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Abstract:  The paper presents a new general approach for exact unknown parameter estimation in nonlinear adaptive control systems 
based on generalization of the prediction error concept and introducing the concept of stable data accumulation. The closed-loop adaptive 
system is asymptotically stable with respect to the tracking and parameter estimation errors. This is achieved by controlling the rank of 
the data accumulation matrices. The advantage of the new approach is the exact parameter estimation achieved in one transient response 
without standard excitation techniques. The approach is applied to a DC motor driven inverted pendulum for illustration.  
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INTRODUCTION  
 

 
 

The exact unknown parameter estimation in nonlinear adaptive 
control is an attractive problem, which does not have a general 
solution yet. The standard techniques for achieving exact esti-
mation rely on sufficiently rich reference trajectories or persis-
tent excitation of the control system and the recent results in 
this field [1, 2, 3, 7] are not an exception. These requirements 
are in contradiction with the control goal determined by tech-
nological considerations and are therefore irrelevant. This pa-
per considers the exact unknown parameter estimation prob-
lem in nonlinear adaptive control without imposing any excita-
tion or special trajectory requirements on the controlled non-
linear dynamics. The attention is focused on constructing a 
sufficiently rich information process, embedded in the adaptive 
control, by defining and manipulating different information 
channels. The information channel is a system variable which 
is indirectly connected with the unknown parameter estimation 
error. The main information channel is the well known predic-
tion error and the paper provides a generalization of the predic-
tion error concept. The data accumulation concept is intro-
duced on the basis of this error which is the main tool for 
achieving exact unknown parameter estimation without persis-
tency of excitation. The idea is to accumulate the estimation 
error information, coming from various information channels 
in a controlled manner, and as a result to construct a full rank 
transform matrix, between the unknown parameter vector and 
a known, suitably defined mapping vector. The data accumula-
tion concept considers some results in [2]. The introduced gen-
eralization of the prediction error concept is based on the non-
linear swapping techniques found in [4]. The plant model and 
control design are taken from [5, 6]. As a result, exact un-
known parameter estimation in one transient response without 
persistent excitation is achieved and illustrated by the simula-
tion example.  
 

PROBLEM STATEMENT 
 
The multi-variable nonlinear systems considered are  

θuxGuxfx ),(),(  ,  (1a) 

)(xhy  , (1b) 

where nx , ru , my , pθ  are the state, control, 

output, unknown parameters vectors, and nrn: f , 
pnrn: G , mn: h  are known nonlinear 

mappings.  

Assumption 1: The main control task is the tracking of a refe-
rence trajectory )t(dy  whose time derivatives are bounded. It 

is further assumed that a certain nonlinear adaptive control de-
sign approach has been applied to obtain the bounded adaptive 
control law and a basic dynamic estimation law  

)t,ˆ,ˆ,()t( θθxαu


 , (2a) 

)t,ˆ,,(ˆ
θ θxzβΓθ 


. (2b) 

The closed-loop nonlinear adaptive system dynamics in error 

coordinates nz  is of the form  

θθzGθzfz
~

)t,ˆ,()t,ˆ,( zz  , (3a) 

)t,ˆ,,(
~

θ θxzβΓθ 


. (3b) 

The vector functions 1n
z

f , pn
z

G , and 1pβ  are 

locally Lipschitz with respect to z , θ
~

, uniformly in t , with 

the property 0θ0f )t,,(z , 0θx0β )t,ˆ,,( . Moreover, there 

exists a known Lyapunov function of the form  

θΓθzzθz
~~

)
~

,(V 1
θ

TT  , (4) 

whose total time derivative, with respect to the closed-loop 
adaptive system dynamics (3) is  

zCzθΓβθzCzθz T1
θ

TT )ˆ(
~

)
~

,(V    , (5) 

where )c,,c,c(diag n21 C , )γ,,γ,γ(diag
p21 θθθθ Γ  are 

positive definite design matrices, θθθ ˆ~
  is the unknown 

parameter estimation error.   
 
Assumption 1 ensures the global stability of the closed loop 
adaptive system (3), the asymptotic stability of )t(z , and the 

Lyapunov stability of the parameter estimation error )t(
~
θ . 

