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Abstract 
The paper presents a new general approach for exact unknown parameter estimation in nonlinear adaptive control 

systems, without imposing the persistent excitation requirement. The proposed approach modifies the basic adaptive 
parameter estimator dynamics and is based on a generalization of the prediction error concept and the introduction of the 
stable data accumulation concept. The modified estimator dynamics is of least-squares type and the resulting closed loop 
adaptive system is asymptotically stable with respect to the tracking and parameter estimation errors. This property is 
achieved by controlling the rank of the data accumulation matrices. The advantage of the new approach is the exact 
parameter estimation achieved in one transient response without using the standard excitation techniques. The approach 
is applied to a DC motor driven inverted pendulum for illustration. 
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Introduction 
The exact unknown parameter estimation in 

nonlinear adaptive control is an attractive problem, 
which does not have a general solution yet. The 
standard techniques for achieving exact estimation 
rely on sufficiently rich reference trajectories or 
persistent excitation of the control system and the 
recent results in this field [1, 2, 3, 5, 8] are not an 
exception. These requirements are in contradiction 
with the control goal determined by technological 
considerations and are therefore irrelevant. This 
paper considers the exact unknown parameter 
estimation task in nonlinear adaptive control without 
imposing any excitation or special trajectory 
requirements on the controlled nonlinear dynamics. 
The attention is focused on constructing a 
sufficiently rich information process, embedded in 
the adaptive controller by defining and manipulating 
different information channels. An information 
channel is a system variable which is indirectly 
connected with the unknown parameter estimation 
error. The main information channel is the well 
known prediction error and the paper provides a 
generalization of the prediction error concept. The 
data accumulation concept is introduced on the basis 
of this error which is the main tool for achieving 
exact unknown parameter estimation without 
persistency of excitation. The idea is to dynamically 
construct a full rank transformation matrix between 
the unknown parameter vector and a known suitably 
defined mapping vector. The data accumulation 
concept considers some results in [2]. The introduced    

 
generalization of the prediction error concept is 
based on the nonlinear swapping techniques found in 
[4]. The plant model and control design are taken 
from [6, 7]. As a result, exact unknown parameter 
estimation in one transient response without 
persistent excitation is achieved and illustrated by 
the simulation example.  

Problem Statement 
The nonlinear systems considered are of the form  

θuxGuxfx ),(),( +=& ,  (1a) 

)(xhy = . (1b) 

Here nℜ∈x , rℜ∈u , mℜ∈y , pℜ∈θ  are the state, 
control, output, unknown parameters vectors, and 

nrn:),( ℜ→ℜ×ℜuxf , pnrn:),( ×ℜ→ℜ×ℜuxG , 
mn:)( ℜ→ℜxh  are known nonlinear mappings.  

 
Assumption 1: It is assumed that the control task is 
the tracking of a reference trajectory )t(dy , whose 
time derivatives are bounded, and a certain nonlinear 
adaptive control design approach has been applied to 
obtain the basic adaptive control and estimation laws  

)t,ˆ,ˆ,()t( θθxαu
&= , (2a) 

)t,ˆ,,(ˆ
θ θxzβΓθ =& . (2b) 

It is further assumed that the closed loop nonlinear 
adaptive system dynamics in error coordinates 

nℜ∈z  is of the form  

θθzGθzfz
~

)t,ˆ,()t,ˆ,( zz +=& , (3a) 
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)t,ˆ,,(
~

θ θxzβΓθ −=& ,  (3b) 

where the vector functions 1n
z

×ℜ∈f , pn
z

×ℜ∈G , 

and 1p×ℜ∈β  are locally Lipschitz with respect to z , 

θ
~

, uniformly in t , with the property 0θ0f =)t,,(z , 

0θx0β =)t,ˆ,,( . Moreover, there exists a known 
Lyapunov function of the form  

θΓθzzθz
~~

)2/1()2/1()
~

,(V 1
θ

TT −+= , (4) 
whose total time derivative with respect to the closed 
loop adaptive system dynamics (3) is  

zCzθΓβθzCzθz TTT )ˆ(
~

)
~

,(V 1
θ −=−+−= − &

& , (5) 

where )c,,c(diag n1 K=C , )γ,,γ(diag
p1 θθθ K=Γ  

are positive definite design matrices and θθθ ˆ~ −=  is 
the unknown parameter estimation error.  � 
 
