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The control of level of liquids in boilers, evaporators, reactors, etc., is especially important as 

related to energy balance. The plant is nonlinear, inertial, with model uncertainty and difficult to 

model and control employing classical methods. Fuzzy logic controllers (FLCs) offer an intelligent 

solution to the control of such plants achieving in a unified and simple way system stability, 

robustness and good performance. The aim of this research is to develop a procedure for optimization 

of the tuning of PI and PID FLCs as well as linear controllers using genetic algorithms (GAs) and to 

prove by comparison the improvement of the systems performance. The main results are: 1) a method 

for off-line multi-criteria optimization of the tuning parameters of FLCs and linear controllers with a 

proposed fitness function based on integral squared relative error and control action and an estimate 

of the maximal overshoot during the step responses in various operation points, evaluated via control 

system simulations; 2) application of the method for level control and 3) performance assessment of 

the designed systems via simulation.  

Оптимизация на настройката на размити регулатори при управление на ниво чрез 

генетични алгоритми (Снежана Йорданова, Анелия Георгиева). Регулирането на ниво на 

течности в котли, изпарители, реактори и др., е актуална задача, свързана с енергийния 

баланс. Обектът е нелинеен, инерционен, с моделна неопределеност и трудно се моделира и 

управлява с класически методи. Размитите регулатори (РРи) предлагат интелигентно 

решение за управление на такива обекти като осигуряват по унифициран и несложен начин 

устойчивост, робастност и добри показатели на системата. Цел на настоящото изследване 

е да се разработи процедура за оптимизация на настройката на ПИ и ПИД РРи, както и на 

линейни регулатори на основа на генетични алгоритми (ГА) и да се покаже подобряване на 

показателите на системата. Основните резултати са: 1) метод за оф-лайн 

многокритериална оптимизация на параметрите за настройка на РР и линейни регулатори с 

предложен функционал на основа на интеграли от квадрата на относителните грешка и 

управляващо въздействие и оценка на максималното пререгулиране в преходните процеси в 

различни работни точки, получени при симулация на системата; 2)приложение на метода за 

управление на ниво и 3) оценка на показателите на синтезираните системи чрез симулация.  

 

Introduction and State of the Art 

Level control is important in many installations – 

boilers, evaporators, reactors, etc., as it is closely 

related to energy balance. The plant is nonlinear, 

inertial, with model uncertainty and difficult to model 

and control by employing classical control 

approaches. The linear controller design is based on a 

linear plant model and ensures a good system 

performance only in a close area around the operating 

point for which the plant model is derived. The 

existing enhancements to the linear controllers such as 

dead zone for damping oscillations due to 

discretisation and noise effects, anti-wind-up circuitry 

for integration, etc., introduce nonlinearity and 

complicate the controller tuning. The nonlinear 

controllers on the other side are richer in facilities but 

have complicated and unique for each nonlinear plant 

design, based also on a plant model, computationally 

heavy and cause system stability problems. Therefore, 

the popularity of fuzzy logic controllers (FLCs) as a 

specific class of nonlinear controllers grows now-a-

days. The reason is the FLC simplicity in structure 

and design, the universal design approach, which is 

independent of plant type (presence of nonlinearity, or 

inertia, or time delay, etc.), demands no plant model 

and ensures system stability, robustness and good 

performance by simple means [1]. A FLC for level 
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control by changing the pump flowrate on the basis of 

Takagi-Sugeno (T-S) plant model is designed in [2]. It 

is built on the principle of parallel distributed 

compensation (PDC) of the local linear plants. In [3-7] 

are suggested FLCs for level control using two 

(system error and rate of error) or three (level, 

flowrate and pressure) input variables and one (valve 

opening) or three (valve opening, fuel and steam 

flowrate) output variables. 

The tuning of the FLC concludes in adjustment of 

the scaling factors (SFs), the membership functions 

(MFs) and the fuzzy rules. Most commonly the SCs 

are tuned as by this simple technique an adaptive 

FLC’s resolution is achieved which is equivalent to 

changes of the MFs and the fired rules [8]. Next by 

GA tuning a reduction of the number of rules is often 

aimed at. There is a variety of approaches for 

designing of FLCs and tuning of their parameters. In 

[9] a frequency domain design method on the basis of 

the Popov stability criterion modified with Morari 

robustness condition is developed and illustrated on 

various suggested structures of PI/PID FLCs. In [9, 

10] the tuning of the FLC parameters is based on a 

designed supervisory FLC for nonlinear multi-criteria 

on-line optimisation of selected performance 

measures. An effective and simple approach to reach 

desired system performance and robustness is by 

employing optimisation techniques. Among the 

diverse optimisation methods the genetic algorithms 

(GAs) seem most suitable for off-line FLC tuning. 

