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Abstract: The geometry and kinematics of unconventional engine mechanism FIK1 
are described in the paper. Transformation of the piston linear movement to rotational 
movement is done by a swinging board, a baseboard and a crankshaft. The paper 
describes the trajectory and acceleration of an observed point on the swinging board in 
all three planes as well as the kinematics of the piston movement. The principle of the 
unconventional mechanism FIK1 is protected by patents No. 283742 and No. 283743. 
A mathematical model of the mechanism and some significant results are presented. 
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1 Introduction 
The effort to reduce the production costs of individual vehicle parts and to ensure their 
dimensional compactness while increasing reliability leads to the development of new 
structures and mechanisms. With the development and improvement of material and fuel 
technologies new and uncommon engines can also find application [1-4]. Some of these 
unconventional engines use an alternative construction of their mechanical parts and 
mechanisms to acquire certain advantages in comparison to the conventional solutions. A 
typical example is the axial engine for Stirling [5, 6] or IC application, which has a low frontal 
area, very good balance and great compactness [7-10]. Another unconventional type of 
engine mechanism which kinematics was solved by Shih [11] is the cycloidal internal 
combustion engine mechanism. 

One of the mechanisms, applicable in such engines is the FIK1, whose geometry and 
kinematics are described in this paper.  

The base of the engine with unconventional mechanism is the swinging board DK, 
supported on the crank pin and rolling by its perimeter around the immovable base board DP 
(see Fig. 1, left) [12]. Both boards have an angle gearing at their perimeter (resp. at the 
optional suitable diameter) for exact and safe mutual rolling. The position of the gearing on 
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the base and swinging board may not be in praxis situated on their perimeters [13]. Because 
the swinging discs´ movement presents a relative consecutive rolling of two cones (see Fig. 
1 right, there is shown the trajectory of a point on the swinging board perimeter, acquired 
from the virtual model), the gear can be positioned practically on the whole cone length from 
the bottom to the top.  

The relative angle between both boards is φ (see Fig. 1, left). From the kinematics point 
of view this is the angle between the bottoms of the rolling boards. The top angle of the 
meshing cones does not need to be generally the same. In case of the identical cones their top 
angle value is (180° - φ).  

 

 

2  Description of the mechanism geometry 

Based on the previous considerations, the center of the swinging board makes planar motion 
along a circle which is parallel to the plane of the immovable base board. Because each point 
on the swinging board makes a space movement, it is necessary to define and solve this 
system spatially (in three axes). We choose the coordinate system so that its vertical axis Z 
goes through the axis of the crank shaft and its center lies on the horizontal plane XY (see 
Fig. 2). The initial crank position for the rotation angle α =0º lies on the axis Y. The observed 
point on the swinging board lies at the connecting line of the board center and its perimeter, 
it means opposite to the crank. The circle radius rkľ, which describes the center of the 
swinging board (hereinafter referred as “crank circle”), is given by the following expression:  

( )φcos1 −⋅= Rrkľ , (1) 

where R – radius of the swinging (generating), resp. immovable base board, 
φ - angle between boards which is equal to the crank angle (see Fig. 2). 
 

Fig. 1. Scheme of the unconventional engine mechanism 
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Fig. 2. Geometrical scheme of the unconventional mechanism FIK1 

Distance between the planes of the crank circle and the immovable base board is given 
by expression 

φsin⋅= Rzkľ . (2) 

By those assumptions each point of the swinging board, which lies outside of its center 
makes a general movement in three axes. In order to describe the kinematics of the piston 
movement, it is first necessary to describe the kinematics of a random point on the swinging 
board which lies on the radius Rko (see Fig. 2), in the interval Rko ∈ ‹ 0, R ›. Further, it will 
be considered the possibility of changing the angle φ between both boards, which can 
theoretically be in the range φ ∈ ‹ 0, 90° ›. Given the requirement, it is clear, that when the 
angle φ = 0 the swinging board makes no movement and when the angle φ is close to the 90○, 
then the engine design overall is unrealistic. Practically it is impossible to use higher angle 
values than 50°. 