The main purpose of assumption 1 is to summarize 
the results from the application of a given nonlinear 
adaptive control design method. Assumption 1 
ensures the global stability of the closed loop system 
(3), along with the asymptotic stability of )t(z , and 
the Lyapunov stability of the parameter estimation 

error )t(
~
θ . This is due to the negative semi-definite-

ness of the derivative )
~

,(V θz& , which is not explicitly 

dependent on )t(
~
θ . Hence, exact estimation of the 

unknown parameters cannot be provided. Moreover, 
most of the existing methods for nonlinear adaptive 
control deliberately eliminate the explicit depen-
dence of the total derivative V&  on the unknown 

error )t(
~
θ  via the adaptive estimation law. Negative 

definiteness of V&  on θ
~

 has to be provided in order 
to achieve guaranteed exact parameter estimation. 
This is the main idea behind the exact estimation 
approach presented in this paper, which is realized 
by generalization of the prediction error concept and 
the concept of the stable data accumulation.  

Prediction Error in x-Coordinates 
The construction of an algebraic connection 

between the system trajectories )t(x  and the 
unknown parameters θ  is the main idea of the pre-
diction error concept. Based on this connection, an 

estimate x̂  depending on the estimated parameters θ̂  
can be defined. The error xxe ˆx −=  is called pre-
diction error and can be used in the adaptation for 

providing indirect information about )t(
~
θ . The next 

lemma presents a generalization of the prediction 
error concept for nonlinear systems of the form (1).  

 

Lemma 1: Let the state estimate vector 1nˆ ×ℜ∈x , the 

matrix pn
x

×ℜ∈W  and the signal 1n~ ×ℜ∈ε  be 
described by the vector-matrix differential equations  

θWKθGfxxΛx
&

& ˆˆ)ˆ(ˆ x
1

xx
−+++−−= ,  (6a) 

GKWΛW xxxx +=& , 0W =)0(x ,  (6b) 

εΛε ~~
x=& , )0()0(~

xeε = ,  (6c) 
composed in view of the original nonlinear system 
dynamics (1), where 0K >= )k,,k(diag

n1 xxx K  and 

0Λ <= )λ,,λ(diag
n1 xxx K  are design matrices. Then 

the relation xx
~

ςθW =  with )~( xxx εeKς −=  holds.� 

Data Accumulation Concept 
The main idea behind the data accumulation 

concept is the dynamic construction of a coordinate 
transformation between the θ  parameter space and 
the space spanned by a suitably defined vector 

1p)t( ×ℜ∈ψ . The vector )t(ψ  is a mapping of the 
original vector θ  in new coordinates defined as  

θQψ )t()t( = ,  (7) 

where pp)t( ×ℜ∈Q  is the coordinate transformation. 
If )t(Q  has full rank then the transformation (7) is a 
diffeomorphism. The dynamics of )t(Q  is chosen as  

xxxrr
T)( WRWQQΛQ −−=& , 0Q =)0( .  (8) 

The key idea behind the definition (8) is to control 
the rank of the transformation matrix )t(Q  via the 

reference design matrix rQ . The dynamics (8) can 
be interpreted as a stable data accumulation process, 
with the accumulated information matrix being 

)t(Q . It can be shown that if the input xxx
T WRW  

has full rank for a sufficient time period, then the 
matrix )t(Q  will converge to its reference rQ . The 

convergence to rQ  is not necessary for achieving 
exact parameter estimation, but the full rank of the 
data matrix )t(Q  is sufficient to guarantee exact 
parameter estimation, as it will be shown later. In 
this sense, the introduction of the reference rQ  in 
the dynamics (8) provides a way of controlling the 
rank of )t(Q , and on the other hand stabilizes the 
data accumulation process, ensuring that )t(Q  will 
remain bounded. Now, differentiating (7), conside-

ring the relation θθθ ˆ~ +=  and lemma 1, we obtain 
the dynamics  

)ˆ()( xxxxrr
T θWςRWQQΛψ +−−=& , 0ψ =)0( .  (9) 
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which is implementable. Rewriting (7) with respect 
to the estimated vector )t(ψ̂  gives  