This is due to the negative semi-definiteness of the derivative 

)
~

,(V θz , which is not explicitly dependent on )t(
~
θ . Hence, 

exact estimation of the unknown parameters cannot be pro-
vided via such an approach. Moreover, most of the existing 
methods for nonlinear adaptive control deliberately eliminate 

the explicit dependence of the total derivative V  on )t(
~
θ  via 

the adaptive estimation law. Negative definiteness of V  on θ
~

 
has to be provided in order to achieve exact parameter esti-
mation. This can be accomplished if the following holds  
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)ˆ(
~ 1

θ θΓβθMμ
 ,  

where μ  is the new key vector, which will modify the basic 
adaptive estimation law dynamics. Then, for the closed loop 
adaptive system with the modified adaptive estimator  

θθzGθzfz
~

)t,ˆ,()t,ˆ,( zz   (6а) 

)(
~

θ μβΓθ 


 (6b) 

the Lyapunov function derivative will be  

θMθzCzθz
~~

)
~

,(V TT  . (7) 

If the matrix ppM  is positive definite, then the derivative 

)
~

,(V θz  will be negative definite and the error )t(
~
θ  will con-

verge to zero according to the LaSalle-Yoshizawa theorem [4], 
i.e. exact unknown parameter estimation will be guaranteed. In 
this sense, the exact estimation problem reduces to the problem 

of designing the modifier μ  in (6) to be independent on )t(
~
θ  

and make the matrix M  positive definite. The major ad-
vantage of this approach is that exact parameter estimation can 
be achieved in one transient response without imposing the 
standard excitation techniques, even for systems that do not 
generate enough information naturally. This is made possible 
by generalization of the prediction error concept and in-
troducing the concept of the stable data accumulation.  
 

PREDICTION ERROR IN x COORDINATES 
 
The task for construction of an algebraic connection between 
the system trajectories )t(x  and the unknown parameter vector 

θ  is central in the prediction error concept. Based on this al-

gebraic connection, an estimate x̂  depending on the estimated 

parameters θ̂ , can be defined. The x coordinates error 

xxe ˆx   is called prediction error and is used in the adaptive 

process. This error provides indirect information about the 
estimation error and can be used for modifying the basic 
adaptive estimation law dynamics. The following lemma 
presents a generalization of the prediction error concept for 
nonlinear systems of the form (1).  
 
Lemma 1: Let the state estimate vector 1nˆ x , the matrix 

pn
x

W  and the signal 1n~ ε  are described by the vec-

tor-matrix differential equations  

θWKθGfxxΛx
 ˆˆ)ˆ(ˆ x

1
xx
 ,  

GKWΛW xxxx  , 0W )0(x ,  

εΛε ~~
x , )0()0(~

xeε  ,  

composed in correspondence with the original nonlinear sys-
tem dynamics (1), where )k,,k,k(diag

n21 xxxx K  and 

)λ,,λ,λ(diag
n21 xxxx Λ  are positive definite and negative 

definite design matrices, respectively. Then, all signals are 

globally bounded and the connection xx
~

ςθW   with 

)~( xxx εeKς   holds.  

 
The generalization of the prediction error concept in lemma 1 
is achieved by a special form of the nonlinear adaptive ob-
server, introduction of the gain matrix xK , and considering 

the asymptotic stability of ε~ .  
 

DATA ACCUMULATION CONCEPT 
 
The main idea behind the data accumulation concept is the dy-
namic construction of a coordinate transformation between the 
θ  parameter space and the space spanned by a suitably de-

fined vector 1p)t( ψ . The vector )t(ψ  is a mapping of the 

original unknown vector θ  in new coordinates defined as  
θQψ )t()t(  ,  (8) 

where the matrix pp)t( Q  is the coordinate transformation. 

If )t(Q  has full rank then the transformation (8) is a dif-

feomorphism. The dynamics of )t(Q  is chosen to be  

xx
T
xrr )( WRWQQΛQ  , 0Q )0( .  (9) 

The key idea behind the definition (9) is to control the rank of 
the transformation matrix )t(Q  via the reference design matrix 

rQ . The dynamics (9) can be interpreted as a stable data ac-

cumulation process, with the accumulated information matrix 

)t(Q . It can be shown that if the input xx
T
x WRW  has full 

rank for a sufficient time period, then the matrix )t(Q  will 

converge to its reference rQ . The convergence to rQ  is not 

necessary for achieving exact parameter estimation, but the 
full rank of the data matrix )t(Q  is sufficient to guarantee 
exact parameter estimation. In this sense, the introduction of 
the reference matrix rQ  in the dynamics (9) provides a way of 

controlling the rank of )t(Q , and on the other hand stabilizes 

the data accumulation process and ensures that )t(Q  will 
remain bounded. Now, differentiating (8), considering the rela-

tion θθθ ˆ~
  and lemma 1, we obtain the dynamics  

)ˆ()( xxx
T
xrr θWςRWQQΛψ  , (10) 

which is completely computable. Rewriting (8) with respect to 
the estimates gives  

θQψ ˆ)t()t(ˆ   (11) 
and the estimation error  

θQψψψ
~

)t()t(ˆ)t()t(~   (12) 
becomes known. If the basic adaptive estimation law is modi-
fied to guarantee convergence of the error )t(~ψ  to zero and 

the data matrix )t(Q  has full rank, then according to (12) the 

estimation error )t(
~
θ  will converge to zero. Thus, the data ac-

cumulation concept is summarized in the following lemma.  
 

