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Abstract. The objective of this study is to identify the influence of the chemical composition of alloyed steel on the 
tensile strength through predictive multiple regression models of the first and second degrees. Data on the percentage 
content of nine chemical compounds in alloy steel are used as independent variables: C, Cr, Mn, Mo, Ni, P, S, Si, Al, and 
the product's diameter. In order to accurately perform multivariate linear regression, all variables undergo Yeo-Johnson 
transformation in advance to achieve normal or near-normal distribution. The obtained linear regression models fit the 
measured values for tensile strength with 76% and the models with predictors up to second order – with 97.6%. The alloy 
compounds with the strongest influence on tensile strength are identified. 

INTRODUCTION 

The mechanical properties of metals have always been subject to experimental and theoretical research. They 
determine the ability of metals to resist various forms of strain and destruction during use. They can be subjected to 
various types of loads – tension, pressure, bending, torsion, etc. Often these loads can be combined, for example 
tension and bending, tension and torsion, etc. 

Various experimental research is carried out to expand the scope of application of steels. This is essential for the 
development of new types of steel and products made from them [1,2]. Along with technical measurements and 
experiments, mathematical and statistical methods are also used in research [3]. The goal is to investigate the 
properties of known samples of steels and also to predict the behavior of new ones under the preset operating 
requirements.  

There are numerous empirical results for the considered topic in scientific literature. Various statistical methods 
are used to study the properties of alloy steels through different data. The methods can be classified in two general 
groups – multivariate statistical analysis and machine learning. The first group encompasses the classical approaches 
such as correlation and regression analysis, factor analysis, Principal component analysis (PCA), ANOVA, 
MANOVA, etc. The second group focuses on the use of machine learning and data mining methods, such as 
Artificial Neural Networks (ANN), Support vector machine regression, Random Forest regression, fuzzy functions, 
and others. 

We will consider in more detail some representative publications from the first group. The Weibull distribution 
method is used in [4] to study the tensile strength of alloy steels at room and elevated temperatures. The authors of 
[5] build polynomial type regression models to identify statistically significant variables for predicting experimental 
measurements of the tensile strength and yield strength at room and elevated temperatures of stainless steel 17-7PH 
with modified chemical composition. In [6], the conditions needed to reduce the time and costs related to the 
development and selection of new metal alloys are determined. The study is based on a multiple linear regression 
model for predicting tensile strength of low alloy steel depending on its chemical composition (C, Mn, Cr, Ni, Mo, 
Cu, N, V), plate thickness, type of solution used to process it and aging temperatures. PCA is used in [7] for 
optimization of tribological characteristics of aluminum metal matrix composites for achieving better wear 
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properties. In the recent paper [8], the influence of 9 chemical elements (C, Cr, Mn, Mo, Ni, P, S, Si, Al) on the 
tensile strength of alloy steels is classified with the aid of factor and cluster analyses. A detailed review of the results 
obtained through classical and machine learning statistical techniques in the field of stainless steels can be found for 
example in [3,9,10] among others. 

The objective of this study is to examine the relationship between the mechanical property tensile strength and 
the content of various metals in alloy steel and the diameter of the measured test sample. In order to establish the 
statistical relationship, regression polynomial models of first and second degree are built and studied. The models 
also enable forecasting the experiment and identifying boundaries for the expected tensile strength value of alloy 
steels.  

Statistical studies are carried out in the environment of IBM SPSS Statistics [11]. 

PROBLEM SETUP AND METHODS USED 

Our main task is to show how with available measurements for a given property of a set of alloy steels, adequate 
statistical models can be built both to study the influence of individual independent variables on the property and to 
predict future experiments. The property of tensile strength of alloyed steels and their chemical composition are 
chosen as an empirical example. 

Multiple Linear Regression 

The use of standard linear regression models to study the properties of steels as a function of their chemical 
composition is not new. Usually, the values of the studied property   of steel are represented as a multiple linear 
regression (MLR) model of the type: 
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� � � ��  (1) 

where kX  is the chemical element in the composition of the of the steel product or other predictor,    
, 0,1,...,ka k p� – regression coefficients, �  – model error. For the error, it needs to be established that it is white 

noise, i.e. normally distributed with a zero mean and variance  2s .  
To obtain an adequate MLR of the type (1), it is necessary to take into account the performance of statistical 

assumptions such as the presence of a linear type relationship between the independent variables kX  and the 
dependent variable  Y , normality of variables, etc. [12]. In many cases, there is a multicollinearity effect between 
the independent variables that reduces significantly the accuracy of the applied algorithms of the regression method, 
which needs to be avoided. 

Polynomial Regression Models 

It is well known that the influence of alloying elements on the mechanical properties of steels and in particular 
on tensile strength is characterized by both linear and non-linear complexity. To find adequate and more accurate 
models, in our study we build and consider polynomial models where the independent variables participate up to the 
second degree.  

In this paper, our objective is to demonstrate that the accurate application of polynomial type regression models 
makes it possible to achieve higher predictive power which is in no way inferior to modern machine learning 
techniques. At the same time, we will note the main advantages of this approach, such as the simple and 
straightforward interpretation of the results of polynomial models and the low price of their computer 
implementation including the use of memory and processor time.   