θQψ ˆ)t()t(ˆ =  (10) 
and the mapping error  

θQψψψ
~

)t()t(ˆ)t()t(~ =−=  (11) 
becomes known. Like the prediction error, the 
mapping error also provides indirect information 
about the estimation error. The main difference is 
that the rank of )t(Q  is controllable, while the rank 

of )t(xW  is not. The data accumulation concept is 
summarized in the next lemma.  
 
Lemma 2: Let the signals )t(Q , )t(ψ , and )t(ψ̂  are 
generated by the equations (8), (9) and (10), 
composed in correspondence with lemma 1, where 

0R >= )r,,r(diag
n1 xxx K , 0Λ <= )λ,,λ(diag

p1 rrr K  

are design matrices and rQ  is a constant reference 

matrix with full rank. Then all signals Q , ψ , and ψ̂  

are globally bounded and the connection ψθQ ~~ =  

holds, where ψψψ ˆ~ −=  is the mapping error.  � 

Modification for Exact Estimation 
The idea behind the modification for exact esti-

mation concept is to achieve negative definiteness of 

V&  with respect to both )t(z  and )t(
~
θ . Let the 

adaptive estimation law dynamics is modified into  

µβ
ˆˆˆ θθθ
&&& += .  

The term βθ̂
&

 describes the basic adaptive estimator 

dynamics, which stems from the application of a 

given control design method. The term µθ̂
&

 describes 

the modification for exact estimation dynamics, 
which can be freely designed. In order to achieve 

explicit dependence of V&  on )t(
~
θ  the dynamics µθ̂

&

 

has to include indirect information about the 
estimation error into the estimation law. According 
to lemmas 1 and 2 such information is contained in 
the signals )t(xς  and )t(~ψ , which are also available 
for feedback. Let us define the augmented vector  

TTT
x ]~,[

~
ψςζ = , 1pn~ ×+ℜ∈ζ  

which can be interpreted as the total prediction error. 
Then, according to the relations in lemmas 1 and 2  

θNζ
~

)t(
~ = ,  (12) 

where ppn)t( ×+ℜ∈N  is defined as the block matrix 









=

)t(

)t(
)t( x

Q

W
N .  (13) 

The vector ζ
~

 can also be represented in the form 

ζζζ ˆ~ −= , where Nθζ =  and θNζ ˆˆ = . Now let us 
introduce the matrix  

)t()t()t( ζ
T NΓNM = , pp)t( ×ℜ∈M , (14) 

with the positive-definite block-weighting matrix  









=

ψ

x
ζ Γ0

0Γ
Γ , pnpn

ζ
+×+ℜ∈Γ  

and )γ,,γ(diag
n1 xxx K=Γ , )γ,,γ(diag

p1 ψψψ K=Γ . 

The matrix )t(M  is symmetric and at least positive 
semi-definite by definition. The modification 

dynamics µθ̂
&

 will be designed on the basis of the 

well known least-squares methodology. For this 
purpose let us define the following cost function  

∫ −−= t

0 ζ
TTT τd)]}t(̂)τ()τ([)]τ()t(ˆ)τ({[

2

1
J θNζΓNθζ .  

The estimates )t(θ̂  should be updated so that the 
cost functional J  maintains a minimum along the 

complete trajectory )t(θ̂ . This is equivalent to 
minimizing the weighted squared prediction error 

)t(
~

)t(
~

ζ
T

ζΓζ . The mathematical description of the 

least-squares methodology is  

0)t(ˆ/J =∂∂ θ , 0)t(ˆ/J 22 >∂∂ θ .  

