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Abstract.  Motion is the main characteristic of intelligent mobile robots. There 
exist a lot of methods and algorithms for mobile robots motion control. These 
methods are based on different principles, but the results from these methods 
must leads to one final goal - to provide a precise mobile robot motion control 
with clear orientation in the area of robot perception and observation. First in 
the proposed chapter are outlined the mobile robot audio and visual systems 
with the corresponding audio (microphone array) and video (mono, stereo or 
thermo cameras) sensors, accompanied with laser range finder sensor. The au-
dio and video information captured from the sensors is used in the perception 
audio visual model proposed to perform joint processing of  audio visual infor-
mation  and  to determine the current mobile robot position (current space coor-
dinates) in the area of robot perception and observation. The captured from au-
dio visual sensors information is estimated with the suitable algorithms devel-
oped for speech and image quality estimation to apply the preprocessing  meth-
ods for increasing the quality and to minimizing the errors of mobile robot  po-
sition  calculations. The current space coordinates determined from laser range 
finder are used as a supplementary information of mobile robot position, for er-
ror calculation and for comparison with the results from audio visual mobile ro-
bot motion control. In the development of the mobile robot perception audio 
visual model are used: method (RANSAC - Random Sample Consensus) for es-
timate parameters of a mathematical model from a set of observed audio visual 
coordinate data; method (DOA - Direction of Arrival) for sound source direc-
tion localization with microphone array of speaker sending voice commands to 
the mobile robot; method for speech recognition of the voice command sending 
from the speaker to the robot.  
The current mobile robot position calculated from joint usage of perceived au-
dio visual information is used in appropriate algorithms for mobile robot navi-
gation, motion control and objects tracking:  map based or map less methods, 
path planning and obstacle avoidance, simultaneous localization and mapping 
(SLAM), data fusion, etc. 



The error, accuracy and precision of the proposed mobile robot motion control 
with perception of audio visual information are analyzed and estimated from the 
results of the numerous experimental tests presented at the end of this chapter. 
The experiments are carried out mainly with simulations of the algorithms listed 
above, but are trying  also parallel computing methods in implementation of the 
developed algorithms to reach real time robot navigation an motion control us-
ing perceived audio visual information from the mobile robot audio visual sen-
sors. 
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1 Introduction. Audio visual robot perception 

Robot perception is an important characteristic of all modern intelligent robots [1] 
closely related to the human perception [2]. Although the robot perception tries to 
copy human perception system, there are significant differences between human and 
robot perception. These differences are not only in the hardware and software robot 
perception system realization. Generally these differences are in understanding and in 



precision of modeling the human perception using mathematical interpretation or 
heuristic interpretation of visual information from the environments around the mo-
bile robots. There are a lot of scientific publications and articles trying to solve the 
general robot perception problem mostly related and compared them with the same 
characteristics of the human perceptions [3], [4], [5], [6]. The main advantages from 
these articles are the conclusions that it is necessary to have a general representative 
robot perception model containing all existing human perception characteristics and 
applying this general model for solving concrete more often practical robot applica-
tion tasks. There exist a large number of examples of robot applications, where the 
robot perception models help to develop the effective algorithms in wide range of 
robot applications from robot manipulators [7], [8], [9] to mobile robots [10], [11], 
[12], [13] and humanoid like robots [14], [15]. In this chapter the attention is focused 
to mobile robot perception and especially for mobile robot motion control. The task of 
mobile robot motion control is well presented in scientific literature [16], [17], [18] 
and also there are the applications strictly directed only to audio robot perception [19] 
and only to visual robot perception [20].  The proposed audio visual mobile robot 
perception system and algorithms for mobile robot motion control in this chapter are 
based on the condition to perform joint processing of  audio visual information  and  
to determine the current mobile robot position (current space coordinates) in the area 
of robot perception and observation. 

In this work1, an audio-visual system is proposed for mobile robot motion control 
based on audio-visual and range information perceived from robot sensors (micro-
phone array, video camera, and laser rangefinder). Robot motion is controlled through 
speech commands and EKF-SLAM is applied for robot navigation. In EKF-SLAM, 
the environment landmarks are vertical edges, perceived from the camera image, as-
sociated to corners, perceived from the 2D laser rangefinder. This way of modeling of 
the environment has the advantage that because there is not high feature clutter, the 
problem of quadratic complexity of the EKF-SLAM is solved to a great extent. On the 
other hand it constraints the proposed system to be applicable only in structured in-
door environments, containing enough vertical edges. The general system is presented 
in Section 2. Sensor calibration and robot navigation based on EKF-SLAM are ex-
plained in detail in Section 3 and Section 4, respectively. In Section 5 an algorithm is 
presented for quality estimation of perceived speech information. Experimental re-
sults in Section 6 show the functionality of the proposed system. The conclusion in 
Section 7 puts an end to this paper. 
 

                                                        
1  The proposed system for mobile robot motion control through speech commands is based on 

parts of the researches done towards the PhD thesis “Development of Methods and Algo-
rithms for Audio-Visual Mobile Robot Motion Control ”, conducted at The French Lan-
guage Faculty of Electrical Engineering, Technical University of Sofia, Bulgaria [21]. 



