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Genetic Algorithm Based Optimization of Fuzzy
Controllers Tuning in Level Control

Snejana Yordanova, Aneliya Georgieva

The control of level of liquids in boilers, evaporators, reactors, etc., is especially important as
related to energy balance. The plant is nonlinear, inertial, with model uncertainty and difficult to
model and control employing classical methods. Fuzzy logic controllers (FLCs) offer an intelligent
solution to the control of such plants achieving in a unified and simple way system stability,
robustness and good performance. The aim of this research is to develop a procedure for optimization
of the tuning of Pl and PID FLCs as well as linear controllers using genetic algorithms (GAs) and to
prove by comparison the improvement of the systems performance. The main results are: 1) a method
for off-line multi-criteria optimization of the tuning parameters of FLCs and linear controllers with a
proposed fitness function based on integral squared relative error and control action and an estimate
of the maximal overshoot during the step responses in various operation points, evaluated via control
system simulations; 2) application of the method for level control and 3) performance assessment of
the designed systems via simulation.

Onmumusayua Ha HACMPOUKAMA HA PA3MUMU Pe2YIamopu NPU ynpaseieHue Ha HUGO 4pe3
cenemuunu anzopummu (Cuencana Hopoanosa, Anenun I'eopzuesa). Pecynupanemo na nugo Ha
meyHocmuy 8 KOMIU, UNapumenu, peakmopu u Op., e aKmyaina 3a0aud, C8bp3aHa C eHepeUliHus
oananc. Obekmvm e HeluHeeH, UHEPYUOHEH, ¢ MOOEIHA HeONpedeleHOCT U MPYOHO ce MOOenupa u
ynpaensiea ¢ Kuacudecku memoou. Pazmumume pecynamopu (PPu) npeonacam unmenuceHmHo
pewlenue 3a ynpagienue Ha makuea o0eKmu Kamo OoCUcypsaeam no YHUDUUUPAH U HeCI0HCeH HAYUH
yemouiyusocm, pobacmuocm u 00opu noxazamenu nHa cucmemama. Llen na nacmosawomo uscneosamne
e 0a ce paspabomu npoyedypa 3a onmumuzayus Ha Hacmpotkama na [IW u ITH]] PPu, xakmo u Ha
JIUHEUHU pecylamopu Ha OCHO8d Ha ceHemuyHu aneopummu (I'A) u da ce nokasice nodobpsasane Ha
noxkazamenume Ha cucmemama. OcHosnume pesyimamu ca: 1) memoo 3a  og-nain
MHO2OKPUMEPUATIHA ONMUMU3AYUSL HA napamempume 3a Hacmpouika Ha PP u nunetinu pezynamopu c
nPeonodNCcer (QYHKYUOHAN HA OCHO8A HA UHMESPaiu Om Keaopama Ha OMHOCUMENHUME 2peuKa u
VAPAsAABAWO 8b30eUCmeue U OYeHKA HA MAKCUMATHOMO npepecyiupane 8 npexooHume npoyecu 6
PasnuuHy pabomuu moyKu, NOIYYeHU NPU CUMYAAYUS HA cucmemMama, 2)npunoxcerue Ha mMemood 3a
YHpasienue Ha HUBO U 3) OYeHKa Ha NOKA3amenume Ha CUHME3UPAHUmMe CUCeMu 4pe3 CUMYAAYUS.