The partial derivative )t(ˆ/J θ∂∂  can be evaluated as  

∫∫ −=
∂

∂ t

0 ζ
Tt

0 ζ
T τd)τ()τ()t(ˆτd)τ()τ(

)t(ˆ
J

ζΓNθNΓN
θ

.  

Let  

∫=− t

0 ζ
T1 τd)τ()τ()t( NΓNP .  (15) 

Then, the extremum condition becomes  

∫=− t

0 ζ
T1 τd)τ()τ()t(ˆ)t( ζΓNθP .  (16) 

The extremum can only be a minimum, because  

0τd)τ()τ()t(ˆ/J
t

0 ζ
T22 ≥=∂∂ ∫ NΓNθ .  

Now, differentiating (16) and considering that  

)t()t()t( ζ
T1 NΓNP =−

& .  (17) 

we obtain  

ζΓNθNΓNζΓNθP
~ˆ)t(ˆ)t( ζ

T
ζ

T
ζ

T1 =−=− &

.  

The modification dynamics µθ̂
&

 is defined on the 

basis of the last equation as  

µPθMPζΓNPθ )t(
~

)t()t(
~

)t(ˆ
ζ

T
µ ===&

,  (18) 

where (12) and (14) are considered and the vector  
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θMζΓNµ
~

)t(
~
ζ

T == ,  (19) 

called the modifier is defined. The dynamics (18) is 

implementable, because ζ
~

 is available trough xς  

and ψ~ . On the other hand, by using the property  

0PP =− ][
dt

d 1   

it can be shown that  
PPMP )t(−=& .  (20) 

With the results so far we are ready to state the next 
theorem, which describes the modification for exact 
estimation concept.  
 
Theorem 1: Let the basic adaptive estimation law 
(2b) is modified to  

))(t(ˆˆˆ
µβ µβPθθθ +=+= &&&

,  (21) 

with the modifier µ  defined as in (19) and the gain 
matrix )t(P  dynamics described by (20), with 

0P >= )γ,,γ(diag)0(
p1 θθ K . In addition let there 

exist a time instant ∞<1t  after which the accu-
mulated data matrix )t(Q  maintains full rank. Then 

the equilibrium 0θz =)
~

,(  of the modified closed 
loop adaptive system  

θθzGθzfz
~

)t,ˆ,()t,ˆ,( zz +=& ,  (22a) 

)
~

)t()(t(
~

θMβPθ +−=& ,  (22b) 
is globally uniformly asymptotically stable, i.e.  

0z =
∞→

)t(lim
t

, 0θ =
∞→

)t(
~

lim
t

.  (23) 

and the exact estimation of the unknown parameters 
is guaranteed.  � 
 
Proof: The basic Lyapunov function candidate (4) 
can be rewritten with )t(θ PΓ =  as  

θPθzzθz
~

)t(
~

)2/1()2/1()
~

,(V 1TT −+= ,  (24) 
Considering (5) and the time-varying nature of )t(P , 

along with the fact that the symmetry of )0(1−P  

implies that )t(1−P  is symmetric for all t , the total 
derivative of (24) with respect to the modified closed 
loop adaptive system dynamics (22) will be  

θPθθPβθCzzθz
~

)t(
~

)2/1()ˆ)t((
~

)
~

,(V 11 TTT −− +−+−= &

&

& .  
The last expression is transformed into  

0
~

)t(
~

)2/1()
~

,(V TT ≤−−= θMθzCzθz&   (25) 
after taking into account (17), and the modified 
parameter estimator dynamics (21). The negative 
semi-definiteness of (25) proves the global uniform 

Lyapunov stability of the equilibrium 0θz =)
~

,( . The 

convergence statements (23) follow from the 
assumption that p)t(rank =Q , 1tt ≥∀ . Indeed, the 
full rank of )t(Q  implies that the matrix )t(N , 
defined by (13), also has full rank and hence, the 

matrix NΓNM ζ
T)t( =  is positive-definite 1tt ≥∀ . 

