route recommendations do not always
yield results.

Articles [9,10] investigate the effect of distraction during driving. While [9] uses a
traffic simulator to analyze the experimental data, [10] compares two data sets: with and
without distraction influences. The authors of [9] reported a deterioration in traffic flow
when texting and talking on the phone, while [10] concluded that looking sideways for 2 s
did not affect drivers’ reactions.

The authors of [14–16] examine the factors of driver behavior that influence traffic
accidents in different cultures. Based on the three studies, it can be concluded that the
factors that affect traffic safety vary widely among different cultures.

Articles [8,11,17] describe the application of machine learning techniques for driver
behavior data. All applied methods—Kalman filter, linear regression, logistic regression,
gradient boosting, and random forest—are suitable for analyzing driver behavior.

The current article proposes a methodology for choosing simulation model compo-
nents that best reflect driver habits. The methodology is not tied to a specific simulation
tool.

In Section 2, the description of the methodology is presented. In Section 3, an imple-
mentation of the methodology is proposed using SUMO road traffic simulator and video
input data. Section 4 describes parallel implementation of the methodology. Section 5
presents experimental results using four car-following models and three routing algorithms
with different parameters and input data sets.

2. Methodology Description

The proposed methodology aims to select the routing algorithm and car-following
model and their settings that best reflect driving habits.

A car-following model is a function of position, speed, and acceleration. The most
commonly used are micro models, as, with their many adjacent parameters, a higher degree
of correspondence to the real system can be achieved. Examples of popular microscopic
car-following models are Gipps, Krauss, and Widermann [4,5].

Routing algorithms are the main part of traffic demand estimation. They formalize
networks as weighted graphs and compute routes. Examples of commonly used routing
algorithms are Prim, Kruskal, and Dijkstra [18,19]. Routing algorithms take as input data
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the number of vehicles or the ratio between traffic flows in given locations. In cases where
data are set for many locations, the routing algorithms may experience certain difficulties,
and as a result, simulated values deviate from the specified values.

The proposed methodology selects a routing algorithm and a car-following model and
their parameters that most closely correspond to driver habits by choosing the combination
with the smallest deviation between the input and simulated values.

The simulation setup encompasses the road map, traffic light cyclograms, and traffic
loads for road lines. Each vector of the Cartesian product of the possible values of the car-
following model and routing algorithm and their parameters are input into the simulator.
The discrepancy between the simulated data and the real load data shows how well
the respective configuration matches driver behavior. Figure 1 depicts the scheme of
the methodology.

Figure 1. Methodology diagram.

For example, the configuration (Krauss, minGap = 1 m, tau = 2 m, Dijkstra, step = 10 s)
is an input vector for a simulation. This means that the simulation uses a Krauss car-
following model with a minimum distance when stopped of −1 m, a minimum distance
when moving of −2 m, and a Dijkstra routing algorithm with a route recalculation step of
−10 s. After simulation execution, the information about the number of cars that passed
through each lane is compared with the input data. The discrepancy between these two
quantities in percent is calculated for each line. The average value of the discrepancies for
the certain simulation is a metric for the validity of the configuration. the configuration
with the lowest discrepancy is considered to best match driving habits.

3. Experimental Setup

The part of the road network in the city of Plovdiv between ‘’Ruski” Boulevard (to
the east), ‘’Osvobozhdenie” Boulevard (to the west), ‘’Gladstone” Street and “Princess
Maria Luisa” Boulevard (to the north), and ‘’Hristo Botev” Boulevard and Saint Petersburg
Boulevard (to the south) is integrated in SUMO (Simulator for Urban Mobility) (Figure 2).
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Figure 2. Map being used.

SUMO is an open-source multimodal traffic simulator created by the German Aerospace
Center [20]. SUMO offers variety of micro models (Krauss, Widermann, Wagner, Kerner,
Intelligent Driver Model, and new models and modifications) and a meso model. Time
representation is continuous. The traffic demand input also has variety of options: random-
ization, OD matrices, classical four-step approach, flow definitions, ratios, and using data
from observation points. The output data for analysis can be aggregated data about traffic:
the number of vehicles, speed, delays at certain points, emissions, floating car data, and
traffic light configuration [21,22].