In relation to the piston movement it is most important to define mainly the vertical path 
of the random point on the swinging board (in direction of Z axis). This path, depending on 
the path of the point in the plane XY and on the connecting rod length, determines the value 
of the piston stroke which is in the direction of Z axis. According to the presented above, the 
path of the observed point on the swinging board in each axis depends on: 

- radius R of the swinging, resp. base board, 
- angle φ, between the planes of both boards, 
- radius Rko, where the observed point is located, 
- rotation angle α of the crank as an independent variable. 

3  Trajectory estimation of observed point on the swinging board 
The path of the observed point is based upon a specific case when the angle value between 
both boards φ = 90○, the point lies on the perimeter of the swinging board i.e. Rko= R, and the 
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crank shaft has the same crank angle φ = 90°. In such conditions the observed point performs 
a movement, whose projections to the individual axes (resp. planes) could be determined 
more simply, because the center of the swinging board is moving around the circle with a 
radius rkľ = R. Its coordinates in four basic crank positions can be defined directly from the 
geometry of the physical model (Table 1). 

Table 1. Position of the observed point 

φ (◦) α (◦) x y z
 0 0 R 0
 90 -R R R

90 180 0 -R 2R
 270 R R R
 360 0 R 0

With so defined parameters the swinging board is situated permanently in the vertical 
plane and its perimeter is rolling around the perimeter of the immovable base board (see Fig. 
3). At the same time the center of the swinging board describes a circle with radius rkľ = R in 
the horizontal plane (XY) at the height zkľ = R. The crank is rotating around its axis with an 
angle α by an angular velocity ω. 

Fig. 3. System scheme for the angle φ = 90○ 

The position of the observed point at each random crank angle α can be determined from 
the geometric relationships with the following expressions (see Fig. 3):  

 ( )1cossin −⋅⋅= ααRx , (3) 

 ( )αα 2sincos +⋅= Ry , (4) 

( )αcos1 −⋅= Rz . (5) 
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If we want to observe movement of the point at an optional radius of the swinging board 
in the range of Rko ∈‹ 0, R›, based on the similar consideration, by transforming (3), (4) and 
(5) we get expressions (6), (7) and (8):  

 ( )RRx ko −⋅⋅= αα cossin , (6) 

 αα 2sincos ⋅+⋅= koRRy , (7) 

 αcos⋅−= koRRz . (8) 

In the next step, it is necessary to define the path of the observed point at the swinging 
board’s perimeter (Rko= R), provided that the angle φ between swinging and base board is 
random, but not 90°. Similar as in the previous case it is possible to simply define its location 
at four base locations of the crank from the physical model geometry. Values are presented 
in the Table 2.  

Table 2. Position of the observed point 

φ (◦) α (◦) x y z 
 0 0 R 0 
 90 - rkľ R R sin φ 

≠90 180 0 R - 2 rkľ 2R sin φ 
 270 rkľ R R sin φ 
 360 0 R 0 

Even in this case, the swinging board, inclined under an angle φ, is rolling with its 
perimeter around the perimeter of the base board. The path of the observed point in the 
relation to the angle of the crank rotation α in each axis is affected by the inclination of the 
swinging board. Based on this, the path of the observed point in each axis is described by the 
following equations: 

 ( ) ( )φαα cos11cossin −⋅−⋅⋅= Rx , (9) 

 ( ) ( ) φφαα coscos1sincos 2 ⋅+−⋅+⋅= RRy , (10) 

 ( ) φα sincos1 ⋅−⋅= Rz . (11) 

In the most general case, when the angle between the two boards φ is in the range  
φ ∈ ‹ 0, 90○ › and the general point position on the swinging board DK is in the range  
Rko ∈ ‹ 0, R › the expressions (9), (10) and (11) are presented in their universal form: 

 ( ) ( )φαα cos1cossin −⋅−⋅⋅= RRx ko , (12) 

 ( ) ( ) φφαα coscos1sincos 2 ⋅+−⋅⋅+⋅= koko RRRy , (13) 

 ( ) φα sincos ⋅⋅−= koRRz . (14) 

The following images show the visual interpretation of the solution of equations (12), 
(13) and (14) for one crank revolution and for the parameters of the physical model R = 0,1m, 
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Rko = 0, 072m and φ = 30○. Graphical interpretation is done for each axis and in relation to 
the rotation angle of the crank α as well as in each of the three planes. 