DATA AND INITIAL DATA PROCESSING 

Data from [8] are used in this study, including 60 different types of alloy steels, selected from publications 
[13,14]. Descriptive statistics of the initial variables are given in Table 1. Here ,MPa�  denotes the dependent 
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variable tensile strength. The percentage content of the nine chemical elements in alloy steels and the diameter d, 
mm of the measured test sample are considered as independent variables. 

TABLE 1. Descriptive statistics of the initial measured variables. 

Variable N valid Mean Median Std. 
Deviation Variance Minimum Maximum 

σ, MPa 60 738.133 681.5 279.69 78224.66 370 1375 
C, % 60 0.22 0.175 0.108 0.012 0.03 0.47 
Cr, % 60 2.614 0.5 5.705 32.545 0 25 
Mn, % 60 0.858 0.6 0.473 0.223 0.45 2 
Mo, % 60 0.229 0 0.41 0.168 0 2.4 
Ni, % 60 1.643 0 2.743 7.523 0 9.25 
P, % 60 0.081 0.04 0.1 0.01 0.02 0.35 
S, % 60 0.138 0.04 0.349 0.122 0 2.35 
Si, % 60 0.42 0.375 0.238 0.057 0.1 1 
Al, % 60 0.009 0 0.049 0.002 0 0.375 
d, mm 60 94.7 50 112.75 12712.25 3 500 

 
None of the eleven variables, presented in Table 1, have normal distribution. Also, the ten independent variables 

clearly demonstrate multicollinearity, which is established in [8]. This directly impedes the application of MLR. To 
improve the distribution and stabilize the variance, each variable undergoes Yeo-Johnson transformation 
beforehand, which in this case is used only for the negative values [15]: 
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In (2), x  is the input variable, ty  is the transformed one, and the parameter 
  is found so that the distribution is 
normal or as close to normal as possible. For the variables in Table 1, the following coefficients 
  are determined 
and given in Table 2. 

In order to study the possible multicollinearity among the transformed variables, the correlation matrix is 
calculated using Pearson bicorrelation coefficients. This does not lead to significantly high absolute values of the 
coefficients. The highest is between tP and tS, equal to 0.712. The determinant of the correlation matrix is 0.017, 
which is significantly different from zero. Also, the highest variance inflation index (VIF) is equal to 4.499, so that 
for all variables VIF <10. In accordance with [16,14)], we can conclude that there is no multicollinearity effect for 
the transformed independent variables, listed in Table 2. 

TABLE 2. The values of the parameter 
  when the variables are transformed. 

Initial variable  Transformed variable  Value of 
  
σ tσ -0.3 
C tC -1 
Cr tCr -0.8 
Mn tMn -2 
Mo tMo -2 
Ni tNi -0.8 
P tP -2 
S tS -2 
Si tSi -2 
Al tAl -2 
d td -0.1 
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MULTIPLE LINEAR REGRESSION MODEL OF TENSILE STRENGTH  

The results from the previous section 3 enable the correct performance of multiple linear regression (MLR) using 
the transformed variables from Table 2. We apply the backward regression method. The resulting linear regression 
equation has the following form: 
 1 2.701 0.417 0.171 0.180 0.077 0.524 0.097t tC tMn tMo tNi tP tSi� � � � � � � � . (3) 

It includes only 6 of the 10 independent variables. The regression coefficients of the remaining four tCr, tS, tAl 
and td are statistically insignificant at a standard level of significance 0.05� � . Equation (3) in standardized form is 
written out as 

 1 0.558 0.202 0.482 0.608 0.320 0.142zt tC tMn tMo tNi tP tSi� � � � � � � . (4) 
From (4), it can be concluded that the values of tensile strength for the studied sample depend to a large extent 

on the contents of Ni, C and Mo. The weakest participation is that of the element Si, and negative at that, i.e. higher 
Si content reduces � . It needs to be noted, that in this case only a linear relationship is found.   

In order to compare the quality of the obtained linear model, we perform retransformation of the predicted non-
standardized values in (3). The obtained model we denote with 1ˆ .�  Its statistics are given on the first row of Table 

3. The resulting coefficient of determination 2 0.762R �  shows that the model 1ˆ .�  accounts for the data sample at 
76%. Its Root Mean Squared Error (RMSE) is 136.673. The maximum relative error is very big - 1 30%� � . 

The quality of fit is shown in Figure 1 sorting the data on tensile strength.  
 

 
FIGURE 1. Line plots of measured values of tensile strength and their predictions from the linear regression model 1�̂  

A scatter-plot of measured values versus values predicted by the linear model is presented in Figure 2. Some 
relatively big deviations are observed. 
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FIGURE 2. Measured versus predicted values of tensile strength using the obtained linear model 1�̂  with 5% confidence interval 

 
The error analysis of the linear model shows that they have a normal distribution. The results of the statistical 

normality tests are as follows: for the Kolmogorov-Smirnov test, the significance is 0.052 and the significance of the 
Shapiro-Wilk test is 0.260. We can assume that error of model 1�̂  is a white noise.   