The data for the traffic loads in the experiment are obtained through virtual detectors
built on the basis of road cameras. They are extracted from the database of the Municipality
of Plovdiv in the form of Excel reports. Each report contains information about the number
of vehicles that entered the line of a single intersection per hour. The available reports cover
the periods from 15 January to 27 January 2021. Reports for the period 19 February–19
March 2021 for three of the junctions are added to other reports, and an additional set of
simulations is performed with the extended data set.

As illustrated in [23], a repeating pattern is observed on working days and on holidays.
That is why the experimental part is divided in two: working days and holidays. Each data
set is grouped by hour. An average value of each group is an input for a single road line of
the simulation.

The actual duration of the traffic light cycles is used based on the municipality’s docu-
mentation.

For the purposes of the investigation, three routing algorithms and four car-following
models and their configuration parameters are selected (Tables 2–4). All three routing
algorithms that are available in SUMO are investigated. All car-following models that
have stable implementation and no more than six parameters are investigated. The set of
studied parameters is chosen so that the default values should belong to the set and are
not extreme.

Table 2. Routing algorithms.

Routing Algorithm Description

Dijkstra The simplest and slowest

Astar Uses a metric for bounding travel time to direct the search and is often
faster than Dijkstra

Contraction Hierarchies Very efficient when a large number of queries is expected
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Table 3. Car-following models.

Model Notes Examined Parameters

Modified Krauss

The Krauss-model with some
modifications. The default model
used in SUMO. There are 6 rather

than the usual 2 tuning parameters.

minGap, accel, decel,
emergencyDecel, sigma, tau

Krauss The original Krauss-model. minGap, tau

Wagner A model by Peter Wagner using
Todosiev’s action points. minGap, tau

Wiedemann
Still under development. Some

tuning parameters are hard-coded
into the model.

minGap, tau, security, estimation

Table 4. Model parameters.

Parameter Notes Default Value Examined Values Unit

minGap Minimum gap when
standing 2.5 1, 1.5, 2, 2.5, 3 m

accel The acceleration ability
of vehicles 2.6 2.5, 2.6, 2.7, 2.8, 2.9 m/s2

decel The deceleration ability
of vehicles 4.5 4, 4.3, 4.5, 4.8, 5, 5.3,

15.5, 5.8 m/s2

emergencyDecel

The maximum
deceleration ability of
vehicles of this type in
case of emergency, >=

decel

- decel + 0, decel + 1,
decel + 2, decel + 3 m/s2

sigma
The driver imperfection

(0 denotes perfect
driving) [0, 1]

0.5 0, 0.25, 0.5, 0.75, 1 -

tau

The driver’s desired
(minimum) time
headway. Exact

interpretation varies by
model. For the default
model, Krauss, this is
based on the net space
between leader’s back

and the follower’s front.

- 0.25, 0.5, 0.75, 0.9, 1, 1.25 s

security desire for security - 1, 2, 3, 4, 5 -

estimation accuracy of situation
estimation - 1, 2, 3, 4, 5 -

Several Python scripts are implemented to prepare the simulation inputs, run the
simulations, and process the output data.

The ControllerReports.py script converts the municipality reports into two CSV
(comma-separated values) input files—working day (wCFG.csv) and holiday (hCFG.csv)—
by calculating average values per hour for 24 h.

CallFlowrouter.py calculates set of routes and traffic flows from given detectors in
the network. The script uses the SUMO tool flowrouter by setting different measurement
intervals (values 10, 20, 30, 40, and 50 min are set).

TrafficDemand.py performs dynamic user assignment and runs the SUMO simulation.
For dynamic user assignment, the SUMO tool duarouter is used. At this stage, the routing
algorithm and car-following model and all their parameters are set. The result is a Dua.xml
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file that contains all the traffic information for the SUMO simulation. The output of each
simulation and the configuration files are saved in a separate folder named after the
configuration input.

CalculateDiscr.py compares the number of vehicles that passed each road line from
the simulation to the input data in the corresponding CSV input file and calculates the
average discrepancy for each simulation.