 
Fig. 4 shows the path of the observed point in the horizontal plane (XY). For better 

presentation the graph displays the half of the base board. Fig. 5 presents the path of the point 
in the vertical plane (XZ) and Fig. 6 – the point path in the vertical plane (YZ), whereas the 
axis of the engine cylinder is visible in the figure. The path of the observed point in all of the 
three axes in relation to the angle of the crank rotation α for one revolution is shown on the 
Fig. 7. The single curves indicate that the movement in the axes X and Y is inharmonic and 
movement in the axis Z is harmonic.  

 

 
Fig. 4. Path of the observed point in the plane XY (shape of the immovable board is dashed) 

 
Fig. 5. Path of the observed point in the plane XZ 
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Fig. 6. Path of the observed point in the plane YZ (cylinder axis is dot-dashed) 

 

Fig. 7. Path of the observed point in relation to the angle of the crank rotation α 

4  Velocity estimation of observed point 
The velocity graphs of the observed point in each axis are obtained as a time derivative 
from the equations (12), (13) and (14). The following expressions represent them:  

 ( ) ( )[ ]φαφωα
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Calculated velocities of the observed point on the swinging board in each of the three 
axes with crank revolutions n = 4000 min-1 are shown in the graph (Fig. 8). From the periodic 
and harmonic point of view, velocities have similar properties to paths. 

 

Fig. 8. Velocity of the observed point in relation to the angle of the crank rotation α 

From the engine piston kinematics point of view, the dominant velocity is in the Z 
direction. Its maximal value is in the direction of cylinder axis and is about 4 m.s-1 higher, in 
comparison to the maximal velocity of the crank joint of a classical engine with comparable 
piston stroke. When calculating this velocity to the velocity of the piston, it must be taken 
into account, that the kinematics of the piston movement is affected by the wave movement 
of the connecting rod. Having a classic crank mechanism, the connecting rod makes the 
planar wave movement in the range equal to the piston stroke. In the case of engine with the 
swinging board, the connecting rod performs a spatial movement in significantly smaller 
range, in this case approximately only 40% of the piston stroke (see Fig. 4 and 6).  

5  Acceleration of observed point 
The acceleration graph of the observed point in each axis is obtained as the second derivative 
of equations (12), (13) and (14) with respect to time. After derivation and appropriate 
modification, the acceleration in axes X, Y, Z is: 
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Calculated accelerations of the observed point on the swinging board in each of the three 
axes with crank revolutions n = 4000 min-1 are shown in the graph (Fig. 9). From the periodic 
and harmonic point of view, accelerations have similar properties to paths or velocities. 

 
Fig. 9. Acceleration of the observed point in relation to the angle of the crank rotation α 

In this case the dominant acceleration is in the Z direction as well. Its maximal value is 
in the direction of cylinder axis and is about 90 m.s-2 higher, in comparison to the maximal 
acceleration of the crank joint of a classical engine with comparable piston stroke. 
Percentagewise it is about 1,5% higher. 

6  Conclusion 
Based on the analytical result, that kinematics properties of the unconventional crank 
mechanism of the FIK1 engine are comparable to the kinematics properties of the classical 
piston combustion engine with the same value of the piston stroke. It is possible to influence 
piston kinematics parameters by adjusting the distance of the cylinder axis from the axis of 
the crankshaft. A specific disadvantage of this mechanism is that the connecting rod performs 
a space movement, in contrast to the classical crank mechanism. That demands better design 
solution of its connection with the swinging board and piston. 
 
This paper was realized as a part of the project KEGA 022ŽU-4/2017 – “Implementation of on-line 
education in the area of precise technologies with an impact on educational process to increase skills 
and flexibility of students of engineering fields of study” and as a result of the project implementation: 
“Modern methods of teaching of control and diagnostic systems of engine vehicles”, ITMS code 
26110230107, supported by the Operational Programme Education. 
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