Lemma 2: Let the signals ppQ , 1pψ , and 1pˆ ψ  
are described by the following vector-matrix equations  

xx
T
xrr )( WRWQQΛQ  , 0Q )0( ,  

)ˆ()( xxx
T
xrr θWςRWQQΛψ  , 0ψ )0( ,  

θQψ ˆˆ  ,  
composed in correspondence with lemma 1, where 

)r,,r,r(diag
n21 xxxx R , )λ,,λ,λ(diag

p21 rrrr Λ  are posi-

tive and negative definite design matrices, respectively, and 

rQ  is a constant reference matrix with full rank. All signals 

are globally bounded and the connection ψθQ ~~
  holds, 

where ψψψ ˆ~   is the mapping error.   
 

MODIFICATION FOR EXACT ESTIMATION 
 
The modification for exact estimation is based on the results in 
lemmas 1 and 2 and is summarized in the following theorem.  
 
Theorem 1: Let the basic adaptive estimation law (2b) is mod-
ified into  

)(ˆ
θ μβΓθ 


,  (13) 

with the modifier μ  defined as  

ψΓQςΓWθMμ ~~
ψ

T
xx

T
x  ,  (14a) 
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)γ,,γ(diag
n1 xxx Γ , )γ,,γ(diag

p1 ψψψ Γ ,  (14b) 

being positive definite weighting matrices. Then the following 
asymptotic properties hold  

0z 


)t(lim
t

, 0ς 


)t(lim x
t

, 0ψ 


)t(~lim
t

.  (15) 

Moreover, when the accumulated data matrix )t(Q  has full 
rank the symmetric matrix  

QΓQWΓWM ψ
T

xx
T
x  ,  (16) 

also has full rank and it is positive definite. Then, the estima-

tion error will be asymptotically stable or 0θ 


)t(
~

lim
t

.  

 

Proof: The total derivative )
~

,(V θz , shown in (7), reads  

θMθzCzθz
~~

)
~

,(V TT  .  

It can be expressed also as )~,,(V x ψςz  by considering the 

relations (16), xx
~

ςθW  , and ψθQ ~~
  as follows  

ψΓψςΓςzCzψςz ~~)~,,(V ψ
T

xx
T
x

T
x  .  

This derivative is obviously negative definite, which proves 
the asymptotic stability of )t(z , )t(xς , and )t(~ψ . In the gen-

eral case, the matrix QΓQWΓWM ψ
T

xx
T
x   is positive 

semidefinite, because the first term is positive semidefinite and 
Q  does not have full rank, which implies only Lyapunov sta-

bility with respect to θ
~

. However, in most of the nonlinear 
original systems, it is possible to achieve full rank of Q  via its 
dynamic control, according to (9). If this is achieved, then the 
major result obtained is that the matrix M  becomes positive 

definite and the derivative )
~

,(V θz  yields negative definiteness 

with respect to θ
~

 also. This provides asymptotic stability of 

θ
~

, i.e. exact parameter estimation.   
 

APPLICATION OF THE APPROACH 
 
The proposed approach is applied to a DC motor driven in-
verted pendulum nonlinear system. The general original model 
(1) is described in this case by the equations  

uθxθxsinθx

xx

322112

21







 (17a) 

1xy   (17b) 

where 1x  is the pendulum position ]rad[ , 2x  is the angular 

velocity ]s/rad[ , u  is the motor armature current ]A[  and  

)mlJ/(mglθ 2
1  , )mlJ/(bθ 2

2  , )mlJ/(Kθ 2
m3    

are the unknown system parameters. Equations (17) describe 
the current-fed dynamics of the DC motor driven inverted 
pendulum, with the motor armature current as the control in-
put. The adaptive backstepping approach is applied for the de-
sign of the control and the basic parameter estimation laws (2), 
resulting in the following control system equations with track-
ing errors  

1d1 xyz  , d2112 yxzcz  ,  

and control law u  with the stabilizing function 2α   

22αδ̂u  , 22112212d1d2 xθ̂xsinθ̂zcz)xy(cyα   .  