2 Mobile robot audio and visual perception system with 

corresponding audio visual sensors and additional laser range 

finder sensor 

The general system for mobile robot navigation based on its perceptions from its envi-
ronment is presented in Fig. 1. It is assumed that the mobile robot perceives audio-
visual information from its environment through a microphone and a video camera 
and range information through a laser rangefinder. The path of the robot is planned 
based on the perceived audio information. In other words it is possible to command 
the robot to navigate within its environment through speech commands. It is described 
in more detail in Sections 4.2 and 4.3. Robot navigation is based on EKF-SLAM, in 
which the environment is modeled based on perceived visual and range information 
from the camera and laser rangefinder. Therefore, the sensors are calibrated in order 
to compensate the systematic errors and also to calculate the relative position of sen-
sors to be able to associate visual perceptions with range information.  

 

Fig. 1. General system for mobile robot navigation within its environment based on perceived 
audio-visual and range information  

3 Sensor calibration using mobile robot visual and range 

perceptions 

The first preparatory step for any system, which consists of several sensors is the 
calibration step [22]. Sensor calibration is performed in order to compensate the sys-
tematic errors of sensor measurements and being able to transform object coordinates 
from the world reference frame to the local frame of the sensor and vice versa. By 
geometric calibration of the camera, its intrinsic parameters are obtained which are 
used for compensation of lens distortions. Intrinsic camera calibration method is dis-
cussed in Section 3.1.  



After intrinsic calibration of the camera, laser rangefinder is calibrated with it ex-
trinsically. In this way the relative position of the sensors are obtained. Subsequently, 
it is easy to find correspondence between the data provided by each of them. 

Therefore, in order to achieve precise results from the proposed system, camera pa-
rameters are first computed by geometric calibration of the camera. Then, the 2D laser 
rangefinder is calibrated extrinsically with the camera. In this way, compensation of 
systematic errors is ensured and measurements can be modeled by a Gaussian distri-
bution containing uncertainty (three standard deviation) caused by random errors. It is 
also possible to find correspondence between vertical edges in the image received 
from the camera and corners in laser data. Thus, each feature is presented by its bear-
ing extracted from visual data and its corresponding range extracted from laser data. 

3.1 Geometric video camera calibration from perceived visual information of 

mobile robot 

Geometric camera calibration method provides camera parameters used for the 
transformation of the object coordinates from the 3D world reference frame to 2D 
image frame and vice versa based on a set of images captured by the camera from a 
test object with a unique pattern from different positions (with varying angle and 
depth). The most popular pattern is a printed chessboard pattern. It is important that 
the pattern produces distinct and well defined corners in the set of images used for 
camera calibration.  

The intrinsic and extrinsic parameters of the camera are determined based on an 
ideal pinhole camera model. Intrinsic camera parameters include camera’s focal 
length, the principal point, lens distortions (tangential and radial) and scaling factors 
(for transformation from 3D metric world reference frame to 2D metric image frame 
and from metric units to pixels). And, extrinsic parameters are rotation matrix and 
translation vector of the object reference frame with respect to the camera reference 
frame. Pixels are assumed to be rectangular (zero skew). 

The coordinate systems used for camera calibration procedure is presented in Fig. 
2 [22].  

 

Fig. 2. Coordinate systems used in geometric camera calibration procedure 



( , , )O o o ox y z=P  and ( , , )C c c cx y z=P  are object coordinates with respect to its 

local frame and camera frame, respectively. ( , )
I i i

u v=P  represents object coordi-

nates in the image plane in pixels. 

Assuming that the object local frame with respect to the camera reference frame is 
represented by a 3 3×  rotation matrix, R  and a 3 1×  translation vector, t , object 
coordinates in the camera frame are: 
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The coordinates of the corresponding point projected to the image plane are calcu-
lated using Eq. (2). 
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where  
f  is the focal length of the camera. 

Then, the projected point in the image plane is represented in pixels ( , )
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where 

u
s  - the scale factor; 

,u vD D - coefficients for conversion from metric units to pixels; 

[ ]0 0

T
u v - principal point. 

The pinhole camera assumption is an ideal assumption. Radial and tangential lens 
distortions are added to the ideal model in order to correct this assumption. Here, only 
two coefficients are considered for each distortion. The radial and tangential distor-
tions are modeled by Eqs. (4) and (5), respectively. 
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1 2,k k  are radial distortion coefficients, and 2 2
i i ir x y= + . 
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where 

1 2,p p  are tangential distortion coefficients. 

Therefore, the general camera calibration model is obtained by correcting the pin-
hole model by combining the pinhole model and radial and tangential distortions (Eq. 
6). 

 
( ) ( )

0 0

( ) ( )
0 0

( )

( )

r t

i u i u u i i i

r t

i v i v i i i

u u u uD s x u u

v v v vD y v v

α

α

 + ∆ + ∆       
= + = +        

+ ∆ + ∆        

%

%
 (6) 

where (ũi, ṽi) are distorted coordinates. 
The camera calibration parameters can be estimated linearly using Direct Linear 

Transform (DLT) method [23]. In this approach nonlinear radial and tangential distor-
tions are ignored and transformation from object local frame to image frame is as-
sumed to be linear using the homogeneous 3 4×  matrix, M. 
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By eliminating the depth value, 
i

w , for each control point 
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j j j

x y z j N= , Eq. (8) is valid. 
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By replacing ( , )
j j

u v  with the coordinates of the observed points ( , )
j j

U V , the 

values of 11 34,..m m can be estimated using the least squares method. In order to avoid 

singularities, in [24] is proposed to use the constraint 2 2 2
31 32 33 1m m m+ + = . 