The GAs tackle multi-criteria optimisation with 

respect to a great amount of parameters when a global 

minimum is searched for multimodal and nonlinear 

functionals under different restrictions as GAs are 

non-gradient stochastic methods. The most frequently 

used criteria are minimisation of integral squared error 

(ISE) without and with restriction to the control action 

or relative ISE, or minimisation of other performance 

indices such as settling time ts, overshoot , etc., and 

their combinations. The optimisation is carried out 

off-line on the basis of simulations using a plant 

model. If not available analytically, the nonlinear 

plant model can be derived by GA minimisation of a 

function of the error between collected experimental 

plant output data and the output of an accepted plant 

model with respect to model parameters. There are 

various applications of GAs for the design of linear 

controllers and FLCs. In [11] GA is applied for tuning 

of linear PID controllers. The tuning by GA of a linear 

PID for level control in connected tanks is described 

in [12/6]. The GA tuned PID system outperforms the 

ordinary tuned PID system. In [6] GA is used for 

reduction of the number of rules in the design of a 

FLC for the level control in a boiler. Simulations and 

a comparison with a linear PID controlled system 

prove a decrease of overshoot and settling time. 

Tuning of 39 parameters of the MFs and the fuzzy 

rules of a FLC for the control of the liquid level in a 

tank on the basis of GA and artificial neural networks 

is suggested and tested in real time control in [13]. 

The performance of the closed loop FLC system has 

been improved by a decrease of ts and . A PID FLC 

has been designed in [14, 15]. Reduction of the 

number of rules and optimisation of the parameters of 

the MFs are reached by application of GA technique 

with several fitness functions and combinations of 

them. Simulations show decreased ts and  of the 

system response and also smooth control and 

reduction of energy consumption when compared to 

linear PID system or PID FLC system designed 

empirically. GAs find application in fuzzy model 

predictive control design in [16/10]. 

The aim of the present work is to optimise via GA 

the parameters of the pre- and post-processing units of 

PI/PID FLCs with widely distributed structure - with 

system error and derivative-of-error as inputs and 

integral and proportional-plus-integral (PI) post-

processing respectively and the parameters of linear 

PI/PID controllers, designed for level control, and to 

compare the performances of the closed loop systems 

via simulation investigations in Simulink-

MATLAB
TM

 environment. The plant is based on a 

laboratory level control system. 

Preliminary Investigation and Problem 

Formulation 

The laboratory system for level control of the 

liquid in a tank is shown in Fig.1. The tank inflow is 

ensured by a DC pump. The inflow flowrate Q1 is 

proportional to the voltage U=[0-10]V that feeds the 

pump. The outflow is free as result of the hydrostatic 

pressure. The generalised plant has input U and 

controlled output variable – the liquid level H at the 

output of the Simulink voltage-to-level converter of 

the output of the couple level sensor [0-0.5]m - 

transmitter [2-10]V. The simplified plant model 

differential equation is derived on the basis of the 

material balance in the following form [17]: 
 

(1)          )2(
1

1 gHSQ
Adt

dH
 , 

where A is the tank cross-sectional area, S – the valve 

opening diameter, g  - the gravity acceleration. with 

nominal values A = 225.10 
-4

m², S=0,1.10 
-4

m², 

Q1=1,56 l/h for U=1, V. 
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Fig.1. Laboratory level control system 

The Simulink model for identification of the plant 

is shown in Fig.2.  

The simulated step responses are depicted in Fig.3. 

The graphically obtained parameters of the Ziegler-

Nichols model – 
1
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operating points are different and this confirms the 

nonlinearity of the plant and justifies the selection of 

nonlinear FLC. The mean and the worst with respect 

to the closed loop system stability parameters are 

denoted with subscript “mean” and “w” respectively 

and are used for the initial tuning of the linear PI/PID 

controllers. 

The PI FLC and PID FLC are Mamdani controllers 

and are shown in Fig.4. They both use two-inputs to 

the Fuzzy Unit (FU) – the normalized system error 

e(t) =yr-y(t) – the difference between the reference yr 

and the plant output y(t), which in this case is the tank 
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Fig.2. Simulink plant model 

 

level y(t)=H(t), and its normalized derivative )(te , 

computed by a first order differentiator with the 

transfer function 
1

)(
d

d
dd




sT

sT
KsW . The FU inputs 

and output are normalized in the range [-1, 1] by the 

scaling factors Ke, Kde (included in the differentiator’s 

gain) and the output is denormalised by Kdu (included 

in the post- processing gain). The post-processing for 

PI FLC is an integrator sKsW /)( a2PI   and for PID 

FLC - a PI algorithm - )/11()( ip2PI sTKsDW  in 

order that the FLC makes an incremental PI/PID 

nonlinear controller: 