Then the derivative (25) can be represented as  

0)
~

,(W|
~

|
2

m
||c)

~
,(V 202

0 <=−−≤ θzθzθz& , 1tt ≥∀ ,  

where )(λc min0 C=  and ))t((λm min0 M=  1tt ≥∀ , 
and according to the LaSalle-Yoshizawa theorem 
[4], the modified closed loop adaptive system (22) 
will converge to the invariant set, where  

0))t(
~

),t((Wlim
t

=
∞→

θz .  

Hence, it follows that (23) holds, which completes 
the proof.  � 
 
Remark: The standard techniques for exact 
estimation are a special case of the proposed 

approach, with x
T
x)t( WWM = , and require that the 

matrix )t(xW  is "persistently exciting". This can 
only be achieved by including excitation terms in the 
control or the reference trajectories and practically 
results in positive-definiteness of )t(M . However, 
the proposed approach does not need such stringent 
excitation requirements, because the positive-
definiteness of )t(M  is controlled with the help of 

the accumulated data matrix )t(Q . Strictly speaking, 
in order for )t(Q  to converge to a full rank matrix 

the input xxx
T WRW  in the dynamics (8) has to be 

"sufficiently exciting". This excitation requirement 
however is greatly relaxed in comparison with the 
standard ones, and can be satisfied just after one 
transient response, as it is illustrated later with the 
simulation example.  

Application of the Approach 
The proposed approach is applied to a current-fed 

DC motor driven inverted pendulum nonlinear 
system, whose dynamic description is  

uθxθxsinθx

xx

322112

21

+−−=
=

&

&

 (26a) 

1xy = , (26b) 

where 1x  is the pendulum angular position ]rad[ , 

2x  is the angular velocity ]s/rad[ , u  is the motor 
armature current ]A[ , and  

)mlJ(

mgl
θ

21 +
= , 

)mlJ(

b
θ

22 +
= , 

)mlJ(

K
θ

2
m

3 +
=   
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are the unknown system parameters. The control and 
the basic parameter estimation laws (2) are designed 
via the adaptive backstepping approach, resulting in  

22αδ̂u = ,  (27) 

22112212d1d2 xθ̂xsinθ̂zcz)xy(cyα ++−+−+= &&& ,  

),(ˆ
θ xzβΓθ =& , 223δ2 zα)θ(signγδ̂

2
−=&

,  

where 1d1 xyz −= , d2112 yxzcz &−+−= , and 
T]0,xz,xsinz[ 2212 −−=β , T

321 ]θ,θ,θ[=θ . Here 2δ̂  

is an estimate of the unknown parameter 32 θ/1δ = . 
Apparently, the control system does not estimate the 
unknown parameter 3θ . The basic closed loop 
system error dynamics reads  

2111 zzcz −−=& ,  (28a) 

23222112212 αθδ
~

xθ
~

xsinθ
~

zczz −−−−=& .  (28b) 
A Lyapunov function for the closed loop system is  

2
2

δ

31
θ

TT
2 δ

~

γ2

|θ|~~

2

1

2

1
)δ

~
,

~
,(V

2

++= − θΓθzzθz ,  

which is of the form (4), with T
21 ]z,z[=z . The total 

derivative of this function with respect to the closed 
loop system error and basic parameter estimator 
dynamics is  

Czzz T)(V −=& .  
The above derivative is negative semi-definite with 
respect to the estimation error only and as a result 
exact estimation cannot be achieved.  

The objective system (26) and the closed loop 
system (28) have to be presented in the general form 
(1)–(3), in order to apply the proposed methodology 
for exact parameter estimation. This is accomplished 

by considering the relations 22αδ̂u = , 222 δ̂δδ
~ −= , 

333 θ̂θ
~

θ += , into the basic closed loop error 
dynamics (28) which gives the vector-functions  









=

0

x
),( 2uxf ; 









−+−
−−

=
)1δ̂θ̂(αzcz

zzc

232221

211
zf ;  










−−
==

uxxsin

000
),(

21
zGuxG .  