SECOND DEGREE POLYNOMIAL MODEL 

The use of linear regression models to present various physical processes and properties of compounds does not 
account for the non-linear nature of processes in physics. The world we live in is non-linear. Chemical elements 
influence the tensile strength not just on their own but in combination with other chemical elements. This influence 
cannot be assessed with linear interactions alone. In this case, we will build a second degree non-linear model of t, 
which includes not only the 10 separate independent variables form Table 2 but also their products in pairs 
 . , , , 1,2,...,10k jtX tX k j k j� � . (5) 

To this end we calculate 55 new variables. We apply backward linear regression with a total of 65 predictors. Of 
all independent variables used, at each step statistically insignificant ones are dropped. The final model is clarified 
after 13 steps. Thus, out of all 65 input predictors, there are only 23 statistically significant left. The obtained 
regression model is denoted with 2t� , and the retransformed one – with 2�̂ . The obtained non-standardized 
equation has the following form 

 

2 2.869 0.455 0.083 4.304 1.866 . 11.101 . 5.757 .
9.763 . 0.086 . 0.177 . 0.524 . 0.043 . 2.817 .
1.565 . 0.147 . 0.363 . 0.145 .

tCr td tCtC tC tCr tC tMn tC tSi
tC tAl tCr tCr tCr tMo tCr tNi tCr td tMn tMn
tMn tMo tMn td tMo tNi tMo

t

td

� � � � � � �
� � � �
�

� �
� � � � � 0.137 . 1.657 .

0.289 . 2.809 . 0.013 . 1105.547 . 0.139 .
tNi tNi tNi tP

tNi tSi tNi tAl tNi td tS tAl tSi td
�

� � � � �

. (6) 

The respective standardized regression equation of the second degree polynomial model is: 
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2 3.606 1.849 2.301 . 2.367 . 5.370 . 1.680 .
0.262 . 0.682 . 0.399 . 3.639 . 1.794 . 2.338 .
1.229 . 1.340 . 0.587 . 2.186 . 1.040

tCr td tC tC tC tCr tC tMn tC tSi
tC tAl tCr tCr tCr tMo tCr tNi tCr td tMn tMn
tMn tMo tMn td tMo tNi

t

tMo td t

� � � � � �
� � � � �
� � � �

�
�

� . 0.809 .
0.686 . 1.712 . 0.524 . 2.576 . 1.134 .

Ni tNi tNi tP
tNi tSi tNi tAl tNi td tSt Al tSi td

�
� � � � �

. (7) 

In equation (6), respectively (7), only two significant linear members are left – tCr  and .td  The second degree 
members contain all variables to a different extent. The largest number of interactions are those with tNi (7 times), 
tC and tCr – 5 times each, tMo and td – 4 times each, etc. After retransforming values of 2t� , we obtain the final 
model 2ˆ .�  The assessment of its summary statistics are given on the last row of Table 3. The goodness of fit 

measures are very high: 2 0.976R �  and RMSE 42.737� . The relative error is within 2 9%� � .   

TABLE 3. Summary statistics of the obtained regression polynomial models. 

Model R  2R  
2R

Adjusted 

Std. Error 
of the 

Estimate 
RMSE 

Maximum 
Relative 
Error 

Sig. 
(p value) 

1�̂  0.873 0.762 0.758 115.0997 136.673 1 30%� �  0.000 

2�̂  0.988 0.976 0.976 43.0212 42.737 2 8.8%� �  0.000 
 
The analysis of the errors in the second degree non-linear model shows that they have normal distribution. The 

respective statistical normality tests are as follows: significance for the Kolmogorov-Smirnov test 0.200 and the 
significance of the Shapiro-Wilk test 0.203. We can conclude that the main requirements for the validity of the 
obtained regression model (6) - (7) are also met.  

The comparison between the measured values for tensile strength and those predicted by the second degree 
polynomial model 2�̂  is illustrated in Figure 3. There is significant improvement compared to the results with the 
linear model of Figure 1. The next figure 4 shows the scatter-plot of the comparison with a 5% confidence interval. 
The quality of fit for the highest and the lowest values of tensile strength is significantly improved compared to 
Figure 2. 

 

 
FIGURE 3. Line plots of measured values of tensile strength with their predictions from the second degree regression model 2�̂  
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FIGURE 4. Measured versus predicted values of tensile strength using the obtained second degree model 2�̂  with 5% 

confidence interval  

CONCLUSION 

Two MLR models – linear and with the second degree of the predictors – are built to model and predict tensile 
strength – one of the main mechanical properties of alloy steels. It is shown that using a suitable transformation of 
the variables and accurate application of the MLR method, it is possible to obtain high performance models, 
reaching fit of the values predicted by the model and the measured values of tensile strength of up to 97.6%. 

The developed regression models describe the tensile strength of alloy wheels in a different way. It is found that 
non-linear models provide a broader and more comprehensive interpretation of the influence of chemical elements 
contained in steel products. Regression equations indicate that the chemical elements affect significantly the tensile 
strength when they interact together in a complex pattern. 
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