for integration, etc., introduce nonlinearity and

Introduction and State of the Art

Level control is important in many installations —
boilers, evaporators, reactors, etc., as it is closely
related to energy balance. The plant is nonlinear,
inertial, with model uncertainty and difficult to model
and control by employing classical control
approaches. The linear controller design is based on a
linear plant model and ensures a good system
performance only in a close area around the operating
point for which the plant model is derived. The
existing enhancements to the linear controllers such as
dead zone for damping oscillations due to
discretisation and noise effects, anti-wind-up circuitry

complicate the controller tuning. The nonlinear
controllers on the other side are richer in facilities but
have complicated and unique for each nonlinear plant
design, based also on a plant model, computationally
heavy and cause system stability problems. Therefore,
the popularity of fuzzy logic controllers (FLCs) as a
specific class of nonlinear controllers grows now-a-
days. The reason is the FLC simplicity in structure
and design, the universal design approach, which is
independent of plant type (presence of nonlinearity, or
inertia, or time delay, etc.), demands no plant model
and ensures system stability, robustness and good
performance by simple means [1]. A FLC for level



control by changing the pump flowrate on the basis of
Takagi-Sugeno (T-S) plant model is designed in [2]. It
is built on the principle of parallel distributed
compensation (PDC) of the local linear plants. In [3-7]
are suggested FLCs for level control using two
(system error and rate of error) or three (level,
flowrate and pressure) input variables and one (valve
opening) or three (valve opening, fuel and steam
flowrate) output variables.

The tuning of the FLC concludes in adjustment of
the scaling factors (SFs), the membership functions
(MFs) and the fuzzy rules. Most commonly the SCs
are tuned as by this simple technique an adaptive
FLC’s resolution is achieved which is equivalent to
changes of the MFs and the fired rules [8]. Next by
GA tuning a reduction of the number of rules is often
aimed at. There is a variety of approaches for
designing of FLCs and tuning of their parameters. In
[9] a frequency domain design method on the basis of
the Popov stability criterion modified with Morari
robustness condition is developed and illustrated on
various suggested structures of PI/PID FLCs. In [9,
10] the tuning of the FLC parameters is based on a
designed supervisory FLC for nonlinear multi-criteria
on-line  optimisation of selected performance
measures. An effective and simple approach to reach
desired system performance and robustness is by
employing optimisation techniques. Among the
diverse optimisation methods the genetic algorithms
(GAs) seem most suitable for off-line FLC tuning.
The GAs tackle multi-criteria optimisation with
respect to a great amount of parameters when a global
minimum is searched for multimodal and nonlinear
functionals under different restrictions as GAs are
non-gradient stochastic methods. The most frequently
used criteria are minimisation of integral squared error
(ISE) without and with restriction to the control action
or relative ISE, or minimisation of other performance
indices such as settling time t,, overshoot o, etc., and
their combinations. The optimisation is carried out
off-line on the basis of simulations using a plant
model. If not available analytically, the nonlinear
plant model can be derived by GA minimisation of a
function of the error between collected experimental
plant output data and the output of an accepted plant
model with respect to model parameters. There are
various applications of GAs for the design of linear
controllers and FLCs. In [11] GA is applied for tuning
of linear PID controllers. The tuning by GA of a linear
PID for level control in connected tanks is described
in [12/6]. The GA tuned PID system outperforms the
ordinary tuned PID system. In [6] GA is used for
reduction of the number of rules in the design of a

FLC for the level control in a boiler. Simulations and
a comparison with a linear PID controlled system
prove a decrease of overshoot and settling time.
Tuning of 39 parameters of the MFs and the fuzzy
rules of a FLC for the control of the liquid level in a
tank on the basis of GA and artificial neural networks
is suggested and tested in real time control in [13].
The performance of the closed loop FLC system has
been improved by a decrease of t; and . A PID FLC
has been designed in [14, 15]. Reduction of the
number of rules and optimisation of the parameters of
the MFs are reached by application of GA technique
with several fitness functions and combinations of
them. Simulations show decreased t; and o of the
system response and also smooth control and
reduction of energy consumption when compared to
linear PID system or PID FLC system designed
empirically. GAs find application in fuzzy model
predictive control design in [16/10].

The aim of the present work is to optimise via GA
the parameters of the pre- and post-processing units of
PI/PID FLCs with widely distributed structure - with
system error and derivative-of-error as inputs and
integral and proportional-plus-integral (Pl) post-
processing respectively and the parameters of linear
PI/PID controllers, designed for level control, and to
compare the performances of the closed loop systems
via  simulation investigations in  Simulink-
MATLAB™ environment. The plant is based on a
laboratory level control system.