4. Parallel Implementation

The proposed methodology requires evaluation of many different simulation
configurations: the Cartesian product of the possible values of the car-following model
and routing algorithm and their parameters. All configurations have no data dependencies
(neither in input nor in output values). Some authors [24] show that the use of computing
resources varies depending on the configuration. They measure the CPU, memory, and disk
usage of SUMO and show that for the same road network, the usage may vary depending
on the model. A resource-aware workflow for automated scheduling running multiple
simulations simultaneously can provide many benefits, especially in reducing time to
produce all results needed.

TraficSim implements the control logic for executing a single simulation. It generates
the routes and configuration files, executes the simulation, and saves all outputs. This
application with all of its dependencies is packaged inside Docker image. To automate
and parallelize the execution of simulations with different input configurations, we used
an Apache Airflow WMS instance running on a Kubernetes cluster inside a private cloud
environment. Airflow is an open-source platform that can programmatically build, sched-
ule, and monitor workflows. They are defined in a Python-based descriptor called a DAG
(directed acyclic graph). Inside a DAG, the parameters, execution order, and level of paral-
lelism of each group of simulations are configured as separate tasks. Airflow then uses the
Kubernetes API to schedule a pod with the Docker image and configuration for each task in
the DAG. Kubernetes scheduling is resource-aware and actively manages workloads. For
each scheduled simulation, we set a ‘’Resource request” based on the average of a couple
of test runs, and ‘’Resource limits” that restrict the maximum that can be used by a single
simulation. All configuration files and the results of the simulation are saved to a cloud
object storage bucket.

5. Results

A total of 7539 simulations were run; among them, 7103 were with simulation step of
1, and 36 were with smaller simulation steps. The big disadvantage of the more-precise
simulation steps is that it requires much more computational resources and/or time [25].

5.1. Working Day Data Set Simulations

All possible configurations for Krauss (450) and Wagner (450) car-following models
over the working day data set are simulated. The Wiedemann and Modified Krauss car-
following models are performed for, respectively, 828 and 825 simulations over the working
day data set. Additional sets of simulations with different simulation steps and extended
input data are performed in order to investigate the factors that influence discrepancy
(Table 5).

The minimum mean discrepancy between simulated and real values in the working
day data set is 21.598% for Krauss and 21.599% for Wagner. In both car-following models,
the minimum discrepancy is observed in all simulations with routing algorithm Contraction
Hierarchies, the routing step, minGap, and tau do not affect the results.

All simulations of Modified Krauss and Wiedemann car-following models over the
working day data set are configured with the Dijkstra routing algorithm and show the same
discrepancy −22.824 %. The discrepancy between simulated and real values is the same
with different values of minGap and tau.
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Table 5. Results of working day data set.

Car-Following
Model Configurations Total Number

of Simulations

Studied
Number of

Simulations

Minimal
Discrepancy %

Deviation in
Minimal

Discrepancy
Routing

Algorithm
Data Set %

Minimal
Discrepancy

Routing
Algorithm

Krauss All 450 450 21.598 0 Contraction
Hierarchies

Wagner All 450 450 21.599 0 Contraction
Hierarchies

Modified
Krauss Dijkstra only 225,000 828 22.824 0 Dijkstra

Wiedemann Dijkstra only 16,200 825 22.824 0 Dijkstra

Modified
Krauss

Contraction
Hierarchies

only
225,000 368 21.598 0 Contraction

Hierarchies

Krauss

simulation step
= 0.01,

Contraction
Hierarchies

only

450 30 32.700 0 Contraction
Hierarchies

Krauss

simulation step
= 0.001,

Contraction
Hierarchies

only

450 4 30.454 0.932 Contraction
Hierarchies

Wagner simulation step
= 0.001 450 2 27.11 4.320 Dijkstra

Krauss

routing step 50
+ additional

data for
19.02–19.03

450 90 24.941 0 Contraction
Hierarchies

Wagner

routing step 50
+ additional

data for
19.02–19.03

450 90 24.941 0 Contraction
Hierarchies

An additional set of 368 simulation of the Modified Krauss car-following model over the
working day data set are performed. They are all configured with the Contraction Hierarchies
routing algorithm and constant values of minGap and tau. The discrepancies between
simulated and real values are the same with different values of acceleration, deceleration,
emergency deceleration, and sigma at −21.598%.

An additional 30 simulations are performed with simulation steps of 0.01 over the
working day data set with the Contraction Hierarchies routing algorithm with steps of
50 s and theKrauss car-following model. All simulations show the same discrepancy of
−32.700%.