Figure 3 shows the main steps of the geometric camera calibration algorithm [22]. 
In the proposed method a sequence of images of the chessboard pattern is captured by 
the camera from different positions with varying depth and angle. Then, the user se-
lects the extreme grid corners for each image and inputs some geometrical informa-
tion about the dimensions of the grid cells. These values are used for corner extraction 

initialization. The coordinates of the points 
iP  in the image plane are the location of 

all corners detected in each observed image.  
In this stage of the calibration procedure, it is assumed that during image observa-

tion only Gaussian noise is present and systematic measurement noise is compen-
sated. Therefore, camera calibration parameters are computed by minimizing the least 
square error between the observed coordinates and the coordinates computed based on 
the calibration model presented in Eq. (6). Considering N corner observations 

{ }1 1( , ), , ( , )
N N

U V U VK , least squares method is used to minimize Eq. (9). 
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Because the calibration model is nonlinear, calibration parameters are estimated itera-
tively by minimizing Eq. (9) using the Levenberg–Marquardt algorithm (LMA) [25]. 
In order to avoid the local minimum problem during the iterative optimization proc-
ess, the initial values of the parameters are computed using the DLT method. 
Computed camera calibration parameters are used for image correction. Table 1 pre-

sents the image correction algorithm. First, a 40 40×  grid with tie-points ( , )i ix y  is 

generated, covering the entire image. Distorted coordinates, ( , )
i i

u v% %  of the corre-

sponding tie-points are calculated.  

Then, parameters 1 8, ,a aK of Eq. (10) are estimated iteratively using the least 

squares method in order to calculate the undistorted coordinates. 
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Fig. 3. Geometric camera calibration algorithm 

Once the parameters are estimated, Eq. (10) can be employed for the computation of 
the corresponding undistorted coordinates. Actual coordinates of the points of the 
image are calculated by interpolating the computed distorted and corresponding un-
distorted results. 

 
 
 
 
 
 
 



 Table 1. Image correction algorithm 

 Image correction algorithm 

1. Generate a 40 × 40 grid with distorted and undistorted tie-points ( , )i ix y  

and ( , )i iu v% %  , covering the entire image. 

2. Calculate the corresponding distorted coordinates, ( , )i iu v% % . 

3. Estimate parameters 1 8, ,a aK  for calculation of the undistorted coordinates 

iteratively using the least squares method. 

4. Compute the corrected undistorted coordinates, ( , )i ix y  based on the esti-

mated parameters. 
5. Calculate all actual coordinates of the image by interpolation based on 

( , )i iu v% %  and the new ( , )i ix y . 

 

3.2 Camera-laser rangefinder extrinsic calibration from information of 2D 

laser rangefinder, visual sensor and geometric video camera Calibration 

After intrinsic camera calibration, extrinsic calibration of the 2D laser rangefinder 
and the camera is performed in order to calculate the relative position of the camera 
local frame with regard to the laser local frame by providing the translation vector, 

cl
t  and the rotation matrix, 

cl
R . As a result, point 

c
P  in the camera frame can be 

corresponded with point 
lP  in the laser frame using Eq. (11). 

 
l cl c cl

= +P R P t  (11) 

The calibration is based on observing the same test pattern by both of the sensors 
from different positions. The position of the test pattern in each observation is ob-
tained based on parameters achieved in camera calibration in previous step, and the 
line corresponding to the board in laser data is extracted iteratively by minimizing the 
re-projection error. In order to be able to extract the planar chessboard pattern from 
laser data in each observation, the planar chessboard has to be moved in an almost 
static environment for each observation. Therefore, one of the constraints of extract-
ing the board line in each image is that it is a straight line which changes position in 
each observation. The other constraint comes from considering the fact that the points 
belonging to the board line in laser data must lie on the calibration plane, extracted 
from camera calibration. In other words, assuming that the calibration plane, N is on 
the plane 0z = , and is presented by translation vector, t and rotation matrix, R, pro-

vided by camera calibration (Eq. 12), coordinates of each point 
l

P  of the board line 

in laser data must be on plane N (Eq. 13).  



 3 3 0( );T= − ⋅N R R t  (12) 

where 3R  is the third column of the rotation matrix R, and 0t  is the center of the 

camera in the world frame. 

 
21( )cl l cl

−⋅ − =N R P t N  (13) 

It is evident from Eq. (13) that N is normal to the calibration board and its magni-
tude is equal to the distance from the center of the camera to the calibration board. 

Assuming that all board lines in laser data are on the plane 0y = , clR  and clt  

can be estimated by minimizing iteratively the error, which is defined by the sum of 
Euclidian distance of laser points from the calibration plane, using Levenberg-
Marquardt method. Outliers can also be removed considering the first constraint. 
Therefore, assuming the two described constraints, the translation vector and rotation 
matrix are computed iteratively by minimizing the error in the re-projection of the 
board line on the camera image. 

4 Navigation of mobile robot from perception of audio visual 

information 

As is already mentioned in Section 1, the robot is going to follow speech com-
mands in structured unknown indoor environments. Therefore, robot navigation 
within its environment is based on EKF-SLAM. It is described briefly in Section 4.1. 
Robot path planning, presented in Section 4.2, depends on the recognized speech 
command. 