Preliminary Problem
Formulation

The laboratory system for level control of the
liquid in a tank is shown in Fig.1. The tank inflow is
ensured by a DC pump. The inflow flowrate Q; is
proportional to the voltage U=[0-10]V that feeds the
pump. The outflow is free as result of the hydrostatic
pressure. The generalised plant has input U and
controlled output variable — the liquid level H at the
output of the Simulink voltage-to-level converter of
the output of the couple level sensor [0-0.5]m -
transmitter [2-10]V. The simplified plant model
differential equation is derived on the basis of the
material balance in the following form [17]:

Investigation  and

dH 1
(1) ot A Q@ SvegH).

where A is the tank cross-sectional area, S — the valve
opening diameter, g - the gravity acceleration. with
nominal values A = 225.10 “*mz, $=0,1.10 “m?,

Q:=1,56 I/h for U=1, V.
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Fig.1. Laboratory level control system

The Simulink model for identification of the plant
is shown in Fig.2.

The simulated step responses are depicted in Fig.3.
The graphically obtained parameters of the Ziegler-

—1TS

Nichols model — W (s) = Ke

Ts+1
operating points are different and this confirms the
nonlinearity of the plant and justifies the selection of
nonlinear FLC. The mean and the worst with respect
to the closed loop system stability parameters are
denoted with subscript “mean” and “w” respectively
and are used for the initial tuning of the linear PI/PID
controllers.

The PI FLC and PID FLC are Mamdani controllers
and are shown in Fig.4. They both use two-inputs to
the Fuzzy Unit (FU) — the normalized system error
e(t) =y-y(t) — the difference between the reference y;
and the plant output y(t), which in this case is the tank
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Fig.2. Simulink plant model
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level y(t)=H(t), and its normalized derivative €é(t),
computed by a first order differentiator with the

transfer function w_ (s) = K TS The FU inputs
d d
Tys+1
and output are normalized in the range [-1, 1] by the
scaling factors K, Kge (included in the differentiator’s
gain) and the output is denormalised by Ky, (included
in the post- processing gain). The post-processing for
P1 FLC is an integrator W, (s) =K, /s and for PID

FLC - a PI algorithm - W,; D(s) = Kp(1+1/Tis)in

order that the FLC makes an incremental PI/PID
nonlinear controller:
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Fig.3. Simulated plant step responses in different
operating points

Upy (1) = K K, [ Key (e, €)e(t)dt +

KgeKae(t)[ Ky (e,€)dt

Upip (1) = KoK, /T [ Ky (e, €)e(t)dt +

Kge (Kp /T Key (8,8)e(t) + KKKy (e, 8)e(t)
Upip (1) = (Ke + Ko / ;) K Ky (€, €)e(t) +

KK, /Ti [ Keu(e,e)e(t)dt + KooK Key (8, €)e(t)
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Fig.4. Incremental PI/PID FLC

€ O k. Le, :
i B He :
o= ¢! [[FU[Efvo
e M e e P et Post-processing
Normalisation § =) | with :
: Unit

i denormalisation :

P S S T ——
44 42 0 02 04 08 0

= ma|
&=

N
| NB |NB
N

A A N [z ][p[m][e

l:

4 4 ‘-i JJIJ -0'2 ﬂ [F: :‘l ﬂlé 0‘5 i
Fig.5. FU membership functions and fuzzy rules of

PI/PID FLC, NB-negative big, N-negative, Z-zero, P-
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The design of the PI/PID FLC is based on the same
FU with standard MFs and rules, shown in Fig.5, and
needs no plant model. The defuzzification method is
the centre-of-gravity COG. The tuning parameters are
Arri=[Ke (Kee.Kg) Tq Kg] for PI FLC and gepip=[Ke
(Kge-Kg) Ty Ky Ti] for PI FLC. They are tuned initially
empirically, considering maximal error |em.|=5 cm
(5.10m) - K¢=0,2, Kg K¢=1. Inputs to the FU beyond
the range [-1, 1] are limited. The differentiator’s time-
constant is selected T4=2s to ensure -effective
differentiation and noise filtering from the
requirement Tq=(2+5)At, where At is the sampling
period and At <0,1.min(Tmean,Tmean), At=0,5 and K =
szlo, Ti=Td=25.