An additional four simulations are performed with a simulation step of 0.001 over the
working day data set with the Contraction Hierarchies routing algorithm with steps of 50 s
and with the Krauss car-following model. The minimum discrepancy is 30.454%, and the
deviation is 0.932%.

An additional two simulations are performed with a simulation step of 0.001 over
the working day data set, the Dijkstra routing algorithm with steps of 10 s, the Wagner
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car-following model with minGap = 1, and tau, respectively, of 0.5 or 0.25. The minimum
discrepancy in the two simulations is 27.11%, and the deviation is 4.32%.

An additional 90 simulations are performed over the extended working day data
set with routing steps of 50 s and with the Krauss car-following model. The minimum
discrepancy is 24.941%. This is observed with all simulations with a routing algorithm with
Contraction Hierarchies.

An additional 90 simulations are performed over the extended working day data
set with routing steps of 50 s and with the Wagner car-following model. The minimum
discrepancy is 24.941%. This is observed with all simulations with a routing algorithm with
Contraction Hierarchies.

A total of 3137 simulations over the working day data set are performed. The minimum
discrepancy is 21.598%. This is observed in smaller data set with the Contraction Hierarchies
routing algorithm and Modified Krauss and with the Krauss car-following models. The
simulations over the extended working day data set show higher discrepancy.

5.2. Holiday Data Set Simulations

All possible configurations for Krauss (450) and Wagner (450) car-following models
over the holidays data set are simulated. For the Wiedemann and Modified Krauss car-
following models, we performed, respectively, 828 and 825 simulations over the holiday
data set. Additional sets of simulations with different simulation steps, extended input
data, and fixed parameters are performed in order to investigate the factors that influence
discrepancy (Table 6).

Table 6. Results of holiday data set.

Car-Following
Model Configurations Total Number

of Simulations

Studied
Number of

Simulations

Minimal
Discrepancy %

Deviation in
Minimal

Discrepancy
Routing

Algorithm
Data Set %

Minimal
Discrepancy

Routing
Algorithm

Krauss All 450 450 46.990 0 Dijkstra

Wagner All 450 450 46.776 0 Dijkstra

Modified
Krauss Dijkstra only 225,000 1413 46.776 0 Dijkstra

Wiedemann Dijkstra only 16,200 1409 46.776 0 Dijkstra

Modified
Krauss Additional set 225,000 500 46.776 0 Dijkstra

Krauss

routing step 50
+ additional

data for
19.02–19.03

450 90 22.649 0 Contraction
Hierarchies

Wagner

routing step 50
+ additional

data for
19.02–19.03

450 90 22.649 0 Contraction
Hierarchies

The minimum mean discrepancy between simulated and real values in the holiday
data set is 46.990% with the Krauss model and 46.776% with the Wagner model. In both
car-following models, the minimum discrepancy is observed in all simulations with the
with the Dijkstra routing algorithm . The routing step, minGap, and tau do not affect the
results.

All 1412 simulations of the Modified Krauss car-following model over the holiday
data set are configured with the Dijkstra routing algorithm and return a discrepancy of
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46.776 %. The discrepancy between simulated and real values is the same with different
configuration values.

All 1409 simulations of with the Wiedemann car-following model over the holiday data
set are configured with with the Dijkstra routing algorithm. The minimum discrepancy is
46.776%. The discrepancy between simulated and real values is the same with different
configuration values.

An additional set of 500 simulation with the Modified Krauss car-following model
over the holiday data set are performed. They are all configured with the Dijkstra routing
algorithm and constant values of minGap and tau. The discrepancy between simulated
and real values is the same with different values of acceleration, deceleration, emergency
deceleration, and sigma at −46.776%.

An additional 90 simulations are performed over the extended holiday data set with
a routing step of 50 s and the Krauss car-following model. The minimum discrepancy
is 22.649%. This is observed in all simulations with the routing algorithm Contraction
Hierarchies.

An additional 90 simulations are performed over the extended holiday data set with
a routing step of 50 s and the Wagner car-following model. The minimum discrepancy
is 22.649%. This is observed with all simulations with the routing algorithm Contraction
Hierarchies.