Here 2δ̂  is an estimate of 32 θ/1δ  . The basic parameter esti-

mator dynamics is (2b) and  

223δ2 zα)θ(signγδ̂
2




,  

where T
2212 ]0,xz,xsinz[ β , T

321 ]θ,θ,θ[θ . Apparently, 

the control system does not estimate the unknown parameter 

3θ . The basic closed-loop system error dynamics reads  

2111 zzcz  ,  (18a) 

23222112212 αθδ
~

xθ
~

xsinθ
~

zczz  .  (18b) 

A Lyapunov function for the closed-loop system (18) is  

2
2

δ

31
θ

TT
2 δ

~

γ2

|θ|~~

2

1

2

1
)δ

~
,

~
,(V

2

  θΓθzzθz ,  

where T
21 ]z,z[z . The total derivative of this function, with 

respect to the closed-loop system error and basic parameter es-
timator dynamics is  

Czzz T)(V  .  
The above derivative is negative semi-definite with respect to 
the estimation error and as a result exact estimation cannot be 
achieved. The objective system (17) and the closed-loop sys-
tem (18) have to be presented in the general form (1)–(3), in 
order to apply the proposed methodology for exact parameter 
estimation. This is accomplished by considering the relations 

222 δ̂δδ
~

 , 333 θ̂θ
~

θ  , 22αδ̂u   into the basic closed-loop 

error dynamics (18)  











0

x
),( 2uxf ; 











uxxsin

000
),(

21

uxG ,  














)1δ̂θ̂(αzcz

zzc

232221

211
zf ; 











uxxsin

000

21
zG .  

The resulting Lyapunov function derivative, for the modified 
closed-loop adaptive system (6) takes the general form (7) 
with modified parameter estimator (13), which completely 
define the closed-loop adaptive system equations.  
 

SIMULATION AND SYSTEM TIME RESPONSES 
 
The physical parameters used in the simulations are the pen-
dulum mass 5.0m   kg, pendulum length 5.0l   m, motor 

moment of inertia 0341.0J   2mkg , torque constant 

48.0K m   A/Nm , viscous friction coefficient 4.0b   

sNm  and gravity constant 81.9g   2s/m . The simulation is 

performed from zero initial conditions with design matrices  
)10,10(diagx Λ , )10,10,10(diagr Λ ,  

)2,2(diagx K , )10,10(diagxx  ΓR ,  

)30,30(diagC )2.0,1,5(diagθ Γ , 1.0γ
2δ
 ,  

)75,175,200(diagψ Γ , )10,10,10(diagr Q .  

The closed-loop system time responses are shown in figure 1, 
(a)–(d). The reference trajectory is generated via a second or-
der linear reference model with double pole 3λ  . The de-
sired pendulum positioning angle is chosen to be πv   rad. 
This set point is the worst case scenario for the parameter es-
timator, because in this angular position all system signals are 
identically zero and thus all data channels are closed. Never-
theless, all original system model parameters are exactly esti-
mated in one transient response only. In contrast, the closed-
loop adaptive system without the modification doesn’t esti-
mate exactly any of the unknown parameters. Hence, the pro-
posed approach greatly improves the adaptive system perfor-
mance. This is due to the fact that the matrix Q  maintains full 

rank during the control system operation and as a result M  is 
a positive definite matrix. The only inaccurately estimated pa-
rameter is 2δ , because it is not a system model parameter and 

therefore is not included for exact estimation by the approach. 

Moreover, the steady state equation for 2δ
~

  

1312 xsinθθδ
~

0   

is satisfied for both 0δ
~

2  , πkx1   or 0δ
~

2  , πkx1  , 

,2,1,0k  . Therefore, in steady state 2δ  may not be exactly 
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Figure 1: Trajectory tracking and parameter estimates re-
sponses (solid line – modified, dashed line – unmodified) 

estimated when πkx1  , but is guaranteed to be exactly 

estimated when πkx1  . A possibility to estimate 2δ  

exactly is to use the fact that the unknown parameter 23 δ/1θ   

is guaranteed to be exactly estimated, i.e. the true value of 2δ  

can be computed after the 3θ̂  transient response has settled. 

Then the estimation error 2δ
~

 is known and the 2δ  parameter 

estimator can be modified into  

)δ̂θ̂/1(czα)θ(signγδ̂ 23δ223δ2 22



.  

The result from this modification is given on figure 1 (e). This 
modification provides exact estimation of the parameter 2δ , 

regardless of the 1x  steady state value. In this way, all system 

parameters are exactly estimated.  
 

CONCLUSION 
 
The paper has presented a new general approach for exact un-
known parameter estimation in nonlinear adaptive control sys-
tems. The approach presumes that a known nonlinear adaptive 
control design method is applied for the objective nonlinear 
system. Then, the basic adaptive control system is modified by 
generalization of the prediction error concept and introducing 
the concept of the stable data accumulation. This results in an 
asymptotically stable closed-loop adaptive system with respect 
to both the tracking and parameter estimation errors )t(z  and 

)t(
~
θ . The asymptotic stability is provided by control of the 
data accumulation dynamics to achieve full rank of the matri-
ces )t(Q  and )t(M . The unmodified adaptive system cannot 
estimate the unknown parameters exactly. The major ad-
vantage of the new approach proposed is that exact parameter 
estimation is achieved by the closed-loop adaptive system in 
one transient response only without imposing the standard ex-
citation techniques, even for systems that do not generate 
enough information naturally.  
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