Initially the tuning parameters of the linear Pl and
PID controllers Qepip=[ K, Ti Tg] is based on
engineering empirical formulas for ensuring small
overshoot [18] considering the mean plant model
parameters:

gain K,=1,4.Tmean/ (Kmean- Tmean)=30 cm/V
initial integral action time T;=0,22.T 1ean=50s
differentiation time-constant Ty= Tmean=10s (PID)
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Fig.6. Step responses for different references in the four
designed closed loop systems with PI/PID FLC and
linear PI/PID controllers (dotted line)

The systems with initially tuned parameters have
simulated step responses, shown in Fig.6.

The FLC systems preserve the performance t; and
o of the step responses in different operation points,
where the plant has different parameters due to
nonlinearity, which is an evidence for good robustness
unlike the systems with the linear PI/PID controllers.
However, the FLC systems have worse performance
as a whole but are easily designed with no use of plant
model.

The problem is to optimize off-line the
performances of the systems employing genetic
algorithms (GAs) as off-line non-gradient stochastic

method for the tuning of Q.0 q The
accepted criterion is:
@ F=[[e®)?/y; +u(t)* /by Jdt +

+max |enin()/ Y, = min
qul’qulD’qpl/PlD

PIPID*

In (2) are combined three criteria — minimization of
the relative error accounting for the minimum relative
control action and estimate for the maximum

emin (t)
Y

overshoot max

Optimisation of FLC and Linear Controllers’
Parameters via GA

The optimization of the FLC and linear controllers
tuning is carried out using a MATLAB™ genetic
algorithm embedded in a developed program with the
following algorithm [19].



1. Input data — number of generations, size of
population in a generation, fitness function, initial
upper and lower bound for the tuning parameters,
fitness function, end condition (reached number of
generations), selection method (roulette), crossover
points (in one point), mutation method (in one bit)

2. Initialise the population with randomly
generated individuals (as chromosomes) and evaluate
the fitness of each individual.

3. Select survivors - two parents from the
population with probabilities proportional to their
fitness values.

4. Randomly vary individuals.

a. Apply crossover with a probability equal to the
Crossover rate.

b. Apply mutation with a probability equal to the
mutation rate.

5. Evaluate the fitness function and accept in the
new generation if better than the parents, else repeat
from 2. To 6.

7. Repeat 2. to 5. until enough members are
generated to form the next generation.

8. Repeat from 3 till the number of generations or
the desired accuracy (minimum) is reached.

Each parameter set is first encoded for instance
into a concatenated bit string representation making a
chromosome for specific parameters values. Each
parameter in the chromosome is a gene. After a
population is created the fitness (objective) function is
computed for each member (chromosome). Then
parents are selected with probability proportional to
their fitness value for producing off-springs for the
new generation. The idea is to let members with
above-average fitness reproduce and replace members
with below-average fitness. Crossover generates new
chromosomes that are expected to retain the good
features of the previous generation. In a single point
crossover, the point is selected at random and the
parent chromosomes swap their bit strings to the right
of this point. Then mutation takes place by flipping a
bit. The mutation prevents the population from
converging towards a local minimum. The mutation
rate is low in order to preserve good chromosomes.