 

 
Fig.3. Simulated plant step responses in different 

operating points 
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 Fig.4. Incremental PI/PID FLC 

 
Fig.5. FU membership functions and fuzzy rules of 

PI/PID FLC, NB-negative big, N-negative, Z-zero, P-

positive, PB-positive big 

The design of the PI/PID FLC is based on the same 

FU with standard MFs and rules, shown in Fig.5, and 

needs no plant model. The defuzzification method is 

the centre-of-gravity COG. The tuning parameters are 

qFPI=[Ke (Kde.Kd) Td Ka] for PI FLC and qFPID=[Ke 

(Kde.Kd) Td Kp Ti] for PI FLC. They are tuned initially 

empirically, considering maximal error |emax|=5 cm 

(5.10
-2

m) - Ke=0,2, Kde Kd=1. Inputs to the FU beyond 

the range [-1, 1] are limited. The differentiator’s time-

constant is selected Td=2s to ensure effective 

differentiation and noise filtering from the 

requirement Td=(25)t, where t is the sampling 

period and t 0,1.min(Tmean,mean), t=0,5 and Ka= 

Kp=10, Ti=Td=2s. 

Initially the tuning parameters of the linear PI and 

PID controllers qPI/PID=[ Kp Ti Td] is based on 

engineering empirical formulas for ensuring small 

overshoot [18] considering the mean plant model 

parameters:  

 

gain Kp=1,4.Tmean/(Kmean.mean)=30 cm/V 

initial integral action time Ti=0,22.Tmean=50s  

differentiation time-constant Td= mean=10s (PID) 

 

 
Fig.6. Step responses for different references in the four 

designed closed loop systems with PI/PID FLC and 

linear PI/PID controllers (dotted line) 

 

The systems with initially tuned parameters have 

simulated step responses, shown in Fig.6. 

The FLC systems preserve the performance ts and 

 of the step responses in different operation points, 

where the plant has different parameters due to 

nonlinearity, which is an evidence for good robustness 

unlike the systems with the linear PI/PID controllers. 

However, the FLC systems have worse performance 

as a whole but are easily designed with no use of plant 

model. 

The problem is to optimize off-line the 

performances of the systems employing genetic 

algorithms (GAs) as off-line non-gradient stochastic 

method for the tuning of 
PI/PIDFPIDFPI

,, qqq . The 

accepted criterion is: 

(2)           

min|/)(|max

]/)(/)([

PI/PIDFPIDFPI
,,

min

2
max

222

qqq
r

r

yte

dtutuyteF



   

In (2) are combined three criteria – minimization of 

the relative error accounting for the minimum relative 

control action and estimate for the maximum 

overshoot 

ry

te )(
max min . 

Optimisation of FLC and Linear Controllers’ 

Parameters via GA 

The optimization of the FLC and linear controllers 

tuning is carried out using a MATLAB
TM

 genetic 

algorithm embedded in a developed program with the 

following algorithm [19]. 



 5 

1. Input data – number of generations, size of 

population in a generation, fitness function, initial 

upper and lower bound for the tuning parameters, 

fitness function, end condition (reached number of 

generations), selection method (roulette), crossover 

points (in one point), mutation method (in one bit) 

2. Initialise the population with randomly 

generated individuals (as chromosomes) and evaluate 

the fitness of each individual. 

3. Select survivors - two parents from the 

population with probabilities proportional to their 

fitness values. 

4. Randomly vary individuals. 

a. Apply crossover with a probability equal to the 

crossover rate. 

b. Apply mutation with a probability equal to the 

mutation rate. 

5. Evaluate the fitness function and accept in the 

new generation if better than the parents, else repeat 

from 2. To 6. 

7. Repeat 2. to 5. until enough members are 

generated to form the next generation. 

8. Repeat from 3 till the number of generations or 

the desired accuracy (minimum) is reached. 

Each parameter set is first encoded for instance 

into a concatenated bit string representation making a 

chromosome for specific parameters values. Each 

parameter in the chromosome is a gene. After a 

population is created the fitness (objective) function is 

computed for each member (chromosome). Then 

parents are selected with probability proportional to 

their fitness value for producing off-springs for the 

new generation. The idea is to let members with 

above-average fitness reproduce and replace members 

with below-average fitness. Crossover generates new 

chromosomes that are expected to retain the good 

features of the previous generation. In a single point 

crossover, the point is selected at random and the 

parent chromosomes swap their bit strings to the right 

of this point. Then mutation takes place by flipping a 

bit. The mutation prevents the population from 

converging towards a local minimum. The mutation 

rate is low in order to preserve good chromosomes. 