4.1 Robot navigation based on EKF-SLAM  

A robot placed in an unknown environment can concurrently build the map of its 
surrounding environment while localizing itself within it performing Simultaneous 
Localization and Mapping (SLAM). In general the probabilistic definition of SLAM 

is: At each time t, given the control input (obtained from encoders) tu , and a set of 

landmark observations (sensor measurements) tz , the joint posterior density of the 

robot state and the landmark locations has the following distribution: 

 ( , | , )
t t t

P x M z u  (14) 

Using Bayes rule the posterior can be written as: 
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By applying the Theorem of Total Probability [26] and then the definition of the con-
ditional probability to Eq. (15), the posterior is described as: 
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The resultant recursive equation shows that the SLAM posterior is a function of the 

measurement model ( | , )t tP z x M , the motion model 1( | , )t t tP −x x u , and the 

SLAM posterior at time 1t − . 
The Extended Kalman Filter (EKF) is the most common estimation of the SLAM 

posterior, which represents it as a high-dimensional, multivariate Gaussian parameter-

ized by a mean µ  and a covariance matrix Σ  [27,28].  
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The system state consists of the set of landmark locations M (where the coordinates 
are with respect to the world reference frame) and the robot state. Figure 4 demon-
strates the construction of the system state in brief [21]. 

The non-linear motion model 1( , )
t t t t

f −= +x x u w  (
t

w  is the zero-mean Gaussian 

system noise with the covariance 
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Fig. 4. Developed schema for system state construction in EKF-SLAM 

Considering the above assumptions, the EKF-SLAM is a recursive algorithm that 
can be divided into two main steps: state estimation (prediction) and state update (cor-
rection).  

1. State estimation (Prediction) 

The estimated state vector and covariance matrix are calculated from the previous 
state and covariance, and the control input: 
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∂
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F
x

is the Jacobian of the state transition function  f  

with respect to the robot state. 

Figure 5 demonstrates the motion model of the two-wheeled nonholonomic 
mobile robot. The predicted system state and covariance, considering the odome-

try model 
tt t= +uu µ w , are:  
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Fig. 5. Motion model of a two-wheeled nonholonomic mobile robot 

The only time variant part of the system state is the robot state. Therefore, 

M M
Σ = Σ , and M M=µ µ

 
(the estimated and updated map features with regard to 

the world reference frame are the same).  
The robot state and system covariance are predicted as follows: 
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where Fx and Fu are Jacobians of the state transition function with respect to 

the robot state and control input, respectively: 
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2.  State update (Correction) 
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tracted keypoint can be associated to a landmark in the database or will be considered 
to be added to the database if it is not associated to any known landmark. In the latter 
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The Jacobian of the measurement model with respect to robot state, ,txH  is: 
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The Kalman gain, and the system state and covariance are updated as follows: 
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Landmark update (Augmentation). If a keypoint is stable enough to be added to the 
map, the state vector and the covariance matrix are updated to contain the new land-
mark. 
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where 
X

J  and 
z

J  represent Jacobians of landmark prediction with respect to robot 

state and measurement variables, respectively.  
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Landmark extraction. Movement of the robot is considered to be two-dimensional. 
A good map of the environment can be obtained using both visual and laser data. 
Corners in laser data associated with vertical edges in the camera image are land-
marks of the environment. The laser rangefinder provides accurate distance data to the 
edges, while accurate bearing information is computed from the images acquired by 
the camera. In order to extract vertical edges in the images provided by visual sensor, 
Hough transform [29] is employed to the resultant binary image of Canny edge detec-
tor [30]. Corners are extracted from raw laser information, and only the ones that can 
be corresponded to a vertical edge in the image are considered as map features. Since 
the laser rangefinder and camera are calibrated extrinsically, vertical edges in image 
can be easily corresponded to corner points in laser data.  

Data Association. Data association finds correspondence between the current 
landmark database and the new observations. In this paper, observation is based on 
gated nearest-neighbor approach, in which each matching between sensor observa-
tions and map features is considered independently. In this approach, correlation be-
tween measurement prediction errors is ignored. This will cause problems by accept-
ing bad data associations in high clutter or when robot error increases. Because map 
features are based on perceptions from two sensors and only corners in the laser data 
which correspond to vertical edges in the camera image are considered as map fea-
tures, it is assumed that there is not high feature clutter. This also deals with the prob-
lem of quadratic complexity of the EKF-SLAM. 

The feature database is a table, in which each landmark is defined as 

( , , , )i i i i ix y h m=L , where 
ix  and 

iy  are landmark locations, 
ih  and 

im  show the 

number of hits and misses of each keypoint during data association. The first time a 



keypoint is extracted, 1ih =  and 0im = . If the minimum probability is above some 

fixed threshold, the observation is considered for addition as a new landmark (
i

h  will 

be incremented). On the other hand, if a landmark is predicted to be in the field of 

view of the camera but is not associated with any observation, it is missed (
im  is 

incremented). A keypoint that is hit more than a specific number of times will be 
added to the map, and a landmark in the map that is missed a specific number of times 
is suppressed from the map. 

4.2 Path planning based on perceived audio information 

The robot is controlled by speech commands [21]. Each speech command is a set of 
isolated pre-trained words, like: “STOP MOVING, COME HERE, TURN LEFT, 
TURN RIGHT, STOP AT, FOLLOW ME, ...” and some numbers. All of these com-
mands are saved in a database in the memory of the computer and for each of the 
commands, there is a function for interpreting the corresponding command for the 
robot. Table 2 shows the list of the commands and the corresponding robot actions. 