A total of 4402 simulations over the holiday data set are performed. The minimum
discrepancy is 22.649%. This is observed with the extended holiday data set, the Contraction
Hierarchies routing algorithm, and the Krauss and Wagner car-following models.

6. Discussion

A methodology for determining the components of road traffic simulations to describe
driving habits is proposed. The methodology defines a car-following model and a routing
algorithm and their parameters based on road detectors. Two implementations of the
methodology via Python and SUMO are proposed: parallel and sequential. The results of
the performed simulations prove the applicability of the methodology

Currently, results of more then 7000 simulations are available, including configurations
with four car-following models over the holiday and working day data sets in short and
extended variants. The majority of the performed simulations are configured with the
default routing step due to limitations in computational resources. The step of the routing
algorithm and the additional car-following model parameters do not affect the discrep-
ancy with simulation steps of 1 and 0.01. With simulation step 0.001, the configuration
parameters affect discrepancy.

On working days, driver behavior is best described by the Contraction Hierarchies
routing algorithm and the Krauss and Modified Krauss car-following models.The Wagner
car-following model also shows good results. The smallest discrepancy is observed with
the small data set (15–27 January 2021). When extending the data with reports for the
period 19–21 February 2021, the discrepancy increases.

The probable reason for the worse performance of the routing algorithm with the
extended data set is that the driver behavior pattern changes over time, and mixing data
from different periods may lead to data contamination.

In the original holiday data set (15–27 January 2021), the Dijkstra routing algorithm
and the Modified Krauss, Wagner, and Wiederman car-following models show the best per-
formance. The minimum discrepancy in the holiday data set is observed in the extended
data set with the Contraction Hierarchies routing algorithm and the Krauss and Wagner
car-following models.

In the original holiday data set, there are only a few records. When adding the data for
19–21 February 2021 to the holiday set, discrepancy decreases significantly. The probable
reason for this result is that in larger data sets, some of the measurement errors affect the
averages less. The different performance of the routing algorithm on the holiday data set
confirms the effectiveness of the Contraction Hierarchies routing algorithm under heavy
loads.



Sensors 2022, 22, 9801 11 of 12

The possible reason for the different results with the original and expanded data set
is that driver behavior varies at different periods and depends on many preconditions.
Another possible reason for the different results when expanding the data set is random
measurement errors.

It can be concluded that the Contraction Hierarchies routing algorithm is suitable for
heavy loads, while Dijkstra is suitable for lower loads or when data are missing. When
using the default simulation step, the routing step and additional model parameters do
not affect the final result. The results regarding the car-following model are the most
contradictory. In the extended and shortened data sets, different models show minimal
discrepancy. For working days, the Krauss and Modified Krauss models show the best results,
while for holidays, Krauss and Wagner are the best.

7. Future Work

The described methodology suggests fitting the simulation parameters to real traffic
data regarding the number of vehicles that pass on an hourly basis in order to reach a more
realistic simulation model. This idea can be developed using more detailed data about
traffic in the city: for example, the types of vehicles and their sizes, the purpose of the trip,
the presence of public events, etc.

The described methodology offers to find the most suitable car-following model and
routing algorithms and their parameters. It is possible to extend the methodology by
adding more components to be tuned: for example, line-change model and its parameters.

Another option for extending the methodology is to look for simulation model compo-
nents and parameters on an hourly basis instead of working days and holidays.

The proposed implementation via SUMO and Python is a good starting point for
future research. The methodology realization with the same input data and different traffic
simulators would help to evaluate the universality of the proposed approach. Repeating
the experiments with the current implementation and data from other cities or different
periods would help the completeness of the research.

The performed experiments may be a good starting point for setting up the SUMO
road traffic simulator for future traffic studies in the city of Plovdiv. Based on the preformed
experiments, it can be concluded that in future work it is appropriate to use the Contraction
Hierarchies routing algorithm with the default routing step and the Krauss car-following
model with the default configuration parameters.

Examining the selected road network with different sets of input data and a simulation
step less than 0.001 and the exhaustion of all possible 484,200 configurations would be
indicative of the components of the simulation model that best describe the behavior of
drivers in the city of Plovdiv. This would require a massive amount of time or computing
power. One of the possible future directions of work is finding heuristics and developing a
feedback-based workflow.
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