Thus, the modified closed loop control system con-
sists of the control law (27), estimation law (21), 
gain dynamics (20) and filters (6), (8), (9) and (10).  

Simulation and System Time Responses 
The physical parameters used in the simulations 

are the pendulum mass 5.0m=  kg, pendulum length 

5.0l=  m, moment of inertia 0341.0J=  2mkg , 

torque constant 48.0Km =  A/Nm , viscous friction 

coefficient 4.0b=  sNm  and gravity constant 

81.9g=  2s/m . The simulation is performed from 
zero initial conditions with design matrices  

)10,10(diagx −−=Λ , )10,10,10(diagr −−−=Λ ,  

)2,2(diagx =K , )10,10(diagxx == ΓR , 1.0γ
2δ

= ,  

)30,30(diag=C , )10,100,500(diag)0( =P ,  

)10,100,100(diagψ =Γ , )10,20,30(diagr =Q .  

The closed loop system time responses are shown in 
figures 1 and 2. The reference trajectory is generated 
via a second order linear reference model with 
double pole 3λ −= . The desired pendulum 
positioning angle is chosen to be πv =  rad. This set 
point is the worst case scenario for the parameter 
estimator, because at this angular position all system 
signals are identically zero and thus all data channels 
are closed. Nevertheless, all original system model 
parameters are exactly estimated in one transient 
response only. In contrast, the closed loop adaptive 
system without the modification does not estimate  
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Figure 1: Parameter estimates responses (modified 

estimates —, unmodified estimates ---) 
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Figure 2: Trajectory tracking response 

 
exactly any of the unknown parameters, seen by the 

unmodified estimates b1θ̂ , b
2θ̂ , b

3θ̂ , b
2δ̂ . Hence, the 

proposed approach greatly improves the adaptive 
system performance. This is due to the fact that the 
matrix )t(Q  maintains full rank as required by 

theorem 1, and as a result )t(M  is a positive definite 
matrix. The only inaccurately estimated parameter is 

2δ . This is because 2δ  is not a system model 
parameter and therefore it is not included for exact 
estimation by the proposed approach. Moreover, the 

steady state equation for 2δ
~

  

1312 xsinθθδ
~

0 −=   

is satisfied for both 0δ
~

2 = , πkx1 ±≠  or 0δ
~

2 ≠ , 

πkx1 ±= , K,2,1,0k= . Therefore, in steady state 2δ  

may not be exactly estimated when πkx1 ±= , but is 

guaranteed to be exactly estimated when πkx1 ±≠ . 

A possibility to estimate 2δ  exactly is to use the fact 

that the true value of 2δ  can be computed after the 

3θ̂  transient response. Then the error 2δ
~

 is known 

and the 2δ  parameter estimator can be modified into  

)δ̂θ̂/1(czα)θ(signγδ̂ 23δ223δ2 22
−+−=&

, 0c
2δ

> .  

The result is given on figure 1d. This modification 
provides exact estimation of the parameter 2δ , 

regardless of the 1x  steady state value. In this way, 
all control system parameters are exactly estimated.  

Conclusions 
The paper has presented a new general approach 

for exact unknown parameter estimation in nonlinear 
adaptive control systems. The approach presumes 
that a known nonlinear adaptive control design 
method is applied for the objective nonlinear system. 
Then, the basic adaptive control system is modified 
and the modification is based on a generalization of 
the prediction error concept and introducing the 
concept of the stable data accumulation. This results 
in an asymptotically stable closed loop adaptive 
system with respect to both the tracking and the 

parameter estimation errors )t(z  and )t(
~
θ . The 

asymptotic stability is provided by control of the data 
accumulation dynamics to achieve full rank of the 
matrices )t(Q  and )t(M . The unmodified adaptive 
system cannot estimate the unknown parameters 
exactly. The major advantage of the new approach 
proposed is that exact parameter estimation is 
achieved by the closed loop adaptive system in one 
transient response only, without imposing the 
standard excitation techniques, even for systems that 
do not generate enough information naturally.  
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