Table 2. List of commands and the corresponding robot actions 

The command The action 

TURN LEFT The robot turns left 90 degrees. 

TURN RIGHT The robot turns right 90 degrees. 

STOP MOVING The robot stops moving. 

CONTINUE x
*
 METERS The robot continues x meters straight 

with its current direction. 

STOP AT x
*
 AND y

* The robot moves towards the goal 

point (x,y) and stops there. 

 

FOLLOW WALL 

The robot keeps moving parallel to 

the wall on its right side while keeping a 

distance of 0.5 meters from it.  

 

COME HERE 

The robot moves towards the calcu-

lated location of sound source and stops 

at a distance of 0.5 meters from it. 

 

FOLLOW ME 

The robot rotates towards the calcu-

lated sound source direction and tracks 

the displacements of the human detected 

in that direction in the camera image. 

*  x and y are in meters. 
 
In the proposed system for audio-visual mobile robot motion control, the program for 
Windows Speech Recognition application is used, which is based on HMM. Once a 
speech signal is received by the microphones, the speech-to-text program, which is 
being run asynchronously in parallel to the proposed system, writes the detected 



speech signal in a specific predefined text file, and the sound source direction in an-
other text file. This program is independent from the main system, is executed in par-
allel, and uses Speech Application Programming Interface (SAPI) to write the re-
ceived speech signals in a text file, that is going to be read in the program of the main 
system. It also writes the calculated sound source location (described in Section 4.3), 
in another text file.  

The text file, that contains information about the sound source location, is only 
used (read) in the main program if it is detected that the received command is 
“COME” or “FOLLOW ME”. Otherwise, the robot follows the received command 
even if no human is present in the environment. 

As is demonstrated in Fig. 6 [21], the robot waits for speech input by reading the 
text file in which the received command is written. If the text file is not empty, the 
speech command-based path planner reads the text and compares it with the com-
mand words in the database. If a match is not achieved, data in the text file is deleted 
and the program restarts waiting for a speech input, otherwise, the function corre-
sponding to the detected command is called in order to interpret the command for the 
robot. And, the robot path (waypoints) are changed so that the robot follows the re-
ceived command. The new waypoints are inputted to the SLAM layer, causing the 
control input signals to be changed. Thus, the robot starts following the command 
while it is performing SLAM. At the end, the data in the text file is deleted. In this 
way, always the last command is the one which will be followed even if the previous 
one is not performed completely.  
In case the received command is “COME” or “FOLLOW ME”, if a human is visible 
in the direction of the sound source in the field of view of the camera, the distance to 
the human is obtained from laser data, and the next control inputs (robot’s new path) 
will be changed. So, the robot moves towards the sound source and stops at a distance 
of 50 centimeters from it if the command is “COME”, or tracks the detected human if 
the detected command is “FOLLOW ME”. If a specific person is going to command 
the robot, an adaptation of the method described in [31] is going to be applied. In this 
case, the system is trained to be able to detect a specific person by different gestures. 
The human body is considered to be composed of three parts: head, torso and feet. 

It is expected a human body, with the specifications close to the trained ones be de-
tected in the direction obtained from sound source localization. In order to minimize 
the computational complexity, only rectangles in which the detected sound source 
falls in the head part of the body model are considered as areas of interest. To each 
possible rectangle is assigned a constant value which is a function of the maximum 
likelihood of the three parts of that rectangle with the pre-trained model parts. If the 
constant value for a rectangle is greater than a threshold, that rectangle is assumed to 
contain a match to the speaker. And, the centroid of that rectangle is considered to be 
the center of mass of the speaker. 



 

Fig. 6. Proposed speech command-based path planning 

Figure 7 [31] shows the decomposition of the main rectangle into three parts based 
on body contour model considering the pre-trained model. To each part is assigned a 
value that shows the likelihood of the part to the corresponding part of the trained 
model. The weighted sum of the values of the three parts is the constant value as-
signed to the rectangle containing the detected human model (Eq. 34). Mobile parts of 
the body like hands and legs are excluded from the model.  

 1 2 30.3 0.6 0.1K K K K= + +  (34) 

Once the human is detected, the robot moves towards him or follows him (depending 
on the received command). 
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Fig. 7. a) Decomposing the rectangle around the body contour model into three parts based on 
the trained model (the model on the right side). b) Assigning likelihood coefficients to each part 

4.3 Audio sensor model, sound source localization and speech recognition 

The sound source localization method employed for audio-visual motion control of 
mobile robot is based on Time Delay Of Arrival (TDOA) estimation and is presented 
in Fig. 8. The lag time between the reception of the signals by each of the micro-
phones is obtained by finding the maximum of the cross-correlation of the two signals 
received by the corresponding microphones. Then, considering that the relative geo-
metrical position of the microphones is known, the sound source can be located. 