Genetic algorithm mimics the evolution of
populations. First, different possible solutions to a
problem are generated. They are tested for their
performance, that is, how good a solution they
provide. A fraction of the good solutions is selected,
and the others are eliminated (survival of the fittest).
Then the selected solutions undergo the processes of
reproduction, crossover and mutation to create a new
generation of possible solutions, which is expected to
perform better than the previous generation. Finally,

production and evaluation of new generations is
repeated until convergence. Such an algorithm
searches for a solution from a broad spectrum of
possible solutions, rather than where the results would
normally be expected. The penalty is computational
intensity.

This algorithm is repeated 10 times - each time
expanding the upper and lower bounds for the
parameters, till a desired minimum of the fitness
function (2) is reached. In this way the subjective
assignment of these bounds is avoided. The fitness
function is evaluated after running a Simulink model
of the closed loop system with the plant model from
Fig.2 and the current values for the controller’s
parameters and collecting data for evaluation of F
from (2). In case of available experimental data from
the plant first a fuzzy, neural or neural-fuzzy plant
model can be obtained by training or GA optimization
of the parameters of a model of a given structure. The
GA optimisation is carried out for each ot the four
types of controllers Pl FLC, PID FLC, linear Pl and
Linear PID with chromosome structure defined by

QrprOrpip. Qeyeip  FeSpectively.  The  optimal

parameters are.
rri=[Ke=0.03 (Kge.Kq) =3.3 T;=2 K,=155] for Pl
FLC
Orrio=[Ke=0.039  (Kge.Kg) =0.35 Tyq=2 K,=176
T,=3.3] for P FLC
ri=[ Kp=17.5 Ti=63]
eio=[ K,=11 T;=91 T4=0.52].

Performance Assessment of Closed Loop
Systems with Optimised Controllers

The performance of the systems with the designed
PI/PID FLC and PI/PID linear controllers with
optimal tuning parameters is assessed from simulation
investigations. The step responses in different
operation points is obtained for the systems and
compared with the step responses with initially tuned
controllers. This comparison is shown in Fig.7 for the
systems with FLCs. The PID FLC system has no
overshoot and five times reduced settling time. The PI
FLC system has reduced the settling time three times
but marks an increase in the maximal deviation.

In Fig. 8 is shown the comparison of the step
responses of the PI/PID controlled systems with initial
and optimized tuning parameters. The PI and the PID
systems with optimised parameters lead to improved
system performance with respect to the initial —
negligible overshoot and slightly reduced settling
time. Here the performance of the Pl system is better.
The comparison between the FLC and linear PI/PID
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Fig.8. Step responses for different references in the
PI/PID designed closed loop systems with initial (dotted
line) and optimized via GA parameters

systems with optimized parameters rates the
performance of the PID FLC system as the best. It is
normal to expect a nonlinear plant to be better
controlled by a nonlinear controller such as the FLC.
The FLC systems outperform the systems with the
linear controllers in reduced settling time, easy design
without much knowledge and modeling the plant.

Conclusion and Future Work

The main contributions of the present investigation
conclude in the following.

1. A method for off-line tuning of the parameters
in the pre- and post-processing part of incremental Pl

and PID Mamdani FLCs and of linear controllers is
suggested on the basis of genetic algorithms. A fitness
function is proposed that binds three criteria related to
integral squared relative system error, integral squared
relative control action and an estimate of the maximal
overshoot during the step responses in various
operation points where the plant model has different
parameters

2. The step responses in the designed four systems
are simulated and their settling time and overshoot
assessed. The FLC systems outperform the systems
with the linear controller, which is expected since the
plant is nonlinear.

3. The method can be successfully applied for
simple off-line tuning of different FLCs and also
extended to tuning of other parameters of the FLCs
such as MFs, rules, etc.

4. The suggested tuning procedure is proper for
fuzzy control of level.

Future investigation is foreseen in the real time
control of the level in the laboratory system from
Fig.1. The model of the plant in the FLC system for
computing the fitness function can be extracted from
experimental data, collected about the plant, via GA
optimization of a suggested Sugeno plant model.
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