Genetic algorithm mimics the evolution of 

populations. First, different possible solutions to a 

problem are generated. They are tested for their 

performance, that is, how good a solution they 

provide. A fraction of the good solutions is selected, 

and the others are eliminated (survival of the fittest). 

Then the selected solutions undergo the processes of 

reproduction, crossover and mutation to create a new 

generation of possible solutions, which is expected to 

perform better than the previous generation. Finally, 

production and evaluation of new generations is 

repeated until convergence. Such an algorithm 

searches for a solution from a broad spectrum of 

possible solutions, rather than where the results would 

normally be expected. The penalty is computational 

intensity.  

This algorithm is repeated 10 times - each time 

expanding the upper and lower bounds for the 

parameters, till a desired minimum of the fitness 

function (2) is reached. In this way the subjective 

assignment of these bounds is avoided. The fitness 

function is evaluated after running a Simulink model 

of the closed loop system with the plant model from 

Fig.2 and the current values for the controller’s 

parameters and collecting data for evaluation of F 

from (2). In case of available experimental data from 

the plant first a fuzzy, neural or neural-fuzzy plant 

model can be obtained by training or GA optimization 

of the parameters of a model of a given structure. The 

GA optimisation is carried out for each ot the four 

types of controllers PI FLC, PID FLC, linear PI and 

Linear PID with chromosome structure defined by 

 respectively. The optimal 

parameters are: 

qFPI=[Ke=0.03 (Kde.Kd) =3.3 Td=2  Ka=155] for PI 

FLC  

qFPID=[Ke=0.039  (Kde.Kd) =0.35  Td=2  Kp=176  

Ti=3.3] for PI FLC 

qPI=[ Kp=17.5  Ti=63] 

qPID=[ Kp=11  Ti=91  Td=0.52]. 

Performance Assessment of Closed Loop 

Systems with Optimised Controllers 

The performance of the systems with the designed 

PI/PID FLC and PI/PID linear controllers with 

optimal tuning parameters is assessed from simulation 

investigations. The step responses in different 

operation points is obtained for the systems and 

compared with the step responses with initially tuned 

controllers. This comparison is shown in Fig.7 for the 

systems with FLCs. The PID FLC system has no 

overshoot and five times reduced settling time. The PI 

FLC system has reduced the settling time three times 

but marks an increase in the maximal deviation.  

In Fig. 8 is shown the comparison of the step 

responses of the PI/PID controlled systems with initial 

and optimized tuning parameters. The PI and the PID 

systems with optimised parameters lead to improved 

system performance with respect to the initial – 

negligible overshoot and slightly reduced settling 

time. Here the performance of the PI system is better. 

The comparison between the FLC and linear PI/PID 
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Fig.7. Step responses for different references in the FLC 

designed closed loop systems with initial (dash line) and 

optimized via GA parameters 

 

Fig.8. Step responses for different references in the 

PI/PID designed closed loop systems with initial (dotted 

line) and optimized via GA parameters 

systems with optimized parameters rates the 

performance of the PID FLC system as the best. It is 

normal to expect a nonlinear plant to be better 

controlled by a nonlinear controller such as the FLC.  

The FLC systems outperform the systems with the 

linear controllers in reduced settling time, easy design 

without much knowledge and modeling the plant. 

Conclusion and Future Work 

The main contributions of the present investigation 

conclude in the following. 

1. A method for off-line tuning of the parameters 

in the pre- and post-processing part of incremental PI 

and PID Mamdani FLCs and of linear controllers is 

suggested on the basis of genetic algorithms. A fitness 

function is proposed that binds three criteria related to 

integral squared relative system error, integral squared 

relative control action and an estimate of the maximal 

overshoot during the step responses in various 

operation points where the plant model has different 

parameters 

2. The step responses in the designed four systems 

are simulated and their settling time and overshoot 

assessed. The FLC systems outperform the systems 

with the linear controller, which is expected since the 

plant is nonlinear. 

3. The method can be successfully applied for 

simple off-line tuning of different FLCs and also 

extended to tuning of other parameters of the FLCs 

such as MFs, rules, etc. 

4. The suggested tuning procedure is proper for 

fuzzy control of level. 

Future investigation is foreseen in the real time 

control of the level in the laboratory system from 

Fig.1. The model of the plant in the FLC system for 

computing the fitness function can be extracted from 

experimental data, collected about the plant, via GA 

optimization of a suggested Sugeno plant model. 
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