 

 

Fig. 8. Time delay of arrival estimation 

Direction localization using microphone array. Assuming far field conditions, 
Time Delay Of Arrival (TDOA) approach is used to localize the direction of the 
sound source. The lag time between each pair of microphone is obtained by finding 
the peak in the cross correlation of the signals received by them [21]. With n micro-
phones, there are n-1 independent cross correlations. Therefore, by finding the lag 
time between the first microphone and all other microphones, all lag times can be 
calculated: 

 1 1ij j iT T T∆ = ∆ − ∆  (35) 



1 j
T∆  (for j=2,3,...,n) is calculated using the following equation:  

 1 1 ( )arg maxj jT R
τ

τ∆ =  (36) 

where, 1 jR  is the cross correlation between the signals received at the first micro-

phone and the rest of the microphones, assuming that the microphones are not all 
positioned in the same plane (for the stability of the system of equations mentioned in 
Eq. 40). Since the objective of the sound source localization in the proposed system is 
to localize the source of the speech command and considering that the voice signal is 
generally low-pass, the peaks of the cross-correlations can be very wide. This prob-
lem is solved by normalizing (whitening) the spectrum of the signals prior to comput-
ing the cross-correlation [32,33]. Also, in order to increase the robustness of the sig-
nal to noise, more weight is given to the the regions in the spectrum with higher sig-
nal-to-noise ratio (SNR). Assuming that X(k) is the mean power spectral density for 
all the microphones at a given time and that Xn(k) is a noise estimate based on the 
time average of previous X(k). The noise masking weight is: 
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In tonal regions of the spectrum, the SNR is very high. Thus, the contribution of the 
signal in tonal regions is increased using the following weight function: 
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 Therefore, the resulting weighted cross-correlation. is: 
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After obtaining the lag times between all microphones, sound source localization is 
achieved based on the relative geometrical positions of microphones. As is illustrated 

in Fig. 9, let ( , , )T
u v w=s

r
represent the sound source direction, for n microphones, 

each with location ( , , )i i ix y z , we have:  
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Fig. 9. Sound source localization 

5 Algorithms for quality estimation of perceived speech and 

image information from the robot to increase the mobile 

robot audio visual perception 

The importance of quality estimation of perceived from the robot speech and image 
information can be motivated as one of the possible effective methods to increase the 
precision of mobile robot motion control2. 

5.1 Algorithm of quality estimation of perceived speech information from 

the robot 

There are a lot of methods [34], [35], [36], [37] and standards [38], [39], [40] for 

audio quality estimations. Most of them are based on subjective tests, other are 

objective methods and algorithms trying to obtain the precision of subjective 

methods. For the mobile robot speech perception quality estimation only the objective 

methods and algorithms can be applied.  

 

                                                        
2  This section is based on parts of the researches done towards the PhD thesis “Development 

of Methods and Algorithms of Audio and Video Quality Estimation and increasing in mul-
timedia communication systems”, conducted at The French Language Faculty of Electrical 
Engineering, Technical University of Sofia, Bulgaria. 



An important condition to choose an adequate objective algorithm is the closeness to 

the precision of the subjective methods widespread for speech quality estimation in 
communication systems [41], [42], [43], [44]. The algorithm corresponding to this 

condition is presented in Fig.10 and is based on the proposed method of objective 

speech quality estimation replacing person as estimator in subjective methods with 
text to speech and speech to text methods as criterion in speech quality estimation 

[45], [46]. The main advantages of this proposition are the elimination of the person 

subjective factor in speech quality estimation process and the approach of the 
precision of objective speech quality methods to the higher precision of subjective 

methods. In the Fig. 11 is presented the corresponding simulation model of the mobile 

robot speech perception quality estimation. 

 

 

Fig. 10. Algorithm of objective quality estimation of speech robot perception  



In the beginning of the algorithm is used an original text (marked as block “Original 
text”) from printed document, which is converted into a speech signal from a micro-
phone connected to the mobile robot perception system (marked as block “Robot 
perception system”). The input speech signal is recorded as audio file (marked as 
block “Audio Record 1”) in the mobile robot computer perception system and simul-
taneously is converted into a digital text file (referred as block “Speech to Text Con-
version 1”). The converted speech signal into a digital text file must be interpreted 
from the mobile robot as a speech command from a person speaking to the robot. In 
the same time the perceived from the mobile robot speech signal is reproduced by 
loudspeaker device (presented as “Speaker” in Fig.10) and is recorded on the com-
puter as audio file (marked as block “Audio Record 2”). In front of and nearby the 
loudspeaker device is placed another microphone, which receives the speech signal 
for conversion into a new text file (referred as block “Speech to Text 2”). 

 

Fig. 11. Simulation model of audio input part with text to speech and audio output part with 
speech to text 

In the simulation model on Fig. 11 are presented two types of possibilities to choose 
the source of the speech signal:  

─ real speech signal perceived direct from mobile robot microphone (From Audio 
Device);  

─ speech signal converted from a speech to text system (Data Type Conversion). 

The simulation model from Fig.11 execute algorithm presented on Fig.10 in situa-
tions, when the mobile robot receive person speech commands. The quality estimation 
of speech command perception from mobile robot is prepared as the comparison 
(marked as block “Text compartment and error evaluation” in Fig.10.) and calculation 
of the number of incorrect received words between the two text files (Fig.11): 

─ text document created after direct speech to text converssion of spoken from 
person words as speech comands to the robot and saved as text file stt.txt;  

─ text document created after speech to text converssion of perceved from the robot 
words as speech comands and saved as text file rev_stt.txt.  



As a result of comparison the error evaluations are used to define two types of 
quality assessment for mobile robot objective speech perception as speech command 
from a person: 

 robotpersonD NErWNErWDNErWOSQE −==  (41) 

or 

 
robot

person

R
NErW

NErW
RNErWOSQE ==  (42) 

where 

OSQED and OSQER are the objective quality estimations of mobile robot speech 
perception defined as difference (DNErW) or as ratio (RNErW) between the number 
of erroneous words (NErWrobor) after speech to text converssion of perceved from the 
robot words as speech comand and the number of erroneous words (NErWperson) after 
direct speech to text converssion of spoken from person words as speech comand to 
the robot. 

An additional to the proposed above objective quality estimations of mobile robot 
speech perception is the possibility to prepare an extra or additional estimation func-
tion for more precise objective speech quality assessment of the method and algo-
rithm presented in Fig.10. This additional estimation is proposed to prepared as a 
possible comparison (marked as block “File comparement and error evaluation” in 
Fig.10.) between the two audio records “Audio Record 1” and “Audio Record 2”:  

─ original speech signal saved as speech file orig.wav,  
─ received speech signal saved as speech file rev.wav.  
 

6 Experimental results and discussions 

Experimental results in this section are obtained by the robot Surveyor SRV-1 [47], 
which is equipped with a platform of sensors consisting of a Blackfin camera [48] and 
a Hokuyo URG-04LX-UG01 scanning laser rangefinder [49] (Fig. 12). The camera 
uses the OV9655 CMOS sensor [50]. The Signal-to-Noise Ratio (SNR) of the sensor 
and its dynamic range (ratio between the maximum and minimum measurable light 
intensities) are 42 dB and 50 dB, respectively. The proposed control system for audio-
visual mobile robot motion control is assumed to be applied in structured indoor envi-
ronments. The main system is demonstrated by simulations in Matlab, which are 
based on real sensor data. In parallel with the main algorithm, Microsoft Speech API 
is used by a program, written in visual basic, for writing the received speech signals in 
a text file. The speech commands are detected in the main program by reading this 
text file and comparing it with the command database. The commands are followed 
by employing SLAM [21].  



                             (a)      (b) 

 

Fig. 12. a) Robot Surveyor SRV-1 equipped with a Blackfin Camera. b) Hokuyo URG-04LX-
UG01 Laser Range Finder 

The control noise, Q  and the measurement noise, R  are assumed to be: 
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The environment of the experiments is the telecommunication laboratory (No. 1258). 
Measurements provide range-bearing information about the landmarks (corners) of 
the environment. In Simulations, the frequency of control updates is 40 Hz and obser-
vations are obtained with a frequency of 5 Hz, and the robot speed and wheelbase are 
assumed to be 0.1 m/s and 10 cm, respectively. 

6.1 Sensor calibration 

In the proposed system for audio-visual motion control of mobile robots, the cam-
era and laser range finder must be calibrated extrinsically so that their relative posi-
tion could be computed. This is useful for modeling the environment by corners, de-
tected from laser data and associated with their corresponding vertical edges in the 
field of view of the camera. 

Intrinsic parameters of the camera are obtained by geometric camera calibration. 
These parameters are used for compensation of lens distortions. The camera is cali-
brated practically using Bouguet’s camera calibration toolbox [51]. A sequence of 
images of the chessboard pattern, captured by the camera from different positions 
with varying depth and angle, used for camera calibration, is shown in Fig. 13.  



 

Fig. 13. The sequence of images of the test pattern used for geometric camera calibration 

After selecting the extreme grid corners for each image and providing geometrical 

information about the dimensions of the grid cells (30 30mm mm× ), corner extraction 
is performed and camera calibration parameters are computed by minimizing the least 
square error between the observed corner coordinates and the coordinates computed 
based on the calibration model. Figure 14 demonstrates the extracted corners from 
two of the images.  

 

      

Fig. 14. Corner extraction performed in camera calibration 

The intrinsic parameters of the camera are presented in Table 3. They are: 

 { }
1 2 1

( ) ( ) ( ) ( )
0 0 2( , ), ( , ), ( , ), ( , ) ;r r t t

u vf f u v k k k k  (44) 

where  

─ ( , )u vf f  is the focal length in pixels (it includes the scaling factors, too); 

─ 0 0,u v  are the coordinates of the principal point in pixels; 

─ 
1 2

( ) ( ),r rk k  present radial lens distortion coefficients and are related to the radial 

distortion coefficients by 
( ) 3
1 1

rk f k=  and 
( ) 5
2 2

rk f k= .  



─ 
1 2

( ) ( ),t tk k  present tangential lens distortion coefficients and are related to the tan-

gential distortion coefficients by 
( ) 2
1 1

tk f p=  and 
( ) 2
2 2
tk f p= . 

Table 3. Results of geometric calibration of the camera 

Parameter Value standard dev. 

uf  (pixels) 301.49221 1.71848 

vf (pixels) 303.21885 1.57392 

0u (pixels) 155.45581 1.18310 

0v (pixels) 139.29446 1.82011 

1

( )rk  -0.43039 0.00763 

2

( )rk  0.24063 0.01870 

1

( )tk  -0.00382 0.00195 

( )
2

tk  -0.00297 0.00052 

 
It is visible in Table 3 that lens tangential distortion is negligible. On the other hand, 
there is a considerable radial lens distortion, and image correction is performed on the 
images captured by the camera based on radial lens distortion coefficients. 

Another useful information provided by the geometric camera calibration is that 
the relative position of each of the images of the sequence with regard to the local 
frame of the camera is obtained as extrinsic parameters of each image (Fig. 15).  

 
Fig. 15. Extrinsic parameters (camera-centered) 

Therefore, considering that the position of all corners is now known with respect to 
the camera frame, by finding the board corners in laser scan data for each chessboard 



position, laser rangefinder’s relative position with respect to the camera is iteratively 
calculated minimizing the squared error.  

After calibration of the sensors, their systematic errors are compensated and meas-
urements can be modeled by Gaussian distribution containing uncertainty caused by 
random errors. Also, assuming measurements to have Gaussian distribution in SLAM 
generates results with good precision. Additionally, because of extrinsic calibration of 
laser rangefinder and the camera, correspondence is found between vertical edges in 
the image received from the camera and corners in laser data.  

6.2 Robot navigation based on EKF-SLAM 

In the following simulations, the accuracy of robot navigation based on EKF-SLAM 
is compared to robot navigation based on dead-reckoning. Therefore, it is assumed 
that the same path is planned within the same environment, and that the robot starts 
from the same point in all the experiments. Each of the algorithms are applied 40 
times under the same conditions, and the result with the highest average localization 
error (the worst result) among the 40 experiments represents each of the algorithms. 
Figure 16 [21] demonstrates simulation results and robot localization absolute and 
average errors for each of the algorithms.  
It is obvious that in mobile robot positioning based on dead-reckoning, the accuracy 
decreases over time. Figure 16.c shows that positioning error is accumulated over 
time because random errors of proprioceptive sensor measurements accumulate and 
lead to incremental uncertainties in the robot position estimation over time. In about 
3.2 meters of robot navigation based on dead-reckoning, the average error relative to 
the traveled path is more than 6%. SLAM algorithms are applied to correct the high 
localization error in dead-reckoning based on environmental perceptions acquired 
from exteroceptive sensors. In EKF-SLAM, the error is decreased to a great extent. 
The average error from start point until the robot reaches the goal point is reduced 
from 0.2 meters in dead-reckoning to 0.08 meters in EKF-SLAM. In robot navigation 
based on EKF-SLAM, after 3.2 meters of robot displacement, the average error rela-
tive to the traveled path is more than 2.5%.  

(a) 

 



(b) 

 
(c) 

 
 

(d) 

 
Fig. 16. a) Dead-Reckoning simulation; b) EKF-SLAM simulation; c) Absolute and average 
errors in dead-reckoning; d) Absolute and average errors in EKF-SLAM 



6.3 Experimental results from simulations of the proposed objective speech 

quality estimation based on original and received texts comparison 

After running the simulation model presented in Fig. 11 are calculated the defined 

two types of quality assessment for mobile robot objective speech perception as 

speech command from a person, using equations (41 and 42). Some of the important 

results from the simulations are shown in Fig.17, where are presented the results from 

a simple example of one of the simulations:  

─ part of the text document (file stt.txt) after direct speech to text converssion of 
spoken from person words as speech comands to the robot; 

─ part text document (file rev_stt.txt) after speech to text converssion of perceved 
from the robot words as speech comands. 

─ It can be seen from Fig. 17, that there are differences between the number of erro-
neous words (marked in yellow color) as speech comands to the robot in the text 
documents stt.txt and rev_stt.txt. With This difference is used to calculate with 
equations (41 and 42), the values the objective speech quality estimation for the 
robot speech perception.  

 

 



 

Fig. 17. Parts of the text documents stt.txt rev_stt.txt after speech to text in transformation and 
receiving parts with erroneous spoken words marked in yellow color 

─ For the example in Fig.17 the concrete values of NErWrobot and NErWperson are: 

NErWrobot =12 and NErWperson = 6 Then from the equations (41 and 42) are calcu-
lated the following values of the objective speech quality estimation for the robot 
speech perception: 
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Therefore, from the equations (45 and 46) can be concluded that calculated values of 
two types of the objective speech quality estimation gives a quantitative objective 
notion for the robot speech perception useful for estimation the precision of mobile 
robot motion control and guidance with speech commands from a person. 

7 Conclusion 

The proposed audio-visual perception system in this chapter is used for joined au-
dio visual mobile robot motion control employing audio-visual and range information 
perceived from robot sensors (microphone array, video camera, and laser range-
finder). The algorithms developed for robot motion control through speech commands 
and robot navigation by performing EKF-SLAM, that assumes vertical edges as the 
environment landmarks, are based on perceived audio information from microphone 
and visual and range information of camera images and 2D laser rangefinder, respec-



tively. The way of modeling the environment as vertical edges in the camera image 
associated to corners in range information from the laser rangefinder has the advan-
tage that because there is not high feature clutter, the problem of quadratic complexity 
of the EKF-SLAM is solved to a great extent. The importance of mobile robot audio 
visual perception to achieve a defined motion control precision is estimated with the 
proposed in this chapter algorithm of objective quality estimation of speech robot 
perception. It is show that the application of well known Microsoft Speech to Text 
and inverse Text to Speech algorithms allow to replace person as estimator of speech 
quality and to approach the precision of objective speech quality estimation methods 
of mobile robot audio perception to corresponding subjective methods. It is necessary 
to mentioned that all the presented in this chapter results are subject of researches 
done towards the two PhD thesis’s: “Development of Methods and Algorithms for 
Audio-Visual Mobile Robot Motion Control” and “Development of Methods and 
Algorithms of Audio and Video Quality Estimation and increasing in multimedia 
communication systems”, conducted at The French Language Faculty of Electrical 
Engineering, Technical University of Sofia, Bulgaria. 
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